小学数学应用题大全
- 格式:doc
- 大小:112.50 KB
- 文档页数:47
小学数学必考100道应用题及答案(完整版)1. 学校图书馆有故事书240 本,科技书比故事书多30 本,科技书有多少本?答案:240 + 30 = 270(本)解题思路:科技书数量= 故事书数量+ 302. 果园里有苹果树180 棵,梨树比苹果树少20 棵,梨树有多少棵?答案:180 - 20 = 160(棵)解题思路:梨树数量= 苹果树数量- 203. 小明买了一支钢笔,花了8 元,又买了一个笔记本,花了5 元,一共花了多少钱?答案:8 + 5 = 13(元)解题思路:总花费= 钢笔花费+ 笔记本花费4. 养殖场有鸡200 只,鸭的数量是鸡的1.2 倍,鸭有多少只?答案:200 ×1.2 = 240(只)解题思路:鸭的数量= 鸡的数量×1.25. 一本书有150 页,小红第一天看了20%,第二天看了25%,两天一共看了多少页?答案:150 ×(20% + 25%)= 67.5(页)解题思路:先算出两天分别看的页数占总页数的比例,再乘以总页数得到两天看的页数之和6. 一个长方形的长是12 厘米,宽是长的2/3,这个长方形的面积是多少?答案:宽为12 ×2/3 = 8 厘米,面积= 12 ×8 = 96(平方厘米)解题思路:先求出宽,再用长乘以宽得到面积7. 商店运来500 千克水果,上午卖出180 千克,下午卖出220 千克,还剩多少千克?答案:500 - 180 - 220 = 100(千克)解题思路:用运来的水果重量依次减去上午和下午卖出的重量8. 工人师傅要生产480 个零件,已经生产了3 天,每天生产80 个,还剩多少个没生产?答案:480 - 80 ×3 = 240(个)解题思路:先算出已经生产的零件数量,再用总数减去已生产的数量9. 小明家离学校1500 米,他每天上学、放学一共要走多少米?答案:1500 ×2 = 3000(米)解题思路:上学和放学的路程相同,所以总路程是单程的2 倍10. 一桶油重50 千克,用去了30%,还剩多少千克?答案:50 ×(1 - 30%)= 35(千克)解题思路:剩下的油的重量= 总重量×(1 -用去的比例)11. 一个三角形的底是9 分米,高是底的2/3,这个三角形的面积是多少?答案:高为9 ×2/3 = 6 分米,面积= 9 ×6 ÷2 = 27(平方分米)解题思路:先求出高,再根据三角形面积公式计算12. 学校合唱队有男生25 人,女生人数是男生的1.2 倍,合唱队一共有多少人?答案:女生人数为25 ×1.2 = 30 人,总人数= 25 + 30 = 55(人)解题思路:先求出女生人数,再加上男生人数得到总人数13. 有一块长方形菜地,长18 米,宽12 米,这块菜地的一半种西红柿,种西红柿的面积是多少?答案:菜地面积为18 ×12 = 216 平方米,种西红柿的面积为216 ÷2 = 108 平方米解题思路:先求出菜地面积,再除以2 得到种西红柿的面积14. 一辆汽车2 小时行驶了160 千米,照这样的速度,5 小时能行驶多少千米?答案:速度为160 ÷2 = 80 千米/小时,5 小时行驶80 ×5 = 400 千米解题思路:先求出速度,再乘以时间得到行驶的路程15. 一个正方形的周长是36 厘米,它的面积是多少平方厘米?答案:边长为36 ÷4 = 9 厘米,面积为9 ×9 = 81 平方厘米解题思路:先求出边长,再计算面积16. 妈妈买了3 千克苹果,花了18 元,每千克苹果多少钱?答案:18 ÷ 3 = 6(元)解题思路:单价= 总价÷数量17. 小明做了40 道数学题,做错了5 道,他的正确率是多少?答案:(40 - 5)÷40 ×100% = 87.5%解题思路:正确率= (做对的题数÷总题数)×100%18. 一间教室长10 米,宽6 米,高3.5 米,要粉刷教室的四面墙壁和天花板,除去门窗和黑板的面积20 平方米,粉刷的面积是多少平方米?答案:(10 ×3.5 + 6 ×3.5)×2 + 10 ×6 - 20 = 132(平方米)解题思路:分别计算四面墙壁和天花板的面积,再减去门窗和黑板的面积19. 一根铁丝可以围成一个边长为8 厘米的正方形,如果用这根铁丝围成一个长方形,长是10 厘米,宽是多少厘米?答案:铁丝长度为8 × 4 = 32 厘米,宽为(32 - 10 ×2)÷2 = 6 厘米解题思路:先求出铁丝长度,再根据长方形周长公式求出宽20. 一个圆柱形水桶,底面半径是2 分米,高是5 分米,这个水桶的容积是多少升?答案:3.14 ×2 ×2 ×5 = 62.8(立方分米)= 62.8 升解题思路:圆柱容积= 底面积×高21. 一辆自行车的价格是300 元,一辆摩托车的价格是自行车的6 倍,一辆摩托车比一辆自行车贵多少元?答案:300 ×6 - 300 = 1500(元)解题思路:先求出摩托车的价格,再减去自行车的价格22. 学校举行运动会,参加跑步的有48 人,参加跳远的人数是跑步的3/4,参加跳高的人数是跳远的2/3,参加跳高的有多少人?答案:参加跳远的有48 ×3/4 = 36 人,参加跳高的有36 ×2/3 = 24 人解题思路:依次计算出跳远和跳高的人数23. 有一堆煤,用去了2/5 ,还剩下12 吨,这堆煤原来有多少吨?答案:12 ÷(1 - 2/5)= 20(吨)解题思路:剩下的煤占原来的(1 - 2/5),用剩下的煤的重量除以其占比得到原来煤的重量24. 