苏科版初一数学下第8章 幂的运算 单元综合卷及答案(2套)
- 格式:doc
- 大小:872.00 KB
- 文档页数:10
七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)一.选择题(共7小题,满分21分)1.若a•2•23=26,则a等于()A.4B.8C.16D.322.已知a≠0,下列运算中正确的是()A.a2•a3=a6B.a5﹣a3=a2C.(﹣a3)2=a5D.a•a3=a43.若10m=5,10n=3,求102m﹣3n的值()A.B.C.675D.4.若(2x﹣1)0有意义,则x的取值范围是()A.x=﹣2B.x≠0C.x≠D.x=5.若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x取值范围是()A.x≠3B.x≠2C.x≠3且x≠﹣2D.x≠3且x≠2 6.“绿水青山就是金山银山”.某地积极响应党中央号召,大力推进农村厕所革命,已经累计投资1.102×108元资金.数据1.102×108用科学记数法可表示为()A.1102亿B.1.102亿C.110.2亿D.11.02亿7.嫦娥五号返回器携带月球样品安全着陆,标志着中国航天业向前又迈出了一大步.嫦娥五号返回器在接近大气层时,飞行1m大约需要0.0000893s.数据0.0000893s用科学记数法表示为()A.8.93×10﹣5B.893×10﹣4C.8.93×10﹣4D.8.93×10﹣7二.填空题(共7小题,满分21分)8.将2x﹣3y(x+y)﹣1表示成只含有正整数指数幂的形式为.9.新型冠状病毒直径约为100nm,计m(用科学记数法表示).10.若有意义,则x的取值范围是.11.若a2n=2(n为正整数),则(4a3n)2÷4a4n的值为.12.目前全国疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约7.5×105个,则科学记数法数据7.5×105的原数为.13.已知x2n=5,则(3x3n)2﹣4(x2)2n的值为.14.已知m x=2,m y=4,则m x+y=.三.解答题(共6小题,满分58分)15.计算:(1)2+(﹣2)×3+(﹣7)0;(2)×12.16.在数学中,我们经常会运用逆向思考的方法来解决一些问题,例如:“若a m=4,a m+n =20,求a n的值.”这道题我们可以这样思考:逆向运用同底数幂的乘法公式,即a m+n =a m•a n,所以20=4•a n,所以a n=5.(1)若a m=2,a2m+n=24,请你也利用逆向思考的方法求出a n的值.(2)下面是小贤用逆向思考的方法完成的一道作业题,请你参考小贤的方法解答下面的问题:小贤的作业计算:89×(﹣0.125)9.解:89×(﹣0.125)9=(﹣8×0.125)9=(﹣1)9=﹣1.①小贤的求解方法逆用了哪一条幂的运算性质,直接写出该逆向运用的公式:.②计算:52023×(﹣0.2)2022.17.(1)若3×27m÷9m=316,求m的值;(2)已知a x=﹣2,a y=3,求a3x﹣2y的值;(3)若n为正整数,且x2n=4,求(3x2n)2﹣4(x2)2n的值.18.我们知道,同底数幂的乘法法则为a m•a n=a m+n(其中a≠0,m、n为正整数),类似地,我们规定关于任意正整数m、n的一种新运算:f(m)•f(n)=f(m+n)(其中m、n为正整数).例如,若f(3)=2,则f(6)=f(3+3)=f(3)•f(3)=2×2=4.f(9)=f(3+3+3)=f(3)•f(3)•f(3)=2×2×2=8.(1)若f(2)=5,①填空:f(6)=;②当f(2n)=25,求n的值;(2)若f(a)=3,化简:f(a)•f(2a)•f(3a)•…•f(10a).19.如表是某河流今年某一周内的水位变化情况,上周末(星期六)的水位已经达到警戒水位33米.(正号表示水位比前一天上升,负号表示水位比前一天下降).(单位:米)星期日一二三四五六水位变化+0.2+0.8﹣0.4+0.2+0.3﹣0.5﹣0.2(1)本周哪一天河流的水位最高?哪一天河流的水位最低?分别是多少?(2)与上周末相比,本周末河流的水位是上升了还是下降了?本周末的水位是多少?(3)若水位每下降1厘米,就有2.5×102吨水蒸发到大气中,请计算这个星期共有多少吨水蒸发到大气中?20.已知10﹣2α=3,,求106α+2β的值.参考答案一.选择题(共7小题,满分21分)1.解:∵a•2•23=26,∴a=26÷24=22=4.故选:A.2.解:A、原式=a5,故不符合题意;B、a5与a3不是同类项,故不能合并,故不符合题意;C、原式=﹣a6,故不符合题意;D、原式=a4,故符合题意.故选:D.3.解:∵10m=5,10n=3,∴102m﹣3n=102m÷103n=.故选:D.4.解:(2x﹣1)0有意义,则2x﹣1≠0,解得:x≠.故选:C.5.解:若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x﹣3≠0且2x﹣4≠0,解得:x≠3且x≠2.故选:D.6.解:1.102×108=1.102亿.故选:B.7.解:0.0000893=8.93×10﹣5,故选:A.二.填空题(共7小题,满分21分)8.解:原式=•=.故答案为:.9.解:新型冠状病毒的直径约为100nm=100×10﹣9m=1×10﹣7m,故答案为1×10﹣7.10.解:∵有意义,∴0.∴x+2≠0,x﹣2≠0,∴x≠±2.故答案为:x≠±2.11.解:当a2n=2时,(4a3n)2÷4a4n=16(a2n)3÷4(a2n)2=16×23÷(4×22)=16×8÷(4×4)=16×8÷16=8.故答案为:8.12.解:7.5×105=750000,故答案为:750000.13.解:∵x2n=5,∴(3x3n)2﹣4(x2)2n=9x6n﹣4x4n=9(x2n)3﹣4(x2n)2=9×53﹣4×52=1125﹣100=1025.故答案为:1025.14.解:∵m x=2,m y=4,∴m x+y=m x•m y=8,故答案为:8.三.解答题(共6小题,满分58分)15.解:(1)原式=2﹣6+1=﹣3;(2)原式=×12+=5+8﹣1616.解:(1)∵a m=2,∴a2m+n=24,∴a2m×a n=24,(a m)2×a n=24,22×a n=24,∴4a n=24,∴a n=6;(2)①逆用积的乘方,其公式为:a n•b n=(ab)n,故答案为:a n•b n=(ab)n;②52023×(﹣0.2)2022=5×52022×(﹣0.2)2022=5×(﹣0.2×5)2022=5×(﹣1)2022=5×1=5.17.解:(1)∵3×27m÷9m=316,∴3×33m÷32m=316,∴33m+1﹣2m=316,∴3m﹣2m+1=16,解得m=15;(2)∵a x=﹣2,a y=3,∴a3x=﹣8,a2y=9,∴a3x﹣2y=a3x÷a2y=(﹣8)÷9=﹣;(3)∵x2n=4,∴(3x2n)2﹣4(x2)2n=(3x2n)2﹣4(x2n)2=(3×4)2﹣4×42=122﹣4×16=144﹣64=80.18.解:(1)①∵f(2)=5,∴f(6)=f(2+2+2)=f(2)•f(2)•f(2)=125;故答案为:125;②∵25=5×5=f(2)•f(2)=f(2+2),f(2n)=25,∴f(2n)=f(2+2),∴2n=4,∴n=2;(2)∵f(2a)=f(a+a)=f(a)•f(a)=3×3=31+1=32,f(3a)=f(a+a+a)=f(a)•f(a)•f(a)=3×3×3=31+1+1=33,…,f(10a)=310,∴f(a)•f(2a)•f(3a)•…•f(10a)=3×32×33×…×310=31+2+3+…+10=355.19.解:(1)周日:33+0.2=33.2(米),周一:33.2+0.8=34(米),周二:34﹣0.4=33.6(米),周三:33.6+0.2=33.8(米),周四:33.8+0.3=34.1(米),周五:34.1﹣0.5=33.6(米),周六:33.6﹣0.2=33.4(米).答:周四水位最高,最高水位是34.1米,周日水位最低,最低水位是33.2米;(2)33.4﹣33=0.4>0,答:与上周末相比,本周末河流的水位上升了,水位是33.4米;(3)100×(0.4+0.5+0.2)×2.5×102吨=2.75×104(吨),答:这个星期共有2.75×104吨水蒸发到大气中.20.解:∵10﹣2α==3,10﹣β==﹣,∴102α=,10β=﹣5,∴106α+2β=(102α)3•(10β)2,=()3×(﹣5)2,=×25,=.。
