用插空法解计数问题的基本策略
- 格式:pdf
- 大小:145.14 KB
- 文档页数:3
二年级数学几种排列组合计算方法数学排列组合常考计数方法计数方法1:合理分类,准确分布要点:解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确、分步层次清楚、不重不漏,分类标准一旦确定要贯穿于解题过程的始终。
计数方法2:特殊元素(位置),优先考虑要点:特殊元素的排列组合问题,下手点是先从特殊元素入手,搞定特殊元素之后,再排列其他的一般元素;如果是从特殊位置上入手,那么就要先把特殊位置上的元素搞定,然后再处理其他位置上的元素。
计数方法3:总数较少,穷举最适合。
要点:如果答案的总数最大的在10以内的,那么建议最好的方法就是穷举,但是在穷举时切忌要按照一定次序,或者从大到小,或者从小到大,或者按照字母表的顺序穷举,切忌做到每种情况都要过一遍,确保不遗漏,不重复。
计数方法4:相邻问题,捆绑法搞定。
要点:对于某几个要求相邻的排列组合问题,可将相邻的元素看做一个“元”与其他元素排列,然后对“元”的内部进行排列。
计数方法5:不相邻问题,插空法解决。
要点:对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻的元素在已排列好的元素之间空隙中及两端插入即可。
计数方法6:相同元素的分配问题——隔板法。
要点:隔板法就是在n个元素间的n-1个空中插入若干个隔板,可以把n个元素分成n+1组的方法,应用隔板法必须满足三个条件:(1)这n个元素必须互不相异;(2)所分成的每一组至少分得一个元素;(3)分成的组彼此相异。
计数方法7:分组分派问题——分组除序法。
要点:(1)不同的元素分给不同的组,如果有出现人数相同的这样的组,并且该组没有“名称”,则需要除序,如果有名称,则不需要除序。
(2)排序时,我们运用乘法原理;而一旦运用乘法原理,就意味着有顺序。
而若原本应该无序(仅为分组)或已经定序,那么运用乘法原理就是人为加序,必须除序!在分组问题中,人数相同的组之间互换位置(选择顺序)并不改变分组方式,因此人数相同的组之间必须除序,即等量分组要除序。
对应计数基础知识:1.人类最早使用的计数方法,不是枚举,不是排列组合,也不是递推,而是对应。
2.对应的目的:化繁为简,通过简单的计数问题解决复杂的计数问题。
3.对应的常用思路:从整体观察问题,发现问题所对应的本质,不拘泥于其中细微的步骤。
4.常见对应方法:插板对应、方向对应、几何对应。
5. 插板法:把m个相同的球放入n个不同的篮子里不得为空::每个间隔至多插一个板子;板子不得相邻,不得插在两端。
允许为空::n个篮子就要补n个球,然后转变为每个篮子不得为空。
例1.小高妈妈每天让小高吃1个鸡蛋或者1个鸭蛋,那么小高吃完家里的4个鸡蛋和4个鸭蛋共有多少种吃法?思考:具体的考虑每天的选择,发现后面的种数会受到前面的影响,那么从整体考虑呢?具体的吃法和什么是对应的?其实,只要小高妈妈列出一个吃蛋的安排,事情就变得很简单了。
[答疑编号5721120101]【答案】70【解答】列出这8天的安排,4个“鸡”和4个“鸭”排成一列,这样的排法就对应着这8天的吃法。
所以,共有(种)例2.5枚相同样式的华杯赛奖章颁发给3名学生,每个学生至少一枚,则有多少种颁奖方式?思考:在低年级,这类问题枚举就可以解决。
但是如果数字更大,枚举就很麻烦了。
所以,我们可以从本题中寻找更一般的方法。
想象这样一种场景,老师把这5枚奖章排成一列,然后在间隔中划上两道竖线分割成三部分,于是奖章就分好了。
[答疑编号5721120102]【答案】6【解答】实际上,根据前面的思考,我们发现,把5枚奖章排成一列后,从它们的4个间隔中选2个,插入两块板,奖章就被分为了3个部分,我们可以规定最左边的就给学生A,中间的给学生B,最右边的给学生C,于是这两块板的插法就对应着奖章的分法:(种)什么是插板法把m个相同的球放入n个不同的篮子里不得为空::每个间隔至多插一个板子;板子不得相邻,不得插在两端。