一块长方形草地,长和宽的比是5:3,长比宽多12 米,这块草地的面积是多少平方米?答案:长比宽多5 - 3 = 2 份,1 份是12 ÷2 = 6 米,长为5 ×6 = 30 米,宽为3 ×6 = 18 米,面积为30 ×18 = 540 平方米解题思路:先求出长和宽分别占的份数,计算出1 份的长度,进而求出长和宽,最后求出面积25. 一个圆锥形沙堆,底面直径是6 米,高是2 米,这个沙堆的体积是多少立方米?答案:半径为6 ÷ 2 = 3 米,体积= 1/3 ×3.14 × 3 ×3 ×2 = 18.84 立方米解题思路:先求出半径,再根据圆锥体积公式计算26. 小红买了2 件上衣和3 条裤子,一共花了240 元,一件上衣的价格是一条裤子的2 倍,上衣和裤子的单价各是多少元?答案:设裤子单价为x 元,则上衣单价为2x 元,2 ×2x + 3x = 240,解得x = 32,上衣单价为64 元解题思路:根据价格关系设未知数,列方程求解27. 甲乙两地相距360 千米,一辆汽车从甲地开往乙地,3 小时行了全程的3/4,这辆汽车平均每小时行多少千米?答案:3 小时行驶的路程为360 ×3/4 = 270 千米,速度为270 ÷3 = 90 千米/小时解题思路:先求出3 小时行驶的路程,再除以时间得到速度28. 有一批零件,师傅单独做需要10 小时,徒弟单独做需要15 小时,师徒两人合作,需要几小时完成?答案:1 ÷(1/10 + 1/15)= 6(小时)解题思路:把工作总量看作单位“1”,师傅每小时完成1/10 ,徒弟每小时完成1/15 ,合作每小时完成(1/10 + 1/15),用1 除以合作每小时完成的量29. 一个长方体水箱,从里面量长8 分米,宽5 分米,高4 分米,水箱里的水深3 分米,水箱里的水有多少升?答案:8 ×5 × 3 = 120(立方分米)= 120 升解题思路:水的体积= 长×宽×水深30. 把20 克盐放入200 克水中,盐占盐水的百分之几?答案:20 ÷(20 + 200)×100% = 9.09%解题思路:先求出盐水的总质量,再用盐的质量除以盐水的总质量乘以100%31. 商店里有红气球180 个,黄气球比红气球少20 个,蓝气球的个数是黄气球的2 倍,蓝气球有多少个?答案:黄气球有180 - 20 = 160 个,蓝气球有160 × 2 = 320 个解题思路:先求出黄气球的个数,再求出蓝气球的个数。
小学数学典型应用题1【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0。
12(元)(2)买16支铅笔需要多少钱?0。
12×16=1.92(元)列成综合算式 0。
6÷5×16=0。
12×16=1。
92(元)答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷.例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)(3)105吨钢材7辆汽车需要运几次? 105÷35=3(次)列成综合算式 105÷(100÷5÷4×7)=3(次)答:需要运3次.2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题.所谓“总数量"是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
一.应用题:1、 *校五年级一班男生有23人,女生有25人。
女生占全班人数的几分之几?2、把3吨化肥平均分给5个生产队,每个生产队分多少吨?每个生产队分得化肥总数的几分之几?(第二个问题只写答即可)3、少先队员采集树种。
第一小队7人采集了8千克,第二小队6人采集了7千克。
哪个小队平均每人采集得多?4、一堆货物120吨,用去了45吨,还剩总数的几分之几?5、要制10根截面边长是1dm,长为2.5m的白铁皮烟囱,共用白铁皮多少平方米?6、一段长方体钢材,长1.6米,横截面是边长4厘米的正方形。
每立方厘米刚重7.8克,这块方钢重多少?7、一块棱长是0.6米的正方体的钢坯,锻成横截面是0.09平方米的长方体钢材,锻成的钢材有多长?〔用方程解答〕8.*家具厂要订购600根同样的方木,每根方木横截面的面积是25dm2,长是2m,这些方木一共有多少立方米?9.公园南面要修一道长30米,宽0.24米,高5米的围墙。
如果每立方米用砖500块,共需要多少块砖?10、一个修路队修一条路,九月份前13天共修2230米,后17天平均每天修160米,九月份平均每天修多少米?〔4分〕11、商店运来一批蔬菜,黄瓜占总数的1/3,西红柿占总数的2/5,其它的是土豆,土豆占这批蔬菜的几分之几?〔4分〕12、一个商品盒是正方体形状,棱长为6厘米,用塑料棍做这个盒的框架,至少需要多长的塑料棍?在这个盒的四周贴上商标,贴商标的面积是多少?〔4分〕13、光明小学六年级植树214棵,比五年级植树的3倍还多7棵,五年级植树多少棵?〔4分〕14、一个正方体的外表积是216平方厘米,把它锯成体积相等的8个小正方体,求每个小正方体的外表积是多少?15、小明家装修房子,客厅和卧室打地板,正好用了200块长50厘米、宽80厘米,厚2厘米的木质地板,小明家客厅和卧室的面积是多少平方米?他家买地板多少立方米?〔4分〕16.工人叔叔挖一个长8m,宽6m,深2m的游泳池。