七年级数学第八章 幂的运算一、选择题(每题4分,共24分)1.计算323⎛⎫- ⎪⎝⎭,结果是 ( ) A .-89 B .89 C .-827 D .8272.若(2x+1)0=l 则 ( ) A .x ≥-12 B .x ≠-12 C .x ≤-12 D .x ≠12 3.下列计算中正确的是 ( )A .a 2÷a 3=2a 5B .a 2·a 3= a 5C .a 2·a 3=a 6D .a 2+a 3=a 54.计算(-2a 3+3a 2-4a )(-5a 5)等于 ( )A .10a 15-15a 10+20a 5B .-7a 8-2a 7-9a 6C .10a 8+15a 7-20a 6D .10a 8-15a 7+20a 65.若m 、n 、p 是正整数,则(a m ·a n )p 等于 ( )A .a m ·a npB .a mp+npC .a mnpD .a mp ·an6.若20.3a =-,23b -=-,21()3c -=-,01()3d =-,则 ( ) A .a <b <c <d B .b <a <d <c C .a <d <c <b D .c <a <d <b二、填空题(每题3分,共15分)7.(-p) 2·(-p) 3=_________,(-12a 2b) 3=____________. 8.现规定一种运算:a *b=a b+a -b .则a *b+(b -a )*b=____________.9.若一块长方形土地的长为2×103cm .宽为8×102cm ,则这块土地的面积是________. cm 2.(结果用科学记数法表示)10.若x=3m ,y=27m +2,则用x 的代数式表示y 为_____________.11.氢原子中电子与原子核之间的距离为0.00000000529cm ,用科学计数法表示为 ___________________m .三、解答题(共61分)12.计算:(1)m 5÷m 3×m ; (2)(-n) 3·n ·(-n) 2;(3)(x 8) 2÷x 10 (4)(y 2) 3÷y 6·y .13.计算:(1)30-23+(-3) 2-(12)-1; (2)(-4ax) 2 (5a 2-3ax 2)(3)(b -2) 3·(b -2) 5·(2-b)·(2-b) 2; (4)8×4n ÷2n -1.14.计算: (1)()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭;(2)(-3a 3) 2·a 3+(-4a )2·a 7+(-5a 3) 3;(3)(-x 2)·x 3·(-2y) 3+(-2xy)·(-x) 3y .15.已知2m+3n=5,求4m ·8n 的值.16.已知n 为正整数,且24n x =,求32229()13()n n x x -的值.17.将一根1m 长的细铁丝,用高强度、超薄的刀进行分割,第一次切去一半,第二次又切去剩下的一半,第三次也是切去剩下的一半,按此规律切下去,到切了第十次后,剩下的铁丝长度为多少米?如果有可能的话,请你计算一下,到切了二十次后,剩下的铁丝长度又是多少呢?为多少纳米长?18.我们约定:x ⊕y=10x ×10y ,如3⊕4=103×104=107.(1)试求2⊕5和3⊕7的值;(2)请你猜想:a ⊕b 与b ⊕a 的运算是否相等?说明理由.19.已知a 、b 互为相反数,c 、d 互为倒数,21x -=,2y =,求20092()a b x cd y ++--的值.20.观察下列等式,你会发现什么规律:1×3+1=222×4+1=323×5+1=424×6+1=52…请将你发现的规律用仅含字母n(n 为正整数)的等式表示出来,并说明它的正确性.参考答案—、1.C 2.B 3.B 4.D 5.B 6.C二、7.-p 5,-18a 6b 3 8.b 2-b 9.1.6×106 10.x 3+2 11.5.29×10-11m 三、12.(1)m 3;(2)-n 6;(3)x 6;(4)y13.(1)0;(2)80a 4x 2-48a 3x 4;(3)-(3-2)11;(4)2n+414.(1)10.75;(2)-100a 9;(3)-12x 5y 315.提示:4m ·8n =(22) m ·(23) n =22m ·23n =22m+3n =25=3216.36817.切了第十次后,剩下的铁丝长度为1012m ,即11024m ,约为0.000 976 6m .切了第二十次后,剩下的铁丝长度为2012m ,即11048576m ,约为0.000 000 954m ,记为9.54×10-7m ,为9.54×107+10-9=954n mile18.(1)107,1020; (2)相等,理由略.19.-420.n(n+2)+1=(n+1) 2。
第8章幂的运算一.选择题(共10小题)1.下列各式中,计算结果为a18的是()A.(﹣a6)3B.(﹣a3)×a6C.a3×(﹣a)6D.(﹣a3)6 2.下列运算中,正确的是()A.a6•a4=a10B.2a﹣2=C.(3a2)3=9a6D.a2+a3=a5 3.计算(﹣x5)7+(﹣x7)5的结果是()A.﹣2x12B.﹣2x35C.﹣2x70D.04.若(t﹣3)2﹣2t=1,则t可以取的值有()A.1个B.2个C.3个D.4个5.已知(x﹣1)|x|﹣1有意义且恒等于1,则x的值为()A.﹣1或2 B.1 C.±1 D.06.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b 7.下列运算正确的是()A.4a2﹣2a2=2a2B.(a2)3=a5C.a2•a3=a6D.a3+a2=a58.将0.0000103用科学记数法表示为()A.1.03×10﹣6B.1.03×10﹣5C.10.3×10﹣6D.103×10﹣4 9.下列运算结果最大的是()A.()﹣1B.20C.2﹣1D.(﹣2)2 10.当2(a+1)﹣1与3(a﹣2)﹣1的值相等时,则()A.a=﹣5 B.a=﹣6 C.a=﹣7 D.a=﹣8 二.填空题(共8小题)11.若a4•a2m﹣1=a11,则m=.12.计算a2b3(ab2)﹣2=.13.将实数3.18×10﹣5用小数表示为.14.若3m=5,3n=8,则32m+n=.15.将代数式2﹣1x﹣3y2化为只含有正整数指数幂的形式.16.计算:5﹣2+(﹣2019)0=.17.若2x=4y﹣1,27y=3x+1,则x﹣y=.18.已知2m+5n+3=0,则4m×32n的值为.三.解答题(共6小题)19.计算:(1)()﹣2•(π﹣3.14)0;(2)27×9n÷3n﹣1;(3)(a2b3)4+(﹣a)8•(﹣b4)3;(4)(a•a m+1)2﹣(a2)m+3÷a2.20.已知1cm3的氢气重约为0.00009g,一块橡皮重45g(1)用科学记数法表示1cm3的氢气质量;(2)这块橡皮的质量是1cm3的氢气质量的多少倍.21.已知a=2﹣555,b=3﹣444,c=6﹣222,请用“>”把它们按从大到小的顺序连接起来,并说明理由.22.已知:2a=3,2b=5,2c=75.(1)求22a的值;(2)求2c﹣b+a的值;(3)试说明:a+2b=c.23.求值:(1)已知3×9m÷27m=316,求m的值.(2)若2x+5y﹣3=0,求4x•32y的值.