例3.10个相同的桔子放到3个不同的盘子里,每个盘子至少放1个,一共有多少种不同的放法?[答疑编号5721120103]【答案】36【解答】显然本题也是用插板法对应起来,共有(种)。
排列组合问题,联系实际,生动有趣,但题型多样,思路灵活,不易掌握。
实践证明,备考有效的方法是题型与解法归类,识别模式,熟练运用。
本文介绍十二类典型排列组合问题的解答策略,供参考。
一、相邻问题捆绑法例1 6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有()种A. 720B. 360C. 240D. 120解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人进行全排列有种排法;甲、乙两人之间有种排法。
由分步计数原理可知,共有=240种不同排法,选C。
评注:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大”元素。
二、相离问题插空法例2 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算)解:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法。
由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为种。
评注:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开。
此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法。
三、定序问题缩倍法例3 信号兵把红旗与白旗从上到下挂在旗杆上表示信号。
现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)。
解:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排列均只能算作一次的挂法,故共有不同的信号种数是=10(种)。
评法:在排列问题中限制某几个元素必须保持一定顺序称为定序问题。
这类问题用缩小倍数的方法求解比较方便快捷。
四、标号排位问题分步法例4 同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有()A. 6种B. 9种C. 11种D. 23种解:此题可以看成是将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,且每个方格的标号与所填数不同的填法问题。
小升初奥数计数问题插板法知识点【篇一】“不邻问题”插板法——先排列,再插空“不邻问题”插空法,即在解决对于某几个元素要求不相邻问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。
例1.若有A、B、C、D、E五个人排队,要求A和B两个人必须不站在一起,则有多少排队方法?【解析】题目要求A和B两个人必须隔开。
首先将C、D、E三个人排列,有种排法;若排成DCE,则D、C、E“中间”和“两端”共有四个空位置,也即是:︺D︺C︺E︺,此时可将A、B两人插到四个空位置中的任意两个位置,有种插法。
由乘法原理,共有排队方法:。
例2.在一张节目单中原有6个节目,若保持这些节目相对顺序不变,再添加进去3个节目,则所有不同的添加方法共有多少种?【解析】直接解答较为麻烦,可利用插空法去解题,故可先用一个节目去插7个空位(原来的6个节目排好后,中间和两端共有7个空位),有种方法;再用另一个节目去插8个空位,有种方法;用最后一个节目去插9个空位,有种方法,由乘法原理得:所有不同的添加方法为=504种。
例3.一条马路上有编号为1、2、……、9的九盏路灯,为了节约用电,可以把其中的三盏关掉,但不能同时关掉相邻的两盏或三盏,则所有不同的关灯方法有多少种?【解析】若直接解答须分类讨论,情况较复杂。