小学数学典型应用题100道附答案(完整版)1. 小明有10 个苹果,小红的苹果数是小明的2 倍,小红有多少个苹果?答案:10×2 = 20(个)2. 商店里有30 个篮球,卖出了15 个,还剩下多少个?答案:30 - 15 = 15(个)3. 一辆汽车每小时行驶80 千米,行驶4 小时,一共行驶了多少千米?答案:80×4 = 320(千米)4. 果园里有120 棵桃树,梨树比桃树少20 棵,梨树有多少棵?答案:120 - 20 = 100(棵)5. 一本书有200 页,小明每天看25 页,看了4 天,还剩多少页没看?答案:200 - 25×4 = 100(页)6. 工厂要生产500 个零件,已经生产了200 个,剩下的要在5 天内完成,平均每天生产多少个?答案:(500 - 200)÷5 = 60(个)7. 学校买了8 套桌椅,每套桌椅150 元,一共花了多少钱?答案:8×150 = 1200(元)8. 长方形的长是12 厘米,宽是8 厘米,它的面积是多少平方厘米?答案:12×8 = 96(平方厘米)9. 一根绳子长50 米,剪掉20 米,剩下的占全长的几分之几?答案:(50 - 20)÷50 = 3/510. 小红有80 元零花钱,花了30 元,还剩下零花钱的几分之几?答案:(80 - 30)÷80 = 5/811. 一个三角形的底是6 分米,高是4 分米,面积是多少平方分米?答案:6×4÷2 = 12(平方分米)12. 小明从家到学校,每分钟走60 米,走了10 分钟,小明家到学校有多远?答案:60×10 = 600(米)13. 一批货物,甲车单独运6 小时运完,乙车单独运8 小时运完,两车一起运,需要几小时运完?答案:1÷(1/6 + 1/8) = 24/7(小时)14. 鸡兔同笼,共有20 个头,56 条腿,鸡和兔各有多少只?答案:假设全是鸡,兔有(56 - 20×2)÷(4 - 2) = 8(只),鸡有20 - 8 = 12(只)15. 果园里苹果树和梨树共180 棵,苹果树是梨树的2 倍,苹果树和梨树各有多少棵?答案:梨树有180÷(2 + 1) = 60(棵),苹果树有120 棵。
1.商店有4筐苹果,每筐55千克,已经卖出135千克,还剩多少千克苹果?2. 美术组有24人,体育组的人数是美术组的4倍,两个组共有多少人?3. 每盒粉笔1元3角4分,每瓶墨水6角2分,学校买了6盒粉笔5瓶墨水,共花多少钱?4. 有篮球9个,足球的个数是篮球的8倍,足球有多少个?5. 有足球72个,篮球9个,足球的数量是篮球的多少倍?6. 有足球72个,正好是篮球个数的8倍,篮球有多少个?7. 学校买来6箱图书,每箱50本,平均分给4个年级,每个年级分多少本?8. 在3千米长的公路一边,每隔5米种一棵树,一共要分多少段?9. 小明从家到学校要走200米长的路,如果他来回走2趟共行多少米?10. 商店有黄气球19个,红气球比黄气球少7个,花气球的个数是红气球的2倍,花气球有多少个?11. 同学们做习题,小华做了75道,小明做了85道,小青比小华和小明的总数少30道,小青做了多少道?12. 学校有14棵杨树,杨树的棵数是松树的2倍,柳树比松树多4棵,有多少棵柳树?13. 三年级(1)班有46人,其中21人是女生,男生比女生多多少人?14. 公园有7只大猴,小猴的只数比大猴多9只,公园一共养了多少只猴?15. 甲有140元,甲的钱数是乙的2倍,甲乙共有多少元?16. 一列火车早上5时从甲地开往乙地,按原计划每小时行驶120千米,下午3时到达乙地,但实际到达时间是下午5时整,晚点2小时。
问火车实际每小时行驶多少千米?(15-5)*120=1200 1200/(10+2)=10017.一辆汽车早上8点从甲地开往乙地,按原计划每小时行驶60千米,下午4时到达乙地。
但实际晚点2小时到达,这辆汽车实际每小时行驶多少千米? (16-8)*60=480 480/(8+2)=4818 .小宁、小红、小佳去买铅笔,小宁买了7枝,小红买了5枝,小佳没有买。
回家后,三个人平均分铅笔,小佳拿出8角钱,小佳应给宁多钱?给小红多少钱?(7+5)/3=4 8/4=2 2*(7-4)=6 8-6=219.三个好朋友去买饮料,小亮买了5瓶,小华买了4瓶,阳阳没有买。
小学数学30个典型应用题1. 甲乙两个人共有80元,甲比乙多10元,甲要减去1/5的钱给乙,剩下的钱甲还有多少元?解析:甲比乙多10元,即甲有x元,乙有x-10元。
甲要减去1/5的钱给乙,剩下的钱为4/5x。
所以4/5x = x-10,解得x=50,甲剩下的钱为(4/5)*50=40元。
2. 两个正整数的和是35,差是5,这两个数分别是多少?解析:设两个正整数分别为x和y,所以有x+y = 35和x-y=5。
将两个方程相加得到2x=40,解得x=20,代入第一个方程解得y=15。
所以这两个数分别是20和15。
3. 一辆汽车开车行驶了200公里,行驶速度为60千米每小时,行驶的时间是多少小时?解析:速度等于路程除以时间,所以时间等于路程除以速度。
这里路程为200公里,速度为60千米每小时,所以时间为200/60=3.33小时。
4. 一袋米重5千克,小明买了3袋米,他付了多少钱?如果他付了480元,那么每袋米多少钱?解析:小明买了3袋米,总重量为5千克*3=15千克。
