流体力学实验画图方法
- 格式:doc
- 大小:885.50 KB
- 文档页数:5
SolidWorks流体力学分析的步骤与方法流体力学分析是工程领域中非常重要的分析方法之一,它可以帮助工程师们评估各种流体系统的性能和行为。
SolidWorks软件提供了一套强大的工具,使得进行流体力学分析变得更加简单和方便。
本文将介绍SolidWorks流体力学分析的步骤和方法,以帮助读者了解如何有效地利用该软件进行流体力学分析。
第一步:设置分析类型和参数在进行流体力学分析之前,首先需要设置分析类型和相关参数。
在SolidWorks 中,可以选择多种流体力学分析类型,包括内部流动、外部流动和自由表面流动等。
选择适合你的设计需求的分析类型,然后设置相关参数,如材料属性、流量率、速度和压力。
在设置参数时,应该考虑到该系统的边界条件和初始条件。
边界条件包括系统的进口和出口位置、边界类型(比如可流入、可流出或对称边界)、边界条件的数值,等等。
初始条件表示流体在开始分析时的初始性质,比如初始速度、初始温度、初始压力等。
第二步:创建几何模型在SolidWorks中创建几何模型是进行流体力学分析的关键步骤。
你可以通过SolidWorks的三维建模工具来创建你想要分析的几何结构,并确保它在软件中准确重现。
在创建几何模型时,要考虑到流体的流动方式和流通路径。
确保你的模型内部没有孔隙或间隙,并且边界有正确的连接。
使用SolidWorks的零件设计和装配功能,你可以创建包括管道、阀门、储罐和泵等流体系统的几何模型。
你还可以添加涡轮机械、散热器和排气系统等组件,以更全面地研究流体力学行为。
第三步:应用网格划分在进行流体力学分析之前,必须将几何模型划分为离散单元,这样才能计算流体在每个单元上的性质。
这个离散化的过程被称为网格划分,它将几何模型划分为许多小的体素或单元。
SolidWorks提供了自动或手动网格划分的功能。
你可以根据自己的需求调整单元的大小和密度。
如果你的模型非常复杂,可能需要更多的单元来获得准确的结果。
注意,网格划分的质量对最终结果的准确性和计算效率有很大的影响。
实验报告课程名称:过程工程原理实验(甲) 指导老师: 成绩:__________________ 实验名称:流体力学综合实验(一、二) 实验类型:工程实验 同组学生姓名:姿 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得1、流体流动阻力的测定实验1.1 实验目的:1.1.1 掌握测定流体流经直管、阀门时阻力损失的一般实验方法 1.1.2 测定直管摩擦系数λ与雷诺数 的关系,验证在一般湍流区内λ与 的关系曲线 1.1.3测定流体流经阀门时的局部阻力系数ξ1.1.4 识辨组成管路的各种管件、阀门,并了解其作用 1.2 实验装置与流程: 1.2.1 实验装置:实验对象部分由贮水箱、离心泵、不同管径和材质的水管、阀门、管件、涡轮流量计、U 形流量计等所组成。
实验管路部分有两段并联长直管,自上而下分别用于测定粗糙管直管阻力系数和光滑管直管阻力系数。
同时在粗糙直管和光滑直管上分别装有闸阀和截止阀,用于测定不同种类阀门的局部阻力阻力系数。
水的流量使用涡流流量计或转子流量计测量,管路直管阻力和局部阻力采用压差传感器测量。
1.2.2 实验装置流程示意图,如图1,箭头所示为实验流程:其中:1——水箱 2——离心泵 3——涡轮流量计 4——温度计 5——光滑管实验段 6——粗糙管实验段 7——截止阀 8——闸阀 9、10、11、12——压差传感器 13——引水漏斗图 1 流体力学综合实验装置流程示意图Re Re1.3 基本原理:流体通过由直管、管件和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成的机械能损失成为直管阻力损失。
流体通过管件、阀门时由于流体运动方向和速度大小的改变所引起的机械能损失成为局部阻力损失。