(3)若n为正整数,且x2n=4,求(3x3n)2﹣4(x2)2n的值.24.阅读材料:(1)1的任何次幂都为1:(2)﹣1的奇数次幂为﹣1:(3)﹣1的偶数次幂为1:(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2020的值为1.参考答案一.选择题(共10小题)1.D.2.A.3.B.4.C.5.A.6.B.7.A.8.B.9.D.10.C.二.填空题(共8小题)11.4.12.原式===.13.0.0000318;14.200.15.16.1.17.﹣3.18..三.解答题(共6小题)19.解:(1)()﹣2•(π﹣3.14)0=4×1=4;(2)27×9n÷3n﹣1=33×32n÷3n﹣1=33+2n﹣n+1=3n+4;(3)(a2b3)4+(﹣a)8•(﹣b4)3=a8b12﹣a8b12=0;(4)(a•a m+1)2﹣(a2)m+3÷a2=a2m+4﹣a2m+6÷a2=a2m+4﹣a2m+4=0.20.解:(1)0.00009g=9×10﹣5g;(2)45÷0.00009=500000=5×105,故这块橡皮的质量是1cm3的氢气质量的5×105倍.21.解:a>c>b.a=2﹣555=(2﹣5)111=()111,b=3﹣444=(3﹣4)111=()111,c=6﹣222=(6﹣2)111=()111,∵>∴()111>()111>()111即a>c>b.故答案为a>c>b.22.解:(1)22a=(2a)2=32=9;(2)2c﹣b+a=2c÷2b×2a=75÷5×3=45;(3)因为22b=(5)2=25,所以2a22b=2a+2b=3×25=75;又因为2c=75,所以2c=2a+2b,所以a+2b=c.23.解:(1)∵3×9m÷27m=316,∴31+2m﹣3m=316,∴1﹣m=16,∴m=﹣15;(2)∵2x+5y﹣3=0,∴2x+5y=3,∴4x•32y=22x+5y=23=8;(3)∵x2n=4,∴x n=2,。
苏科版七年级下第八章《幂的运算》单元综合测试卷含答案;;第八章《幂的运算》单元综合测试卷;;(考试时间:90分钟 满分:100分);;一、选择题 (每小题3分,共24分);;1. 已知空气的单位体积质量为1.24×10-3 g/cm 3,1.24×10-3用小数表示为( )A.0.000124B. 0.0124C.-0.00124D. 0.001242. 下列各式:①23n n n a a a =g ;②2336()xy x y =;③22144mm -=;④0(3)1-=;⑤235()()a a a --=g .其中计算正确的有( );;A. 4个B. 3个C. 2个D. 1个3. 如果0(99)a =-,1(0.1)b -=-,25()3c -=-,那么a ,b ,c 的大小关系为( )A. a c b >>B. c a b >>C.a b c >>D. c b a >>4. 计算10099(2)(2)-+-所得的结果是( )A.2-B.2C.992D.992-5. 22193()3m m n +÷=,n 的值是( );; A.2- B.2 C.0.5 D.0.5- 6. 下列各式:①523[()]a a --g ;②43()a a -g ;③2332()()a a -g ;④43[()]a --.其中计算结果为12a -的有( )A.①和③B.①和②C.②和③D.③和④ 7. 999999a =,990119b =,则a ,b 的大小关系是( ) A.a b = B.a b > C.a b < D. 以上都不对8. 定义这样一种运算:如果(0,0)ba N a N =>>,那么b 就叫做以a 为底的N 的对数,记作log a b N =. 例如:因为328=,所以2log 83=,那么3log 81的值为( );A.27B.9C.3D.4二、填空题(每小题2分,共20分)9. 计算:3(2)-= ;32x x =g ;744()a a a a +-=g ; 53()()x y y x --=g .10. 若a ,b 为正整数,且233a b +=,则927a b g 的值为 ;若32m =,35n =,则3m n += . 11. 若225n a =,216n b =,则()n ab = ;若22282n ⨯=,则n 的值为 .12. (1)若209273n n =g ,则n = ;(2)若430x y +-=,则216x y=g. 13. (1)若2m a =,则23(3)4()m m a a -= ; (2)若29m =,36m =,则216m -= .14. 某种电子元件的面积大约为0. 000 000 7 mm 2,用科学记数法表示该数为 .15. 设3m x =,127m y +=,用x 的代数式表示y 是 . 16. 计算:2015201652()(2)125-⨯= ; 323(210)(310)⨯⨯⨯= .(结果用科学记数法表示)17. 已知实数a ,b 满足2a b +=,5a b -=,则33()()a b a b +-g 的值是 .18. 已知552a =,443b =,334c =,225d =,则这四个数从大到小排列顺序是 .三、解答题(共56分)19. (12分)计算:(1)26()()x x x --g g ;(2)232432(2)(3)x x x x -+--g(3)345()()t t t --÷-g(4)20151203(1)2()( 3.14)2π---+-+-(5)1430(0.25)2-⨯(6)32333452()(4)(3)x x x x x -+-g g20. ( 4分)已知n 为正整数,且2m x =,3n x =(1)求23m n x+的值;21. ( 6分)已知23x =,25y =.求:(1) 2x y +的值;(2) 32x 的值(3) 212x y --的值22. (6分)(1)已知1639273m m ⨯÷=,求m 的值.(2) 已知23m x=,求322(2)(3)m m x x -的值.23. (4分)已知2m a =,4n a =,32(0)k a a =≠(1)求32m n k a+-的值;(2)求3k m n --的值.24. ( 6分)(1)已知105a =,106b =,求2310a b +的值.(2)已知2530x y +-=,求432x y g的值.(3) 已知3243()()324398n n ÷=,求n 的值.25. (6分)(1)已知6242m m =g ,求2632()()m m m m -÷g 的值.(2)先化简,再求值:33223(2)()()a b ab ---+-g ,其中12a =-,2b =26. ( 6分)(1)你发现了吗? 2222()333=⨯,22211133()222322()333-==⨯=⨯由上述计算,我们发现 22()3 23()2-; (2)仿照(1),请你通过计算,判断35()4与34()5-之间的关系 (3)我们可以发现:()m b a - ()(0)m a ab b≠ (4)计算:2277()()155-⨯27. ( 6分)(1)已知1216m =,1()93n =,求223(1)(1)m n n x x ++÷+的值(2)已知22221123(1)(21)6n n n n +++=++…+,试求222224650++++…的值参考答案 一、1. D2. B3. A4. C5. B6. D7. A8. D 二、9. 8- 5x 82a 8()x y -- 10.2710 11.20±11 12.(1)4(2)814.7710-⨯15.327y x = 16.125- 101.210⨯ 17. 