如果他付了480元,那么每千克米的价格为480元/15千克=32元。
所以每袋米的价格为32元*5千克=160元。
5. 一盒饼干有24块,小明吃掉了其中的1/3,还剩下多少块饼干?解析:小明吃掉了1/3,剩下的饼干为原来的2/3。
所以剩下的饼干数量为24块*2/3=16块。
6. 一个苹果25克,小红买了6个苹果,她买了多少克苹果?解析:小红买了6个苹果,总重量为25克*6=150克。
7. 一路程为120公里的旅程,甲和乙同时从同一地点出发,乙的速度是甲速度的1.5倍,他们多少小时后会相遇?解析:设甲的速度为x千米每小时,乙的速度为1.5x千米每小时。
他们相遇时,甲行驶的时间为t小时,乙行驶的时间为1.5t小时。
根据路程等于速度乘以时间的公式,有xt+1.5xt=120,解得t=24/2.5=9.6小时。
所以他们9.6小时后会相遇。
8. 一辆公交车从A地出发,以每小时50千米的速度向B地行驶,另一辆公交车从B地同时以每小时60千米的速度向A地行驶。
小学数学1-6年级应用题专项练习及答案01一年级1、小明折了9只纸飞机,比小军少折3只,小军折了几只纸飞机?2、池塘的荷叶上有6只青蛙,跳来了3只,又跳走了4只。
池塘里还有几只青蛙?3、小丁丁做口算题对了21道,错了14道。
他一共做了几道口算题?4、篮子里有10个苹果,被小丁丁吃掉1个,又被爸爸吃掉2个。
现在还有多个?5、妈妈买来10个苹果,小丁丁和爸爸各吃了2个。
现在还有多少个?6、小红有16本故事书,比小芳多3本,比小明少两本。
小芳和小明各有多少本故事书?7、湖中有8只天鹅,飞走了2只,又飞来了6只,湖中还有几只天鹅?8、盒子里有一些月饼,爸爸、妈妈各吃了1个,小明吃了2个,还剩5个。
盒子里原来有几个月饼?9、商店里有20瓶汽水,上午卖掉了9瓶,下午卖掉的和上午一样多,一共卖掉几瓶?还剩几瓶?10、小丽有10支铅笔,小云有16支铅笔。
小云送给小丽几支后,两人的铅笔同样多?11.教室里有男生8人,女生10人,一共有几人?教室里有18人,走了5人,还剩几人?12.一根绳子对折后长7米,这根绳子原来长多少米?这根绳子用掉6米后,还剩几米?13.小明看一本故事书,第一天看了6页,第二天看了10页,第三天从第几页起?14.小丽排队做操,从前面数起他是第5个,从后面数起他也是第5个,这一排一共有多少个学生?15.军军从一楼走到二楼需要1分钟,用这样的速度他从一楼走到五楼,再从五楼回到一楼共需要多少分钟?16.明明从家走到学校要走6千米,这一天他走到一半,返回家拿作业本,又立即赶回学校,这一天他从家到学校一共走了多少米?17. 车上原有20人,到站下车8人,上车5人,这时车上有多少人?18.原来有18个苹果,红红吃了一些,还剩下9个,小红吃了几个苹果?19.猫妈妈钓来一些鱼,小花猫吃了一条,把剩下的一半分给了小白猫,小花猫又吃了1条,再把剩下的一半分给了小黑猫,这时,小花猫还有4条鱼,你能算出猫妈妈一共掉了多少条鱼吗?20.小军吃了5个苹果,还剩下3个,小军原来有多少个苹果?参考答案1. 122. 53. 354. 75. 66. 13 187. 128. 99. 18 210. 311. 18 1312. 14 813. 1714. 915. 816. 917. 1718. 919. 1920. 802二年级1.小熊捡了9个玉米,小猴捡的是小熊的4倍,他们一共捡了多少个玉米?2. 食品店有85听可乐,上午卖了46听,下午卖了30听,还剩多少听?3. 操场上原有16个同学,又来了14个。
小学数学典型应用题大全1.李口和向阳两个学校的学生到烈士墓去,所去人数都是10的倍数,租14座的中巴一共要72辆,如果改租19座的中巴,李口比向阳多用车7辆,两校参加扫墓的学生各多少人?解:充分利用10的倍数。
两个学校共有人数比14×72=1008人少,比14×71=994人多,即共有1000人。
改租19座的中巴后,可以乘坐1000÷19=52辆……12人,即53辆车。
所以李口学校租车(53+7)÷2=30辆车,向阳学校租车30-7=23辆。
所以李口学校有学生30×19=570人,向阳学校有学生1000-570=430人。
验证一下:如果李口少10人,还是30辆车,向阳学校有学生430+10=440人440÷19=23辆……3人,需要24辆车,相差30-24=6辆,不符合要求。
两校参加扫墓的学生共有:14×72=1008(人)因去的人数是10的倍数,车辆不能超员,所以学生总数1000人;设:李口学生数为x,那么向阳学生数为1000-x李口租19座的中巴数 = x/19向阳租19座的中巴数 = (1000-x)/19x/19 - (1000-x)/19 = 72x - 1000 = 7*192x = 1133李口学生数为 x = 570(人)向阳学生数为 1000-x = 430(人)2.一个正方形,如果一边减少25%,另一边增加3米,所得到的长方形与原来正方形面积正好相等,那么正方形面积是多少?解:正方形的边长=3×(1-25%)÷25%=9所以,面积是9×9=81平方米。
解:设原来的边长为X米,那么可以列出方程;X*X=(-20%)X*(X+3)解得:X=9将X=9代入,解得X*X(正方形面积)=9*9=81平方米答:正方形面积为81平方米。