故可把六盏亮着的灯看作六个元素,然后用不亮的三盏灯去插7个空位,共有种方法(请您想想为什么不是),因此所有不同的关灯方法有种。
【提示】运用插空法解决排列组合问题时,一定要注意插空位置包括先排好元素“中间空位”和“两端空位”。
解题过程是“先排列,再插空”。
插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法。
应用插板法必须满足三个条件:(1)这n个元素必须互不相异(2)所分成的每一组至少分得一个元素(3)分成的组别彼此相异举个很普通的例子来说明把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?问题的题干满足条件(1)(2),适用插板法,c92=36【篇二】排队例.若有A、B、C、D、E五个人排队,要求A和B两个人必须不站在一起,则有多少排队方法?【解析】题目要求A和B两个人必须隔开。
数学运算必会考点:插空法今天来给各位同学介绍一下,公务员考试中行测数学运算必会考点:插空法。
插空法,主要解决排列组合问题中的不相邻问题。
一、解题步骤三步走:排列一般元素--放特殊元素--排列特殊元素特殊元素:不相邻的元素。
一般元素:除特殊以外的其他元素。
二、例题精讲【例1】五个同学排成一排,其中甲和乙两位同学不相邻的排列方式有多少种?A36B72C24D6分析:特殊元素:甲和乙一般元素:另外三名同学第一步:先排一般元素--3名一般的同学随便排列--A33种;第二步:放特殊元素--甲乙两个特殊元素需要两个空--3名一般同学排成一排共4个空--4个空选择2个空放甲和乙--C42种;第三步:甲和乙交换位置后会影响排列结果--故内部交换方式为--A22。
因此总的结果为:A33C42A22=72种。
选择B项。
【例2】五个同学排成一排,其中甲和乙两位同学不相邻且不排在两端的排列方式有多少种?A36B72C24D12分析:特殊元素:甲和乙一般元素:另外三名同学第一步:先排一般元素--3名一般的同学随便排列--A33种;第二步:放特殊元素--甲乙两个特殊元素需要两个空--3名一般同学排成一排共4个空,但是甲乙两位同学不能排在两端,因此只能剩下2个空可供选择--2个空选择2个空放甲和乙--C22种;第三步:甲和乙交换位置后会影响排列结果--故内部交换方式为--A22。
因此总的结果为:A33C22A22=12种。
选择D项。
【例3】4盆相同的红花,3盆相同的黄花,排成一排,其中3盆黄花不相邻的方式有多少种?A10B36C24D12分析:特殊元素:甲和乙一般元素:另外三名同学第一步:先排一般元素--4盆相同的红花-C44=1种(唯一的一种方式,因为交换顺序也一样);第二步:放特殊元素--甲乙3个特殊元素需要3个空--4名一般同学排成一排共5个空--5个空选择3个空放黄花--C53种;第三步:3盆黄花交换位置后会不影响排列结果--故内部交换方式为不用考虑,看成1种。
排列组合问题经常出现在各类试题中,此类问题常与生活实际相结合,要求同学们根据已有的生活经验和所学的分类计数原理、分步计数原理来求解.那么求解排列组合问题有哪些途径呢?下面我们一起来探讨.一、利用插空法插空法是解答元素相邻问题的重要方法.运用插空法解题,要将问题中要求不相邻的元素插入其他元素排列之间的空隙中,再根据分步计数原理计数.其解题步骤为:①明确题目中要求不相邻元素的个数m ,以及其他没有要求的元素的个数n ;②对没有要求的n 个元素进行排列,这时n 个元素之间形成n -1个空位;③将m 个元素随机插入这n -1个空位和两端的位置中;④根据分步计数原理,将所得的排列数相乘,即可得出问题的答案.例1.公元5世纪,数学家祖冲之估计出圆周率π的范围是:3.1415926<π<3.1415927,为纪念祖冲之在圆周率方面的成就,把3.1415926称为“祖率”.