100018. b c a d >>>三、19. (1) 原式369x x x =-=-g(2) 原式66668916x x x x =-+-=-(3) 原式3452()t t t t =-÷-=g (4) 原式141112918=-+-+= (5) 原式14151411()4(4)4444=-⨯=-⨯⨯= (6) 原式99992648119x x x x =-+=20. (1)232323()()m n m n m n xx x x x +==g g 2323427108=⨯=⨯=(2)2222424(2)()44()()n n n n n n x x x x x x -=-=-2443345=⨯-=-21. (1)2223515x y x y +==⨯=g(2)3332(2)327x x === (3)2122292222(2)2235210x y x y x y --=÷÷=÷÷=÷÷=22. (1)因为23163333m m ⨯÷=,所以12316m m +-=解得15m =- (2)322232(2)(3)4()9m m m m x x xx -=- 3439381=⨯-⨯= 23. (1)323232()()m n k m n k m n k a a a a a a a +-=÷=÷g g(2)因为33332241k m n k m n a a a a --=÷÷=÷÷=,易知0a ≠,且1a ≠,所以30k m n --=24. (1)23232310(10)(10)565400a b a b +==⨯=g(2)2525343222228x y x y x y +====gg (3)因为3243()()324398n n ÷= 所以523222()()()333n n -÷= 所以523n n -=-,1n =-25. (1)因为6242m m =g ,即26222m m =g ,所以36m =,2m =.所以263212102()()4m m m m m m m -÷=÷==g (2)33223363636(2)()()(8)()7a b ab a b a b a b ---+-=--+-=g 当12a =-,2b =时 原式3617()2562=⨯-⨯=- 26. (1)=(2)因为35555()4444=⨯⨯, 3341111555()44445444()5555-==⨯⨯=⨯⨯ 所以3354()()45-= (3)=(4)2222277157157()()()()()91557575-⨯=⨯=⨯= 27. (1)2232322(1)(1)(1)(1)m n n m n n m n x x x x ++--+÷+=+=+ 因为1216m =42-=,211()9()33n -== 所以4m =-,2n =-所以原式244(1)1x -+=+= (2)22222222122232252⨯+⨯+⨯++⨯… 222222(12325)=⨯++++…1425265122100=⨯⨯⨯⨯=。
第八章 幂的运算 单元测评卷(满分:100分 时间:60分钟)一、选择题 (每题3分,共24分)1.31m a +可以写成 ( )A .()13m a +B .()3m a +1C .a ·a 3mD .()21m m a +2.下列运算正确的是 ( )A .a 3·a 4 =a 12B .a 3+a 3=2a 6C .a 3÷a 3=0D .3a 2·5a 3=15a 53.计算6m 3÷(-3m 2)的结果是 ( )A .-3mB .-2mC .2mD .3m4.如果a =(-)0 ,b =(-0.1)-1,c =232-⎛⎫- ⎪⎝⎭,那么a 、b 、c 三个数的大小为( ) A .a >b >c B .c >a >bC .a >c >bD .c >b >a5.(.邵阳)地球上水的总储量约为1.39×1018 m 3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.010 7×1018 m 3,因此我们要节约用水,请将0.0107×1018 m 3用科学记数法表示是 ( )A .1.07×1016 m 3B . 0.107×1017 m 3C .10.7×1015 m 3D .1.07×1017 m 36.计算25m ÷5m 的结果为 ( )A .5B .20C .5mD .20m7.一种计算机每秒可以进行4×108次运算,则它工作3×103秒运算的次数为 ( )A .12×1024B .1.2×1012C .12×1012D .1.2×10138.计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(101)2表示二进制数,将它转换成十进制的形式是:1×22+0×21+1×20=5,那么将二进制数 (10101)2转换成十进制数是 ( )A .41B .21C .13D .11二、填空题 (每题3分,共18分)9.(1)若a ·a 3·a m =a 8,则m =_______;(2)若a 5·(a n )3=a 11,则n =_______.10.如果(a 4)3÷(a 2)5=64,且a <0,那么a =_______.11.某生物教师在显微镜下发现,某种植物的细胞直径约为0.000 12 mm ,用科学记数法表示为_______mm .12.若a 2n =3,则2a 6n -50=_______.13.若3n =2,3m =5,则32m +3n -1的值为_______.14.如果(2a -1)a +2=1,那么a 的值为_______.三、解答题 (共58分)15.(16分)计算:(1)()32x y ·()232xy -; (2)()()2326n n n x y x y +;(3)()()()428236x y x y +-•; (4)a ·a 2·a 3()()2632a a +---.16.(12分)计算: (1)451301222222----⎛⎫++⨯⨯+ ⎪⎝⎭;(2)()()65a a -÷-·()2a -;17.(5分)若a=255,b=344,c=433,试比较a、b、c的大小.18.(12分)(1)已知x3·x a·x2a+1=x31,求a的值;(2)已知9m÷32m+2=(13)n,求n的值;(3)已知9n+1-32n=72,求n的值.19.(5分)一般地,我们说地震的震级为10级,是指地震的强度是1010,地震的震级为8级,是指地震的强度是108.1992年4月,荷兰发生了5级地震,3月,近海发生了9.0级强烈地震,问荷兰的地震强度是近海地震强度的多少倍?20.(8分)阅读下列一段话,并解决下列问题:观察下面一列数:1,2,4,8,…,我们发现,这列数从第二项起,每一项与它前一项的比值都是2.我们把这样的一列数叫做等比数列,这个共同的比值叫做等比数列的公比.(1)等比数列5,-10,20,…的第4项是_______;(2)如果一列数a 1,a 2,a 3,…是等比数列,且公比是q ,根据上述规定有21a q a =,32a q a =,43a q a =…,因此可以得到a 2=a 1q ,a 3=a 2q =a 1q ·q =a 1q 2,a 4=a 3q =a 1q 2·q =a 1q 3,…,那么a n =_______(用a 1与q 的代数式表示).(3)一个等比数列的第2项是6,第3项是-18,求它的第1项和第4项.参考答案一、1.C 2.D 3.B 4.C 5.A 6.C 7.B8.B二、9.(1)4 (2)2 10.-8 11.1.2×10-412.4 13.200314.-2或1或0三、15.(1)4x8y9(2)2x2n y6n (3)2x8y12(4)4a616.(1)51732(2)-a3(3)-717.a<c<b18.(1)a=9 (2)n=2 (3)n=1 19.10 000倍20.(1)-40 (2)a·q n-1 (3)第1项是-2第4项是54。