3.通讯员以每小时6千米的速度到某地去,返回时因绕另一条路而多走3千米,回程时他每小时行7千米,仍比去时多用10分钟,问往返各是多少千米?解:3千米需要的时间是3÷7=3/7小时,用3/7-10/60=11/42小时的时间相当于去的时候的1-6/7=1/7,所以,去时的时间是11/42÷1/7=11/6小时。
小学数学应用题100道及答案(完整版)题目1:小明有10 个苹果,吃了3 个,还剩几个苹果?答案:10 - 3 = 7(个)解析:用原有的苹果数减去吃掉的就是剩下的。
题目2:一本书有80 页,第一天看了25 页,第二天看了30 页,还剩多少页没看?答案:80 - 25 - 30 = 25(页)解析:用总页数依次减去前两天看的页数。
题目3:商店里有15 个篮球,卖出8 个,又进货10 个,现在商店有多少个篮球?答案:15 - 8 + 10 = 17(个)解析:先减去卖出的,再加上进货的。
题目4:小红做了20 道数学题,小明比小红多做5 道,小明做了多少道?答案:20 + 5 = 25(道)解析:小明做的题目数量等于小红做的加上5 道。
题目5:一根绳子长50 米,剪去18 米,剩下的平均分成6 段,每段长多少米?答案:(50 - 18)÷6 = 5(米)解析:先算出剩下的绳子长度,再除以段数。
题目6:果园里有苹果树36 棵,梨树比苹果树少10 棵,梨树有多少棵?答案:36 - 10 = 26(棵)解析:梨树的数量等于苹果树的数量减去10 棵。
题目7:一辆汽车每小时行驶60 千米,行驶4 小时,一共行驶了多少千米?答案:60×4 = 240(千米)解析:速度×时间=路程题目8:学校买了30 支铅笔,平均分给5 个班,每个班分到多少支?答案:30 ÷ 5 = 6(支)解析:总数÷份数=每份的数量题目9:妈妈买了5 千克苹果,花了40 元,每千克苹果多少钱?答案:40 ÷ 5 = 8(元)解析:总价÷数量=单价题目10:一个长方形的长是12 厘米,宽是8 厘米,它的周长是多少厘米?答案:(12 + 8)× 2 = 40(厘米)解析:长方形周长=(长+宽)×2题目11:有48 个同学参加合唱比赛,平均分成6 排,每排有几个同学?答案:48 ÷6 = 8(个)解析:总人数÷排数=每排人数题目12:一只鸡重2 千克,一只鸭的重量是鸡的3 倍,鸭重多少千克?答案:2 ×3 = 6(千克)解析:鸡的重量×3 = 鸭的重量题目13:小明有30 元钱,买文具用了15 元,买零食又用了8 元,还剩多少钱?答案:30 - 15 - 8 = 7(元)解析:总钱数依次减去两次花费题目14:一个正方形的边长是5 厘米,它的面积是多少平方厘米?答案:5 ×5 = 25(平方厘米)解析:正方形面积=边长×边长题目15:一本书180 页,小花每天看20 页,看了 5 天,还剩多少页没看?答案:180 - 20×5 = 80(页)解析:总页数减去5 天看的页数题目16:一条裤子60 元,一件上衣的价格是裤子的2 倍,买一套这样的衣服要多少钱?答案:60×2 + 60 = 180(元)解析:先算出上衣价格,再加上裤子价格题目17:同学们排队做操,每行站10 人,站了8 行,一共有多少人?答案:10×8 = 80(人)解析:每行人数×行数=总人数题目18:一盒巧克力有24 块,平均分给6 个小朋友,每个小朋友分得几块?答案:24÷6 = 4(块)解析:总数÷人数=每人分得的数量题目19:一辆汽车从甲地到乙地,每小时行70 千米,6 小时到达,甲乙两地相距多少千米?答案:70×6 = 420(千米)解析:速度×时间=路程题目20:学校买了8 个足球,每个50 元,一共花了多少钱?答案:8×50 = 400(元)解析:个数×单价=总价题目21:一个长方形花园,长20 米,宽15 米,它的面积是多少平方米?答案:20×15 = 300(平方米)解析:长方形面积=长×宽题目22:三年级有120 人,平均分成4 个班,每个班有多少人?答案:120÷4 = 30(人)解析:总人数÷班级数=每班人数题目23:一根绳子长36 米,剪成9 段,每段长多少米?答案:36÷9 = 4(米)解析:总长度÷段数=每段长度题目24:小明每分钟走65 米,15 分钟能走多少米?答案:65×15 = 975(米)解析:速度×时间=路程题目25:商店运来200 千克水果,卖出80 千克,还剩多少千克?答案:200 - 80 = 120(千克)解析:运来的重量减去卖出的重量题目26:有45 个苹果,平均放在5 个盘子里,每个盘子放几个?答案:45÷5 = 9(个)解析:总数÷盘子数=每个盘子放的个数题目27:一块长方形菜地,长18 米,宽12 米,它的周长是多少米?答案:(18 + 12)×2 = 60(米)解析:长方形周长=(长+宽)×2题目28:一只兔子一天吃3 根胡萝卜,5 只兔子4 天吃多少根胡萝卜?答案:3×5×4 = 60(根)解析:一只兔子一天吃的×兔子数量×天数题目29:学校买了12 套桌椅,每张桌子80 元,每把椅子40 元,一共花了多少钱?答案:(80 + 40)×12 = 1440(元)解析:先算出一套桌椅的价钱,再乘以套数题目30:一本书300 页,第一天看了全书的1/5,第二天看了全书的1/6,两天一共看了多少页?答案:300×(1/5 + 1/6)= 110(页)解析:先算出两天分别看的页数,再相加题目31:一个正方形花坛,边长是8 米,在花坛四周修一条宽1 米的小路,小路的面积是多少平方米?