小明是个数学迷,在设置手机的数字密码时,打算将圆周率前6位数字“3,1,4,1,5,9”进行某种排列得到密码,并确保两个“1”不相邻,则小明可以设置的不同密码有()个.A.240B.360C.600D.720分析:题目中没有要求的数字有3、4、5、9共4个数字,要使两个“1”不相邻,需先分两步进行:首先排列3、4、5、9这4个数字的顺序;再将两个“1”插入其他4个数字之间的空位和两端的位置中即可.解:先排列3、4、5、9这4个数字的顺序,共有A 44种排法;然后将两个“1”插入之间的空位和两端的位置中,有C 25种方法,根据分步计数原理得,共有A 44C 25=240个不同的密码.例2.某音乐会的节目单上原定有3首歌曲,如果保持这3首歌曲的相对顺序不变,再安排2首歌曲A 、B 插入其中播放,则不同的安排方法有多少种?解:将所有的歌曲看作几个元素,则原有的3首歌曲之间形成2个空位,加上两端的位置,共有4个空位.先将首歌A 曲插入4个空位中,有C 14=4种插法.这样就排好了4首歌曲的顺序,它们之间形成3个空位,加上两端的位置,共有5个空位.再将首歌曲B 插入这5个空位中,有C 15=5种插法,故不同的安排方法有:C 14C 15=20种.按照题目要求,我们需将2首新歌曲插入到已有固定顺序的3首歌曲中间的空位或两端的位置,这就要求新增的2首歌曲不相邻,故需采用插空法求解.例3.某学校组织6×100接力跑比赛,某班级决定派出6位同学A 、B 、C 、D 、E 、F 参加比赛,要求同学D 和F 的参赛顺序不能相邻,则一共有____种排列方案.解:先排列A 、B 、C 、E 4名同学的顺序,有A 44=24种排列方案,此时4名同学之间形成3个空位,加上两端的位置,共有5个空位;然后将D 、F 2名同学插入这5个空位中,有A 25=10种方案,根据分步计数原理得,一共有A 44A 25=240种排列方案.分析问题可知,不相邻的元素有2个,即D 、F 两名同学,其他4名同学A 、B 、C 、E 没有要求,于是采用插空法,先排列其他4名同学的参赛顺序;然后将D 、F 2名同学插入5个空位中;最后根据分步计数原理求解.二、采用优先法解答元素有特殊要求的问题,常用优先法.运用该方法解题的思路为:①根据题意确定特殊元素的个数、位置、顺序;②将这些特殊元素分类进行排列;③对剩余的元素进行排列;④根据分类计数原理、分步计数原理进行求解.例4.用0,2,3,4,5这5个数字组成一个没有重复的3位数(一个数字只出现一次),则这个3位数是偶数的情况有种.解:①当0排在末位时,其他数字2,3,4,5有A 24种排列方式;②当0不排在末位时,其他的数字2,3,4,5有A 12A 13A 13种排列方式,根据分类计数原理可知,这个3位数是偶数的情况有:A 24+A 12A 13A 13=30种.要使这个3位数是偶数,需使个位数为0、2、4,其中0较为特殊,不能在首位,于是采用优先法,对0的位置进行分类讨论,并在排列各个数字的顺序时,需先对0的位置和末位数字进行排列,再排列其他的数字和位置.运用优先法解题,需先排列特殊元素的位置和顺序,再考虑其他元素的位置和顺序.三、运用间接法间接法适用于解答直接排列顺序或分类比较复杂的排列组合问题.运用该方法解题,需先讨论不满足题意的排列组合数,求得满足题意的所有排列组合数;然后用总数减去不满足题意的排列组合数,即可间接求得满足题意的排列组合数.46例5.某电影院的倒数第二排共有6个座位,最后一排共7个座位,现有2名学生购票选座,若倒数第二排中间的两个座位已被售出,且这两名学生不想相邻而坐,则有多少种不同的选座方法?解:电影院的最后两排共有11个座位,这2名同学有C 211A 22=110选法;2名同学相邻而坐,有(2+6)A 22=16种选法.因此,这两名同学不相邻而坐的选法有C 211A 22-(2+6)A 22=94种.若直接求两名同学不相邻,且倒数第二排中间两个位置不能坐的方案数,则需分几种情况进行讨论,解题的过程比较繁琐.于是采用间接法,分别求出2名同学随意选座位以及相邻而坐的方案数,然后将二者相减,即可快速解题.例6.