初中数学苏科版七年级下册第八章幂的运算单元测试卷一、单选题(本大题共10题,每题3分,共30分)1.化简的结果是()A. B. C. D.2.下列计算正确的是()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.某种细胞的直径是,用科学记数法表示为()A. B. C. D.5.若,,,则()A. B. C. D.6.若(2a m b m+n)3=8a9b15成立,则()A.m=3,n=2B.m=n=3C.m=6,n=2D.m=3,n=57.若,,则的值为()A.12B.20C.32D.2568.计算(-×103)2×(1.5×104)2的结果是()A.-1.5×1011B.×1010C.1014D.-10149.观察等式,其中的取值可能是().A. B.或 C.或 D.或或10.我们常用的十进制数,如,我国古代《易经》一书记载,远古时期,人们通过在绳子上打结来记录数量,如图,一位母亲在如下排列的绳子上打结,并采用七进制(如),用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.1326天B.510天C.336天D.84天二、填空题(本大题共8题,每题2分,共16分)11.若,则x=________.12.若2n=8,则3n-1=________。
13.若9×32m×33m=322,则m的值为________.14.若a m=3,a m+n=9,则a n=________.15.已知,则的值为________.16.若m,n均为正整数,且3m﹣1•9n=243,则m+n的值是________.17.若,y=9m–8,用x的代数式表示y,则y=________.18.我们知道下面的结论:若a m=a n(a>0,且a≠1),则m=n.利用这个结论解决下列问题:设2m =3,2n=6,2p=12.现给出m,n,p三者之间的三个关系式:①m+p=2n,②m+n=2p﹣3,③n2﹣mp=1.其中正确的是________.(填编号)三、解答题(本大题共10题,共84分)19.计算:(1);(2).20.已知n是正整数,且,求的值.21.已知(x3)n+1=(x n-1)4·(x3)2,求(-n2)3的值。
苏科版七年级数学下册《第8章幂的运算》单元检测卷-附答案一、单选题(本大题共12小题,每小题3分,共36分)1.08(8)---的相反数是( )A .7-B .9-C .9D .8-2.已知25x a =,5y b =和125z ab =,那么x ,y ,z 满足的等量关系是( )A .2x y z +=B .3xy z =C .23x y z +=D .2xy z =3.在北京冬奥会的赛场上,石墨烯“温暖亮相”,向全世界展示中国自主研发的新型加热材料,也让身处冰雪赛场的人们多了一重温度保障.石墨烯是现在世界上最薄的纳米材料,其厚度为0.00000000034米.我们可将数据0.00000000034米用科学记数法表示为( )A .103.410⨯米B .93.410-⨯米C .103.410-⨯米D .83.410-⨯米4.被誉为“中国天眼”的FAST 望远镜首次发现的毫秒脉冲星得到国际认证.新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为( ) A .25.1910-⨯ B .35.1910-⨯ C .551910⨯ D .651910⨯5.下列算式,正确的个数是( )①3412a a a ⋅= ①5510a a a += ①()336a a = ①()32626a a -= A .0个 B .1个 C .2个 D .3个6.我们知道下面的结论:若am =an (a >0,且a ≠1),则m =n .利用这个结论解决下列问题:设23m =和26n =,212p =,现给出m ,n ,p 三者之间的三个关系式:①m +p =2n ,①m +n =2p -3,①n 2-mp =1,其中正确的是( )A .①B .①①C .①①D .①①①7.下列计算中,正确的是( )A .(a 2b 3)2=a 4b 5B .(3x 2y 2)2=6x 4y 4C .(-xy )3=-xy 3D .(-m 3n 2)2=m 6n 4 8.下列计算正确的是( )A .()23522a a a -⋅=B .632a a a ÷=C .2144a a a -⋅=D .()2224a a -= 9.下列运算不正确的是( )A .235a a a ⋅=B .54a a a ÷=C .4442a a a -=-D .()325a a -=- 10.计算3212ab ⎛⎫- ⎪⎝⎭的结果是( )A .3632a b -B .3532a b -C .3518a b -D .3618a b - 11.下列运算中正确的是( )A .(ab 3)2=ab 6B .﹣(a ﹣b )=﹣a+bC .(a+b )2=a 2+b 2D .x 12÷x 6=x 212.下列计算结果是6x 的为( )A .()23xB .7x x -C .122x x ÷D .23x x ⋅二、填空题(本大题共8小题,每小题3分,共24分)13.计算:a•a 2•(﹣a )3= .14.随着全球科技的不断发展,一代又一代的科学家经过长期努力,研制出了很多性能优异的新型材料,微品格金属是世界上最轻的金属和最轻的结构材料之一,密度低至0.0009克/立方厘米,将数据0.0009用科学记数法表示为 .15.若24x =,22y =则代数式232x y +的值是 .16.计算:2322323xy x y xy --⋅÷()()()的结果是 .17.已知4m a =,7n a =求m n a +的值为 .18.已知5x a =,25x y a +=则x y a a +的值为 .19.将a =(﹣99)0 ,b =(﹣0.1)﹣1 和c =25()3--,这三个数从小到大的顺序排为 . 20.已知2023x m =,2023y n =且2023mn =,则x yy x +的值是 .三、解答题(本大题共5小题,每小题8分,共40分)21.阅读下列材料若352,3a b ==,则a ,b 的大小关系是a _____b (填“<”或“>”)解:因为()()53153********,327,3227a a b b ======>,所以1515a b >所以a b >解答下列问题:(1)上述求解过程中,逆用了哪一条幂的运算性质________A .同底数幂的乘法B .同底数幂的除法C .幂的乘方D .积的乘方(2)已知562,3x y ==,试比较x 与y 的大小关系.(3)已知4433222,3,5a b c ===,比较a ,b ,c 的大小关系.22.计算: (1)20441(1)1333-⎛⎫---+- ⎪⎝⎭; (2)()()325232m m m m ⋅---. 23.计算:(1)102018201711()(8)2()22---+⨯- (2)22442(2)(5)a a a ⋅-- 24.计算:(1)342442()(2)a a a a a +--; (2)2202130(2)4(1)2(5)π-+⨯---+-.25.计算:(1)2200-198202⨯(运用乘法公式计算). (2)222019118(2)(1)(0.5)2---⎛⎫--⨯-+-- ⎪⎝⎭. (3)0231(2022)()(2)2---+-; (4)2333a b a b a b ---+()()(). 参考答案1.C2.C3.C4.B5.A6.D7.D8.C9.D10.D11.B12.A13.﹣a 6 14.4910-⨯ 15.12816.529x y17.2818.1019.b <c <a . 20.121.(1)C (2)x y <(3)a c b << 22.(1)293;(2)64m -. 23.(1)-1 (2)-21a 8 24.(1)82-a (2)-7 25.(1)4 (2)-1 (3)-11 (4)228610a ab b -+。