答案:(8 + 1×2)×(8 + 1×2)- 8×8 = 36(平方米)解析:大正方形面积减去小正方形面积题目32:工厂要生产600 个零件,已经生产了250 个,剩下的要在 5 天内完成,平均每天生产多少个?答案:(600 - 250)÷5 = 70(个)解析:先算出剩下的零件数,再除以天数题目33:一辆汽车3 小时行驶225 千米,照这样的速度,8 小时行驶多少千米?答案:225÷3×8 = 600(千米)解析:先算出速度,再乘以时间题目34:有30 个同学参加植树活动,平均分成6 组,每组有几人?答案:30÷6 = 5(人)解析:总人数÷组数=每组人数题目35:一块长方形布料,长15 分米,宽9 分米,从这块布料上剪下一个最大的正方形,正方形的面积是多少平方分米?答案:9×9 = 81(平方分米)解析:以长方形的宽为边长剪下的正方形最大题目36:一桶水可灌2 壶水,1 壶水可以冲3 杯水,1 桶水可以冲几杯水?答案:2×3 = 6(杯)解析:桶数×每桶可灌的壶数×每壶可冲的杯数题目37:学校买了9 箱羽毛球,每箱10 个,又买了8 个乒乓球,羽毛球比乒乓球多多少个?答案:9×10 - 8 = 82(个)解析:先算出羽毛球的数量,再减去乒乓球的数量题目38:一个长方形,如果宽增加4 厘米,就变成了一个正方形,且面积增加了36 平方厘米,原来长方形的长是多少厘米?答案:36÷4 = 9(厘米)解析:增加的面积除以增加的宽得到原来长方形的长题目39:果园里有苹果树240 棵,梨树的棵数是苹果树的3/4,梨树有多少棵?答案:240×3/4 = 180(棵)解析:苹果树的棵数×3/4 = 梨树的棵数题目40:超市里苹果每千克 5 元,香蕉每千克4 元,妈妈买了4 千克苹果和 5 千克香蕉,一共花了多少钱?答案:5×4 + 4× 5 = 40(元)解析:分别算出苹果和香蕉的价钱,再相加题目41:一块三角形菜地,底是16 米,高是10 米,这块菜地的面积是多少平方米?答案:16×10÷2 = 80(平方米)解析:三角形面积=底×高÷2题目42:小明在计算除法时,把除数7 看成了9,结果得到的商是6,余数是5,正确的商是多少?答案:(9×6 + 5)÷7 = 8解析:先根据错误的除数、商和余数算出被除数,再除以正确的除数题目43:一个数除以8,商是12,余数是5,这个数是多少?答案:8×12 + 5 = 101解析:被除数=除数×商+ 余数题目44:四年级同学做了180 朵红花,比黄花多30 朵,黄花有多少朵?答案:180 - 30 = 150(朵)解析:红花数量减去30 朵就是黄花数量题目45:一块长方形草地,长40 米,宽30 米,如果每平方米可以种6 棵草,这块草地一共可以种多少棵草?答案:40×30×6 = 7200(棵)解析:先算出草地面积,再乘以每平方米种的草的数量题目46:妈妈买了4 件上衣,每件90 元,又买了一条裤子,花了120 元,妈妈买衣服一共花了多少钱?答案:4×90 + 120 = 480(元)解析:先算出上衣的总价,再加上裤子的价格题目47:一辆汽车5 小时行驶400 千米,照这样的速度,7 小时行驶多少千米?答案:400÷5×7 = 560(千米)解析:先算出速度,再乘以时间得到行驶的路程题目48:有两个书架,甲书架有书180 本,从甲书架拿30 本到乙书架,两个书架的书就一样多,乙书架原来有多少本书?答案:180 - 30×2 = 120(本)解析:甲书架拿走30×2 本后与乙书架一样多,用此时甲书架的数量求出原来乙书架的数量题目49:一个等腰梯形的上底是6 厘米,下底是10 厘米,腰长8 厘米,它的周长是多少厘米?答案:6 + 10 + 8×2 = 32(厘米)解析:等腰梯形的周长等于上底加下底加两条腰的长度题目50:修一条长600 米的水渠,已经修了150 米,剩下的每天修50 米,还要修几天?答案:(600 - 150)÷50 = 9(天)解析:先算出剩下的长度,再除以每天修的长度得到需要的天数题目51:一本书240 页,小明前 6 天每天看20 页,剩下的要在8 天内看完,平均每天要看多少页?答案:(240 - 20×6)÷8 = 15(页)解析:先算出前6 天看的页数,用总页数减去,再除以8 得到剩下每天要看的页数。
小学数学应用题大全(太全了)小学数学应用题大全在小学数学教学中,应用题是培养学生数学思维和解决实际问题的重要手段。
应用题涉及到日常生活、社会环境等实际情境,通过学习和解决这些问题,学生可以将数学知识应用到实际中,提高数学解决问题的能力。
下面是一些常见的小学数学应用题,供大家参考和练习。
一、购物计算题1. 妈妈带小明去超市购物,西瓜每斤3元,小明买了5斤西瓜,奶奶给了他10元钱,问他还需付多少钱?2. 小红买了3支钢笔,每支钢笔5元,支付了20元,计算她应该找到多少零钱?3. 青青要买一些水果,请帮她计算一下:苹果每斤4元,买了3斤苹果;橙子每斤5元,买了2斤橙子;香蕉每斤3元,买了1斤香蕉。
她一共需要支付多少钱?二、时间和钟表题1. 已知现在是上午10点,那么再过3个小时是几点?2. 小明上学每天早上7点起床,然后花20分钟洗漱,再花10分钟吃早餐。
请问他的早餐几点结束?3. 小华从家出发,骑自行车到朋友家,共用时30分钟。
如果他在家停留了10分钟,那么他骑车花了多少时间?三、长度和面积题1. 小明拿到一个长方形纸片,长10厘米,宽5厘米,他想计算一下这个纸片的周长和面积,请帮他算一下。