某公司准备从4个重点城市和6个普通县区中各选择2处扩大规模进行建设,要求重点城市甲和普通县区A 至少有一个被选中,则有多少种不同的选择方法?解:从4个重点城市和6个普通县区中各任意选择2处,有C 24C 26=90种不同的方案,若重点城市甲和普通县区A 都没有被选中,则有C 23C 25=30种方案,故重点城市甲和普通县区A 至少有一个被选中的方案有90-30=60种.采用常规方法求解本题,需要分3种情况进行讨论,且容易重复计数,运用间接法求解更直接、简洁.分别求出从4个重点城市和6个普通县中各任意选择2处的方案数以及重点城市甲和普通县区A 都没有被选中的方案数,最后将两者相减,即可得到问题答案.四、使用捆绑法捆绑法是把几个要求相邻的元素捆绑在一起,看作一个整体,与其他元素一起排列的方法.该方法适用于求解元素相邻的问题.若要求n 个元素中有m 个元素相邻排列,则需先把这m 个元素捆绑起来,并将其看作一个整体,与其他元素n-m 个元素,即n -m +1个元素一起排列;然后根据分步计数原理进行求解.例7.7个人一起排队,若小明、小红、小凯3人要求相邻,则不一样的排法有多少种?解:先将小明、小红、小凯3个人进行捆绑,有A 33种排法;然后将其看作一个“大元素”,与其余4个人,一共5个元素一起全排排列,有A 55种排法,因此符合题意的排法有A 55A 33=720种.分析题意可知,7名同学中有3个人要求相邻,于是采用捆绑法,先将小明、小红、小凯这3名同学捆绑,然后与其他同学一起排列.例8.A 、B 、C 、D 、E 5个小朋友并排站成一排,如果A 、B 必须相邻,且B 在A 的右边,则不同的排法有().A.60种B.48种C.36种D.24种解:要使A 、B 必须相邻,且B 在A 的右边,则只有BA 一种排法,此时可将A 、B 两个小朋友捆绑起来,当作一个元素,与另外3个小朋友一起排列,有A 44=24种排法.因此,满足题意的排列方式有24种.在运用捆绑法解题时,要先分别求得捆绑起来的“大元素”内部元素的排序以及外部元素的顺序,再运用分步计数原理求解.五、借助缩倍法缩倍法适用于求解部分元素的顺序固定的问题.若m 个元素中有n 个元素的顺序固定,则需分别求得m 、n 个元素全排列数,然后将二者相除,即可求得这m 个元素的排列数.例9.为纪念某活动顺利举办,现有12名工作人员排队留影.(1)若工作人员甲排在乙的左边(从左往右排列),有多少种排法?(2)若工作人员甲排在乙的左边,丙排在乙的右边(从左往右排列),有多少种排法?解:(1)12名人员排成一列,有A 1212种排法,甲排在乙的左边和右边的机会是均等的,故一共有A 12122种排法.(2)甲、乙、丙3人排列,有A 33种排法,“甲排在乙的左边,丙排在乙的右边”情况有A 33种,故一共有A 1212A 33种排法.本题中甲、乙、丙3人的顺序固定,于是采用缩倍法求解,分别求得12人的全排数,以及甲乙2人、甲乙丙3人有固定顺序的排列数,然后将所得的结果相除.一般地,作除法的目的是为消序.例10.某大学三年级某系一共有6个班级,这个学期来了4名留学生,现要将他们安排在其中的2个班级中,且每个班级有2名留学生,一共有____种安排方案.解:设4名留学生为A 、B 、C 、D ,若A 、B 为一组,C 、D 为另外一组,则有C 24C 22A 26=300种安排方案.由于C 、D 为一组和A 、B 为一组的分法相同,故一共有C 24C 22A 26A 22=150种不同的安排方案.本题实际上是要求对4名留学生进行平均分组,再分配到2个班级中,所以采用倍缩法,将总的排列数除以A 22,使得4名留学生均分成2组.在求解排列组合问题的过程中,同学们一定要先明确题目中是否存在相邻或不相邻元素,判断是否有特殊要求的元素或位置;然后选用捆绑法、优先法、插空法、间接法、缩倍法等方法进行求解.只有明确题目的类型和对应的解题方法,才能准确解题,有效地提高解题的效率.(作者单位:甘肃省礼县实验中学)47。
排列组合中关于捆绑法、插空法、插隔板法的应用捆绑法:当要求某几个元素必须相邻(挨着)时,先将这几个元素看做一个整体,(比如:原来3个元素,整体考虑之后看成1个元素)然后将这个整体和其它元素进行考虑。