苏科版七年级下册数学第八章幂的运算单元测试【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 下列运算中与4·4结果相同的是( )A. 2·8B. (2) 4C. (4) 4D. (2) 4·(4) 22. 3m+1可写成( )A. (3) m+1B. (m) 3+1C. ·3mD. (m) 2m+13. 下列运算正确的是( )A. 3·4= 12B. 3+ 3=2 6C. 3÷3=0D. 32·53=1554. 下列计算正确的是( )A. (5) 2= 7B. +2=3 2C. D. 6÷2= 45. 计算6m3÷(-3m2)的结果是( )A. -3mB. -2mC. 2mD. 3m6. 下列四个算式:①4·3= 12;②2+ 5= 10;③5÷5= ;④(3) 3= 6,其中正确的有( )A. 0个B. 1个C. 2个D. 3个7. 下列计算错误的是( )A. (-2x) 3=-2x3B. -2·=- 3C. (-x) 9÷(-x) 3=x6D. (-23) 2=468. 如果=(-2009) 0,b=(-0.1)-1,,那么、b、c三个数的大小为( )A. >b>cB. c> >bC. >c>bD. c>b>9. 计算25m÷5m的结果为( )A. 5B. 20C. 5mD. 20m10. 一种计算机每秒可做4×108次运算,它工作3×103秒的运算次数为( )A. 12×1024B. 1.2×1012C. 12×1012D. 1.2×101311. 计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(101)2表示二进制数,将它转换成十进制形式是:1×22+0×21+1×20=5,那么将二进制数(10101)2转换成十进制数是( )A. 41B. 2lC. 13D. 1112. 连结边长为1的正方形对边中点,可将一个正方形分成4个大小相同的小正方形,选右下角的小正方形进行第二次操作,又可将这个小正方形分成4个更小的小正方形,……重复这样的操作,则5次操作后右下角的小正方形面积是( )A. B. C. D.二、填空题13. 如果·3·m= 8,那么m=_________.14. (2m-n) 3·(n-2m) 2=__________.15. 若5·(n) 3= 11,则n=_____________.16. 如果(4) 3÷(2) 5=64,且<0,那么=____________.17. 二生物教师在显微镜下发现,某种植物的细胞直径约为0.000 12 mm,用科学记数法表示这个数为_______________mm.18. 若2n=3,则26n-50=______________.19. 若3n=2,3m=5,则32m+3n-1=___________.20. 计算1993+9319的个位数字是___________.21. 若x=2m+1,y=4m+3,则用x的代数式表示y=__________.22. 如果等式(2-1) +2=1,那么的值为_____________.三、解答题23. 计算:·2·3+(-23) 2-(24) 2÷2.24. 计算:8n+1×25n÷162n-1.25. 已知,,求2009b-2的值.26. 已知9m= ,27n=b.求:(1)32m+3n的值;(2)34m-6n的值.27. 比较375与2100的大小关系.28. 三峡一期工程结束后的当年发电量为5.5×109千瓦·时,某市有10万户居民,若平均每户每年用电2.75×103千瓦·时,那么三峡工程该年所发的电能供该市居民使用多少年?(结果可以用科学计数法表示)29. 已知x2n=2,求(2x3n)2-(3xn) 2的值.30. 阅读下列一段话,并解决后面的问题.观察下面一列数:1,2,4,8,……我们发现,这列数从第二项起,每一项与它前一项的比值都是2.我们把这样的一列数叫做等比数列,这个共同的比值叫做等比数列的公比.(1)等比数列5,-10,20,……的第4项是_____________;(2)如果一列数1,2,3,……是等比数列,且公比是q,那么根据上述规定有,,,……因此,可以得到2= 1q,3= 2q= 1q·q=1q2,4= 3q= 1q2·q= 1q3,……则n=____________;(用含1与q的代数式表示)(3)一个等比数列的第2项是6,第3项是-18,求它的第1项和第4项.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】第29题【答案】第30题【答案】。
苏科新版七年级数学下册《第8章幂的运算》单元综合测试题1.将0.0012用科学记数法表示为()A.1.2×10﹣2B.1.2×10﹣3C.1.2×10﹣4D.1.2×10﹣52.用科学记数法表示的数3.18×10﹣5,原来是()A.31800B.318000C.0.0000318D.0.0003183.计算m6÷m2的结果是()A.m3B.m4C.m8D.m124.墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷5.计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a86.计算:(﹣2020)0=()A.1B.0C.2020D.﹣20207.如果(x﹣3)x=1,则x的值为()A.0B.2C.4D.以上都有可能8.计算20+21+22+23+24=()A.24B.28C.31D.329.已知,则比较a、b、c、d的大小结果是()A.b<a<d<c B.a<b<d<c C.b<a<c<d D.b<d<a<c 10.若(2x+5)﹣3有意义,则x满足的条件是()A.B.C.x≠0D.11.已知:2x+3y+3=0,计算:4x•8y的值=.12.若(x﹣4)x﹣1=1,则整数x=.13.20=;2﹣2=.14.计算:3﹣2+(π﹣3.14)0=.15.若2x+y﹣2=0.则52x•5y=.16.若22m+3﹣22m+1=192,则m的值为.17.计算:52021×0.22020=.18.若(a2)3=a m•a,则m=.19.等式a0=1成立的条件是.20.若3x=30,3y=6,则3x﹣y的值为.21.计算:m7•m5+(﹣m3)4﹣(﹣2m4)3.22.(x﹣y)•(y﹣x)2•(y﹣x)3﹣(y﹣x)6.23.请探索使得等式(2x+3)x+2020=1成立的x的值.24.已知10x=3,10y=2.(1)求102x+3y的值.(2)求103x﹣4y的值.25.已知a6=2b=84,且a<0,求|a﹣b|的值.26.计算:.27.如果a c=b,那么我们规定(a,b)=c.例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)=,(4,1)=,(2,0.25)=;(2)记(3,5)=a,(3,6)=b,(3,30)=c.判断a,b,c之间的等量关系,并说明理由.28.若a m=a n(a>0且a≠1,m、n是正整数),则m=n.利用上面结论解决下面的问题:(1)如果2÷8x•16x=25,求x的值;(2)如果2x+2+2x+1=24,求x的值;(3)若x=5m﹣3,y=4﹣25m,用含x的代数式表示y.参考答案1.解:0.0012=1.2×10﹣3.故选:B.2.解:3.18×10﹣5=0.0000318.故选:C.3.解:m6÷m2=m6﹣2=m4.故选:B.4.解:∵x3x=x2(x≠0),∴覆盖的是:÷.故选:D.5.解:(a3)2÷a2=a3×2÷a2=a6﹣2=a4,故选:B.6.解:(﹣2020)0=1,故选:A.7.解:x=0时,(0﹣3)0=(﹣3)0=1x=2时,(2﹣3)2=(﹣1)2=1x=4时,(4﹣3)4=14=1故选:D.8.解:原式=1+2+4+8+16=31故选:C.9.解:∵a=﹣(0.2)2=﹣0.04,b=﹣2﹣2=﹣,c=(﹣)﹣2=4,d=(﹣)0=1,∴b<a<d<c.故选:A.10.解:由题意可知:2x+5≠0,x≠,故选:B.11.解:∵2x+3y+3=0,∴2x+3y=﹣3,4x•8y=22x•23y=2(2x+3y)=2﹣3=.故答案为:.12.解:①当x﹣1=0.且x﹣4≠0时.解得x=1.②x﹣4=1,即x=5.③x﹣4=﹣1,即x=3故答案是:1或5或3.13.解:20=1,2﹣2==,故答案为:1,.14.解:3﹣2+(π﹣3.14)0=+1=+1=,故答案为:.15.