1.3.1直管阻力摩擦系数λ的测定:由流体力学知识可知,流体在水平等径直管中稳定流动时,阻力损失为:(1) 公式中:fp ∆:流体流经l 米直管的压力将,Pa ;λ:直管阻力摩擦系数,无因次; d :直管内径,m ;fh :单位质量流体流经l 米直管的机械能损失,J/kg ;ρ:流体密度,kg/ ; l :直管长度,m ;u :流体在管内流动的平均速度,m/s ;由上面的式子可知: (2)雷诺数: ρμ式子中:μ:流体粘度,kg/(m ·s)。
流体力学的实验研究方法流体力学是研究液体和气体运动规律的学科,是物理学的一个重要分支。
在流体力学的研究中,实验方法是非常重要的手段之一。
本文将介绍几种常用的流体力学实验研究方法。
一、定量实验方法定量实验方法是通过对流体中各种参数的测量来获取数据,并进行定量分析。
最常用的定量实验方法包括流速测量、压力测量、流量测量等。
1. 流速测量流速是流体运动中的一个重要参数,在流体力学研究中具有重要意义。
常见的流速测量方法有浮标法、旋转测速法、超声波测速法等。
浮标法是通过在流体中放置一个浮标,并测量浮标的位移来确定流速。
旋转测速法则是利用测速仪表中的叶片旋转频率与流速成正比的原理进行测量。
超声波测速法则是通过发送超声波并测量其回波时间来计算流速。
2. 压力测量压力是流体力学研究中另一个重要的参数。
常用的压力测量方法有水柱法、压力传感器法、毛细管法等。
水柱法是利用流体的压力传递性质,通过测量流体压力对应的水柱高度来计算压力值。
压力传感器法则是利用压力传感器测量流体压力,通过变换电信号获得压力值。
毛细管法则是利用毛细管压力差与流动速度之间的关系来计算压力值。
3. 流量测量流量是流体力学研究中对流体运动强度的衡量。
常见的流量测量方法有流量计法、测地阀法、热敏电阻法等。
流量计法是通过使用流量计器来测量流体通过的体积或质量,从而得到流量值。
测地阀法则是利用流体通过定型孔等装置时的流动特性来计算流量。
热敏电阻法则是利用流体的传导特性,通过测量电阻值来计算流量值。
二、定性实验方法定性实验方法是通过观察流体现象的形态和规律来进行研究。
定性实验方法主要包括流动可视化、颗粒示踪、涡旋检测等。
1. 流动可视化流动可视化是将流体运动过程通过染色或其他方式使其可见,并观察流体现象。
常用的流动可视化方法有染色法、粒子轨迹法等。
染色法是通过向流体中加入染料,使染料在流动中呈现特殊颜色或变化,从而观察流体的运动情况。
粒子轨迹法则是通过在流体中加入颗粒物,在流动中观察颗粒物的轨迹,从而推测流体的流动方式。
Flow3d 9.3.2 Hydraulics Tutorial水力教程本练习的目的是模拟水从水库通过薄壁堰流进下游水池。
图1 水流模拟在设计中,模拟的第一步是需要完全了解要分析的问题。
用流体力学知识,分析工程中哪些参数重要,怎样简化问题,可能出现什么问题,以及希望得到什么样的结果。
确定液体流动特性,如黏性、表面张力及能量作用大小的常用方法,是计算无量纲参数,如雷诺数、邦德数、韦伯数。
Re (Reynold’s Number)雷诺数=Inertial Force/Viscous Force=贯性力/黏性=UL/νBo (Bond Number)邦德数=Gravitational Force/Surface Tension Force=重力/表面张力=gΔρL2/σWe (Weber Number) 韦伯数=Inertial Force/Surface Tension Force=惯性力/表面张力=LU2ρ/σ这里U是特征速度,L是特征长度,g是重力加速度,ρ是密度,σ 是表面张力系数。
对本问题,水从18cm高堰流过,水流在堰底的速度可近似按自由落体运动分析得出:Velocity = sqrt(2*980*18) = 187.8 cm/s流体的雷诺数为:Re = 30cm x 187.8cm/s / 10-2cm^2/s = 5.6 x 105雷诺数大,意味着与贯性力相比,黏性力不可忽略。
因此,我们不需要精细的网格求解壁黏性剪切层。
当然,由于流态的紊乱,液体内部有很多黏性剪切力,因此,需要在模型中指定黏性参数。