这时要注意:一般整体内部各元素如果在前后顺序上有区别的还需进行一定的顺序考虑。
插空法:当要求某几个元素必须不相邻(挨着)时,可先将其它元素排好,然后再将要求不相邻的元素根据题目要求插入到已排好的元素的空隙或两端位置。
插隔板法:指在解决若干相同元素分组,要求每组至少一个元素时,采用将比分组数目少1的隔板插入到元素中的一种解题策略。
题目特点:“若干相同元素分组”、“ 每组至少一个元素”。
例1:一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法? A.20 B.12 C.6 D.4分两种情况考虑C=8种1、这两个新节目挨着,那么三个节目有4个空,又考虑到这两个节目的先后顺序共有2×14P=12种2、这两个节目不挨着,那么三个节目有4个空,这就相当于考虑两个数在4个位置的排列,由24综上得,共8+12=20种此题中使用了捆绑法和插空法。
例2:A、B、C、D、E五个人排成一排,其中A、B两人不站一起,共有()种站法。
A.120B.72C.48D.24插空法:我们来这样考虑,因A、B两人不站一起,故可考虑的位置C、D、E,C、D、E三个人站在那有P=12。
一共留出4个空,将A、B分别放入这4个空的不同的空中,那就是4个空中取2个空的全排列,即24P=6,综上,共有6*12=72种这样考虑了之后,还有一点就是C、D、E三个人也存在一个排列问题,即23例3:A、B、C、D、E五个人排成一排,其中A、B两人必须站一起,共有()种站法。
A.120B.72C.48D.24捆绑法:此题和上一题实质是一样的,我们来这样考虑,A、B两人既然必须站在一起,那么索性我们就把他P=24,又因为A、B两人虽然是站们看成一个人,那么我们就要考虑其和C、D、E共4个人的全排列,即44P=2,综上,共有48种。
数学排列与组合的技巧在数学中,排列和组合是两个非常重要的概念,它们都是研究计数问题的基本方法。
下面将介绍一些解决排列和组合问题的方法和技巧。
1. 排列数公式排列数公式是解决排列问题的基础。
排列数公式为:P(n,r)=n!/(n-r)!,其中n表示可选择的元素总数,r表示排列的个数。
例:有5个不同的书,从中选出3本,有多少种不同的排列方式?解:P(5,3)=5!/(5-3)!=10种2. 组合数公式组合数公式是解决组合问题的基础。
组合数公式为:C(n,r)=n!/(r!(n-r)!),其中n表示可选择的元素总数,r表示组合的个数。
例:有5个不同的书,从中选出3本,有多少种不同的组合方式?解:C(5,3)=5!/(3!2!)=10种3. 分步计数原理分步计数原理是解决计数问题的一个基本方法。
如果一个事件可以分为$n$个连续的步骤完成,第1个步骤有$a_1$种方法,第2个步骤有$a_2$种方法,……,第n个步骤有$a_n$种方法,那么完成这个事件共有$a_1\times a_2\times \cdots \times a_n$种方法。
例:从5本不同的书中选出3本,分别送给3个不同的老师,每个老师至少有一本书,共有多少种不同的分法?解:可以将问题分为三个步骤完成:第一步,从5本书中选出3本,有C(5,3)种选法;第二步,将选出的3本书送给3个老师,每个老师至少有一本书,有A(3,3)种分法;第三步,将剩余的2本书送给2个老师,每个老师至少有一本书,有A(2,2)种分法。
因此共有C(5,3)A(3,3)A(2,2)种不同的分法。
4. 插空法插空法是一种常用的解决排列、组合问题的方法。
当原问题中存在不能直接进行排列、组合的元素时,可以将这些元素单独处理,将它们“插入”到可以排列、组合的元素中。
例:有5个男生和4个女生站成一排,要求男生必须相邻且女生不能相邻,求共有多少种不同的排法?解:将男生看作一个整体,将它们排成一排,有A(5,5)种排法;再将4个女生插空到男生的空隙中,有A(5,4)种插法;最后再将整体翻转过来即可。