解:∵2x+y﹣2=0,∴52x•5y=52x+y=52=25.故答案为:25.16.解:∵22m+3﹣22m+1=192,∴22m+1×(22﹣1)=192,∴3×22m+1=192,∴22m+1=64=26,∴2m+1=6,解得:m=.故答案为:.17.解:52021×0.22020=(5×0.2)2020×5=12020×5=5,故答案为:5.18.解:∵(a2)3=a m•a,∴a6=a m+1,∴6=m+1,解得:m=5.故答案为:5.19.解:等式a0=1成立的条件是:a≠0.故答案为:a≠0.20.解:∵3x=30,3y=6,∴3x﹣y=3x÷3y=30÷6=5.故答案为:5.21.解:原式=m12+m12﹣(﹣8m12)=m12+m12+8m12=10m12.22.解:(x﹣y)•(y﹣x)2•(y﹣x)3﹣(y﹣x)6=﹣(x﹣y)•(x﹣y)2•(x﹣y)3﹣(x﹣y)6=﹣(x﹣y)6﹣(x﹣y)6=﹣2(x﹣y)6.23.解:当x+2020=0时,∴x=﹣2020,∴2x+3=﹣4037≠0,符合题意,当2x+3=1时,∴x=﹣1,符合题意,当2x+3=﹣1时,∴x=﹣2,∴x+2020=2018,符合题意,综上所述,x=﹣2或x=﹣1或x=﹣2020.24.解:(1)102x+3y=102x•103y=(10x)2•(10y)3=9×8=72;(2)103x﹣4y=103x÷104y=(10x)3÷(10y)4=27÷16=.25.解:∵(±4)6=2b=84=212,a<0,∴a=﹣4,b=12,∴|a﹣b|=|﹣4﹣12|=16.26.解:原式=1+3+1﹣2=3.27.解:(1)∵33=27,∴(3,27)=3,∵40=1,∴(4,1)=0,∵2﹣2=,∴(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a+b=c.理由:∵(3,5)=a,(3,6)=b,(3,30)=c∴3a=5,3b=6,3c=30,∴3a×3b=5×6=3c=30,∴3a×3b=3c,∴a+b=c.28.解:(1)2÷8x•16x=2÷(23)x•(24)x=2÷23x•24x=21﹣3x+4x=25,∴1﹣3x+4x=5,解得x=4;(2)∵2x+2+2x+1=24,∴2x(22+2)=24,∴2x=4,∴x=2;(3)∵x=5m﹣3,∴5m=x+3,∵y=4﹣25m=4﹣(52)m=4﹣(5m)2=4﹣(x+3)2,∴y=﹣x2﹣6x﹣5。
2021-2022学年苏科版七年级数学下册《第8章幂的运算》单元达标测试题(附答案)一.选择题(共8小题,满分40分)1.数字0.000000006用科学记数法表示为()A.6×10﹣8B.6×10﹣9C.6×10﹣10D.6×10﹣11 2.计算(﹣)2022×(﹣2)2022的结果是()A.﹣1B.0C.1D.20223.下列计算正确的是()A.(﹣2a2b)3=﹣8a6b3B.a6÷a3+a2=2a2C.2a+3b=5ab D.a2•a4=a84.已知10a=20,100b=50,则a+b+的值是()A.2B.C.3D.5.计算:(﹣x2y)3=()A.﹣2x6y3B.C.D.6.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10D.a2b2=c27.若8x=21,2y=3,则23x﹣y的值是()A.7B.18C.24D.638.若22=4y﹣1,27y=3x+1,则x﹣y等于()A.﹣5B.3C.﹣1D.1二.填空题(共8小题,满分40分)9.计算:2×103﹣(﹣2)3×102=(把结果用科学记数法表示).10.若9a•27b÷81c=9,则2a+3b﹣4c的值为.11.若2x=3,4y=2,则2x﹣2y的值为.12.若3x﹣5y﹣1=0,则103x÷105y=.13.已知3x+1•5x+1=152x﹣3,则x=.14.若2m+2m+2m+2m=8,则m=.15.计算:=.16.已知(x+3)2﹣x=1,则x的值可能是.三.解答题(共5小题,满分40分)17.(1).(2)如果2m=3,.求23m+2n的值.18.m•(﹣m)2•(﹣m)2•(﹣m)2•(﹣m3)•(﹣m)3.19.(1)已知2m=a,32n=b,m、n为正整数,求23m+10n﹣2的值;(2)已知2a=3,4b=5,8c=7,求8a+c﹣2b的值.20.2(a3)4+a4•(﹣a2)4+a6•(﹣a2)3+(﹣a2)(﹣a5)2.21.某银行去年新增加居民存款10亿元人民币.(结果用科学记数法表示)(1)经测量,100张面值为100元的新版人民币大约厚0.9厘米,如果将10亿元面值为100元的新版人民币摞起来,大约有多高?(2)一台激光点钞机的点钞速度是8×104张/时,按每天点钞5小时计算,如果让点钞机点一遍10亿元面值为100元的新版人民币,点钞机大约要点多少天?参考答案一.选择题(共8小题,满分40分)1.解:0.000000006=6×10﹣9.故选:B.2.解:(﹣)2022×(﹣2)2022=[﹣×(﹣)]2022=12022=1,故选:C.3.解:A、(﹣2a2b)3=﹣8a6b3,故A符合题意;B、a6÷a3+a2=a3+a2,故B不符合题意;C、2a与3b不属于同类项,不能合并,故C不符合题意;D、a2•a4=a6,故D不符合题意;故选:A.4.解:∵10a×100b=10a×102b=10a+2b=20×50=1000=103,∴a+2b=3,∴原式=(a+2b+3)=×(3+3)=3,故选:C.5.解:(﹣x2y)3=﹣x6y3,故选:D.6.解:∵5×10=50,∴2a•2b=2c,∴2a+b=2c,∴a+b=c,故选:B.7.解:∵8x=21,2y=3,∴23x=21,∴23x﹣y=23x÷2y=21÷3=7.故选:A.8.解:∵22=4y﹣1=22y﹣2,27y=33y=3x+1,∴2y﹣2=2,3y=x+1,解得y=2,x=5,∴x﹣y=5﹣2=3.故选:B.二.填空题(共8小题,满分40分)9.解:2×103﹣(﹣2)3×102=2×103+8×102=2000+800=2800=2.8×103.故答案为:2.8×103.10.解:9a•27b÷81c=9,32a•33b÷34c=32,32a+3b﹣4c=32,∴2a+3b﹣4c=2,故答案为:2.11.解:∵2x=3,4y=2,∴22y=2,∴2x﹣2y=2x÷22y=3÷2=,故答案为:.12.解:因为3x﹣5y﹣1=0,所以3x﹣5y=1,所以103x÷105y=103x﹣5y=10.故答案为:10.13.解:∵3x+1•5x+1=152x﹣3,∴(3×5)x+1=152x﹣3,即15x+1=152x﹣3,∴x+1=2x﹣3,解得:x=4.故答案为:4.14.解:∵2m+2m+2m+2m=8,∴4×2m=8,∴22×2m=8,则有:2m+2=23,∴m+2=3,解得:m=1.故答案为:1.15.解:原式=1+﹣1=1+2﹣1=2.故答案为:2.16.解:当x+3=1时,解得:x=﹣2,故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时,解得:x=﹣4,故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时,解得:x=2,故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.三.解答题(共5小题,满分40分)17.解:(1)=﹣1+1﹣9+(﹣8)=﹣9﹣8=﹣17;(2)当2m=3,时,23m+2n=23m×22n=(2m)3×(2n)2=33×()2=27×=3.18.解:m•(﹣m)2•(﹣m)2•(﹣m)2•(﹣m3)•(﹣m)3=m•m2•m2•m2•(﹣m3)•(﹣m3)=m1+2+2+2+3+3=m13.19.解:(1)∵2m=a,32n=25n=b,m、n为正整数,∴23m+10n﹣2=(2m)3•(25n)2÷22=a3•b2÷4=;(2)∵2a=3,4b=22b=5,8c=23c=7,∴8a+c﹣2b=23a+3c﹣6b=(2a)3•23c÷(22b)3=33×7÷53=27×7÷125=.20.解:原式=2a12+a12﹣a12﹣a12.=a12.21.解:(1)10亿=1 000 000 000=109,∴10亿元的总张数为109÷100=107张,107÷100×0.9=9×104(厘米);(2)107÷(5×8×104),=(1÷40)×(107÷104),=0.025×103=25=2.5×10(天).。