邦德数按下式求得:Bo = 980cm/s^2 * 1 gm/cc * (30cm)^2/(73gm/s^2) = 1.2 x 104韦伯数按下式求得:We = 30cm * (187.8 cm/s)^2 * 1gm/cc / (73gm/s^2) = 1.45 x 104再者,大的邦德数和大的韦伯数表明,与重力和惯性力相比,表面张力可忽略。
流体力学综合实验实验指导书流体力学综合实验一、实验目的1)能进行光滑管、粗糙管、闸阀局部阻力测定实验,测出湍流区阻力系数与雷诺数关系曲线图;2)能进行离心泵特性曲线测定实验,测出扬程、功率和效率与流量的关系曲线图;3)学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生了解玻璃转子流量计、压力表、倒U型差压计以及相关仪表的原理和操作;二、装置整体流程图:1-水箱;2-进口压力表;3-双金属温度计;4-灌泵漏斗;5-出口压力表;6-玻璃转子流量计;7-局部阻力管;8-电气控制箱;9-局部阻力管上的闸阀V1;10-光滑管;11-倒U型差压计;12-均压环;13-粗糙管;14-管路选择球阀f1、f2、f3;15-出口流量调节闸阀V2图1 实验装置流程示意图离心泵特性测定实验一、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。
由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。
1.扬程H 的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:f e h gug p z H g u g p z ∑+++=+++2222222111ρρ (1-1)由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有(=e H gp p z z ρ1212)-+- 210(H H H ++=表值) (1-2)式中: 120z z H -=,表示泵出口和进口间的位差,m ;和ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2;p 1、p 2——分别为泵进、出口的真空度和表压,Pa ;H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。
流体力学的路线图(之一)流体力学基础理论的学习历来被初学者视为畏途,每到学习结束要进入期末考试的时候,老师和学生一样心中难免忐忑,在流体力学这门课上挂科已经成为某种常态。
即使是学习多年的老手也会在具体问题面前感到基础尚不完备,还不够扎实。
这个问题的起源当然与流体运动规律本身的复杂性有关,这个复杂性导致流体力学与大家印象中的“学科”概念有一定的出入。
比如我们在学习高等数学时,很容易发现,数学是一门“咬文嚼字”的学科,里面充满严格定义的概念,不论学习线性代数还是微积分,都是从一些基本公理出发,循着一条严格的逻辑路线,架构起整门课程。
因为数学有这样逻辑严密的特点,所以虽然学起来也不容易,但大家一致认为数学是美的,而且不论谁写的数学书,比如微积分的书,内容都只有程度深浅的差异,而绝没有内容上的巨大差异。
流体力学则有所不同,流体的流动本身是一种连续不断的变形过程,经典的流体力学理论以连续介质假设为基础,将整个流体看作连续介质,同时将其运动看作连续运动。
但是由于流体是复杂的,实际上至今还没有完全掌握其全貌,因此流体力学在建立了基本控制方程后,就开始转而从一些特殊的流动出发,采用根据流动特点进行简化的方式,先建立物理模型,再得到数学模型,进而得到我们在书中经常看到的很多“理论”,比如不可压无旋流、旋涡动力学、水波动力学、气体动力学等等,甚至理论中还包括理论,比如不可压无旋流中还有自由流线理论,等等。
形成一个类似于俄罗斯套娃的学科结构,这种结构容易给人一种支离破碎的印象。
特别是在各个理论之间联系比较薄弱的时候,更容易给人这种印象。
似乎一门课中又包含了很多门“小课”,每门“小课”使用的数学工具也完全不同,甚至很多同行还进一步把自己分成是学气的(比如空气动力学),或者是学水的(比如学船舶的)等等。
就象旅行者要有一张地图才能更高效率地到达目的地一样,如果能有一张流体力学的地图,或者叫路线图(roadmap),应该对初学者有很大帮助。