2. 一个矩形花坛的长为12米,宽为6米,小红想计算一下这个花坛的周长和面积,请帮她计算。
3. 小华拿了一卷电线,长度为15米,他需要将这卷电线平均分成3段,每段有多长?四、容量和体积题1. 小明家的水杯容量是150毫升,他想知道一升等于多少毫升,请帮他计算一下。
2. 一个长方体水箱的长为2米,宽为1.5米,高为1米,问这个水箱一共可以装多少升水?3. 如果一瓶饮料的容量是500毫升,小红买了6瓶饮料,总共有多少毫升?五、年龄和人数题1. 爸爸今年33岁,儿子今年8岁,爸爸几岁时,儿子是爸爸年龄的四分之一?2. 一个班级有30个学生,男生和女生人数相等,请计算男生和女生各有多少人?3. 小明今年8岁,他的姐姐比他大5岁,妹妹比他小2岁,他们三人的年龄总和是多少?六、图形和几何题1. 一个正方形边长是6厘米,问它的周长和面积分别是多少?2. 一个直角三角形,两条直角边分别是3厘米和4厘米,问斜边的长度是多少?3. 一个圆的半径是5厘米,请计算一下这个圆的周长和面积。
小学数学应用题大全小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。
任何一道应用题都由两部分构成。
第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。
应用题的条件和问题,组成了应用题的结构。
应用题可分为一般应用题与典型应用题。
没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。
题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。
这本资料主要研究以下30类典型应用题:1归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?。
例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?2归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】 1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?例2小华每天读24页书,12天读完了《红岩》一书。
小明每天读36页书,几天可以读完《红岩》?例3食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。
后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?3和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷ 2小数=(和-差)÷ 2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?例2长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
例3有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
例4甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?4和倍问题【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
【数量关系】总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?例2东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?例3甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?。
例4甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?5差倍问题【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
【数量关系】两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。
求杏树、桃树各多少棵?例2爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?例3商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?例4粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?6倍比问题【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。
【数量关系】总量÷一个数量=倍数另一个数量×倍数=另一总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。
例1 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?例2今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?例3凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?7相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?例2小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?。
例3甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
8追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。
这类应用题就叫做追及问题。
【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?例2小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。
小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
例3我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。
已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?。
例4一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
例5兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。
哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。
问他们家离学校有多远?例6孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。
后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。
求孙亮跑步的速度。
9植树问题【含义】按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。
【数量关系】线形植树棵数=距离÷棵距+1环形植树棵数=距离÷棵距方形植树棵数=距离÷棵距-4三角形植树棵数=距离÷棵距-3面积植树棵数=面积÷(棵距×行距)【解题思路和方法】先弄清楚植树问题的类型,然后可以利用公式。
例1一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?例2一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?例3一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?例4给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?例5一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?10年龄问题【含义】这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。
【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。
【解题思路和方法】可以利用“差倍问题”的解题思路和方法。
例1爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?例2母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?例3 3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?例4甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”。
乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁”。
求甲乙现在的岁数各是多少?11行船问题【含义】行船问题也就是与航行有关的问题。
解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。
【数量关系】(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速顺水速=船速×2-逆水速=逆水速+水速×2逆水速=船速×2-顺水速=顺水速-水速×2【解题思路和方法】大多数情况可以直接利用数量关系的公式。
例1一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?例2甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?例3一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?12列车问题【含义】这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。