利用CAD进行流体力学分析的方法在工程设计领域中,流体力学分析是非常重要的一项任务。
它能够帮助工程师们预测流体在不同条件下的行为,从而优化设计并提高性能。
而当谈及流体力学分析时,计算机辅助设计(CAD)软件的使用变得不可或缺。
本教程将介绍如何利用CAD进行流体力学分析。
第一步,准备几何模型。
在进行流体力学分析之前,必须创建一个几何模型。
可以使用CAD软件中的绘图工具绘制所需的几何形状,比如管道、阀门等。
确保几何模型准确,符合设计要求。
此外,还可以导入其他软件创建的几何模型,如AutoCAD等。
第二步,创建流体域。
在几何模型中定义流体域是流体力学分析的关键。
根据设定的条件,确定流体域的形状和尺寸。
例如,如果要分析管道内的流体流动情况,可以在几何模型中选择管道内部作为流体域。
在CAD软件中,可以使用布尔运算工具来创建流体域,如取差集或交集。
第三步,指定边界条件。
流体域的边界条件是流体力学分析中的重要参数。
它们决定了流体在流动过程中的行为。
用户需要指定边界条件,如入口速度、出口压力、壁面摩擦等。
这些参数将在后续的分析中被考虑。
第四步,选择求解器和网格。
在CAD软件中选择合适的求解器和网格对模型的精度和计算效率有重要影响。
求解器用于解决流体力学方程组,并计算流体在不同条件下的性能。
网格用于将流体域分割成小的单元,以便进行数值计算。
选择合适的求解器和网格可以提高分析的准确性和速度。
第五步,设定计算参数。
在进行流体力学分析之前,还需要设定一些计算参数。
这些参数包括计算时间步长、收敛准则、迭代次数等。
根据分析的要求,调整这些参数以获得准确的结果。
第六步,运行分析。
所有准备工作完成后,可以开始运行流体力学分析。
根据设定的边界条件和计算参数,求解器将自动进行计算,并输出结果。
结果可以包括流速、压力、温度等参数的分布情况。
第七步,分析结果。
得到计算结果后,可以进行进一步的分析。
CAD软件通常提供了数据可视化工具,可以绘制流速矢量图、流线图、等值线图等,以便更直观地理解流体行为。
利用CAD进行流体力学分析的技巧流体力学是研究流体运动及其相关力学性质的学科。
在工程领域中,流体力学分析对于设计和改进流体系统至关重要。
而计算机辅助设计(CAD)软件则是用于创建和修改数字模型的工具。
本文将介绍利用CAD软件进行流体力学分析的一些技巧和方法。
1. 创建几何模型首先,我们需要利用CAD软件创建流体系统的几何模型。
这可能包括液体或气体流经的管道、阀门、泵站等组件。
使用CAD软件的绘图工具,我们可以绘制这些组件的二维或三维图形。
2. 设定材料属性在进行流体力学分析之前,我们需要为流体系统中的组件分配正确的材料属性。
例如,对于管道,我们需要输入其材质、厚度等信息。
CAD软件通常提供了材料库,可以根据实际情况选择合适的材料。
3. 定义流动条件流体力学分析需要明确定义流体系统的边界条件和流动条件。
这包括入口和出口处的速度、压力以及流量等参数。
利用CAD软件,我们可以在模型中指定这些条件,并确保其准确性。
4. 网格划分流体力学分析通常基于离散网格方法,将流体系统划分为小的网格单元。
这些单元有助于计算并预测流体的流动特性。
通过CAD软件,我们可以自动或手动创建网格,并确保其细致度和适当分辨率。
5. 模型求解一旦完成网格划分,我们可以开始利用CAD软件进行流体力学分析的数值求解。
软件可以利用数值方法和高性能计算来解决由流体系统产生的大量方程。
这将为我们提供准确的流速、流量、压力分布等结果。
6. 结果分析CAD软件通常提供了丰富的结果分析工具,帮助我们进一步理解流体力学分析的结果。
我们可以通过绘制流线图、等值线图或剖面图等方式,直观地展示流体在系统中的流动特性。
此外,CAD软件还允许我们计算和比较不同位置处的流体参数,以评估系统的性能。
7. 优化设计一旦我们获得了流体力学分析的结果,我们可以借助CAD软件进行进一步的设计优化。
基于分析结果,我们可以尝试调整流体系统的几何形状、组件尺寸或流动条件等参数,以达到更理想的流体力学性能。