1第8章 幂的运算 单元综合卷(A)一、选择题。
(每题3分,共21分)1.下列计算正确的是 ( )A .2a +2a =4aB .2a -a =2C .(ab )2=22a b D .(2a )3= 5a 2.有下列各式:①2n a ·n a =3n a ; ②22·33=65; ③32·32=81; ④a 2·a 3=5a ;⑤(-a )2·(-a )3 =a 5.其中计算正确的有 ( )A .4个B .3个C .2个D .1个 3.已知空气的单位体积质量为1.24×10-3克/厘米31.24×10-3用小数表示为 ( ) A .0.000124 B .0.0124 C .-0.00124 D .0.001244.若ma =2,ma =3,则m na+的值为 ( )A .5B .6C .8D .9 5.计算25m ÷5M 的结果为 ( )A .5B .20C .20mD .5m6.如果a =(一99)︒,b=(一0.1)-1,C=(53-)-2,那么a 、b 、c 的大小关系为 ( ) A .a>c>b B .c>a>b c .a>b>c D .c>b>a 7.计算(-2)100+(-2)99所得的结果是 ( )A .一2B .2C .一299 D-299 二、填空题。
(每空2分,共26分)28.(1)( 2x y )3= ;(2)( 2a )·(3a -)3= ; (3) 21n y +-’÷ 1n y += ;9.(1)-27a 9b 12=( ) 3(2)(-0.125)2012·(-8)2013= ;(3)(12)︒× 32-= ; 10.(1)若9n ·27n =320,则n= ;(2)若x+4y-3=0,则2x·16y= ; 11.(1)若ma =2,则(3ma )2-4(3a )m= ;(2)若2m=9,3m=6,则621m -= ;12.若(x -10)︒=1,则x 的取值范围是 ;13.一种细菌的半径是4×105-m ,则用小数可表示为 m.14.空气的体积质量是0.0012393cm ,此数保留三个有效数字的近似数用科学记数法表示为 ;三、解答题。
(共53分)15.(每小题4分,共24分)计算:(1)( 3a -)4 ·( 2a -)5; (2)( p -q )4÷(p -q )3·(p -q )2;3(3) (2a bc )4÷(2ab c )3·(abc )2(abc ≠0) (4)(-2x )5-(-x )3·(-2x )2(5)(-1)2015+21--(32)2-+(π-3.14) 0(6)(-0.125)12×(-123)7×(-8) 13×(-35)816.(5分)已知4 × 16m×64m=421,求(-m 2)3÷(m 3·m 2)的值17.(6分)已知4,8m n a a ==,求代数式(32201433)mn m a --的值.18.(6分)若22·16n 29(2)=,解关于42nx +=的方程.19.(6分)已知整数a 、b 、c 满足20()3a ·8()15b ·9()16c ,求a 、b 、c 的值.420.(6分)阅读材料:求l+2+22+32+42+…+22013的值.解:设S= l+2+22+32+42+…+ 20122+22013 ,将等式两边同时乘2,得2S=2+22+32+42+52+…+22013+22014.将下式减去上式,得2S-S=22014一l即S=22014一l ,即1+2+ 22+32+42+…+22013= 22014一l仿照此法计算:(1)1+3+2333++…+1003(2) 231111222+++…+100125参考答案1.C 2.C 3.D 4.B 5.D 6.A 7.D 8.(1)23x y (2)11a - (3)n y - 9.(1)343a b - (2)-8 (3)1910.(1)4 (2)8 11.(1)4 (2)486 12.x ≠10 13.0.00004 14.1.24×103-15.(1)22a - (2)3()q ρ- (3)73a c (4)-285x (5) 118(6)24516.一4 17.1 18.4n =,12x =- 19.2a b c ===20.(1)101312- (2)101100212-第8章 幂的运算 单元综合卷(B)一、选择题。
(每题3分,共21分) 1.31m a+可以写成 ( )A .31()m a + B . 3()1m a + C .a ·a3mD .(m a )21m +2.下列是一名同学做的6道练习题:①0(3)1-=;②336a a a +=;③5()a -÷3()a -=2a -;④4m2-=214m;⑤2336()xy x y =;⑥225222+=其中做对的题有 ( ) A .1道 B .2道 C .3道 D .4道3.2013年,我国发现“H7N9”禽流感,“H7N9”是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012 m ,这一直径用科学记数法表示为 ( )6A .1.2×109- m B .1.2×108-m C .12 X 108-m D .1.2×107- m4.若x 、y 为正整数,且2x·2y=25;,则x 、y 的值有 ( ) A .4对 B .3对 C .2对 D .1对 5.若x <一1。
则012x x x --、、之间的大小关系是 ( )A .0x > 2x -> 1x -B .2x ->1x ->0xC .0x >1x ->2x -D ..1x ->2x ->0x 6.当x =一6,y=16时,20132014x y 的值为 ( ) A .16 B .16- C .6 D .一6 7.如果(ma ·n b ·b )3=915a b ,那么m 、n 的值分别为 ( ) A .m =9,n =一4 B .m =3,n=4 C .m =4,n =3 D .m =9,n =6 二、填空题。
(每空2分,共16分)8.将(16)1-、(一2) 0、(一3) 2、一︱-10 ︱这四个数按从小到大的顺序排为 · 9.( )2=42a b ;( )×12n -=223n +10.若35)x (=152×153,则x = .11.如果43(a )÷25(a )=64,且a<0,那么a= .12.若3n =2,35m =,则2313m n +-的值为 .13.已知2m =x ,43m=y ,用含有字母x 的代数式表示y ,则y .14.如果等式(2a 一1) 2a +=1,则a 的值为 .三、解答题。
(共63分)15.(每小题4分,共16分)计算:7(1)一3x + (-4x )2x ; (2)( 2a )3·(2a )4÷(一2a )5; (3)(-2) 2-一32÷(3.144+π) 0;(4)把下式化成()a b ρ-的形式: 15(a-b) 3[一6(a-b) 5ρ+](b-a)2÷45(b-a) 5.16.(8分)用简便方法计算下面各题: (1) 4()52012×(一1.25)2013; (2)(318)12×(825)11×(一2) 317.(4分)先化简,再求值:一(一2a )3·(一b 3)2+(一32ab 2)3。
,其中a =一12,b =2.18.(4分)已知n 为正整数,且2()9n x =,求32221()3()3n n x x -的值;19.(1)(4分)已知5×25m×125m=516,求m 的值;8(2)(4分) 已知x +3y -2=0,求6x ·216y的值;(3)(4分)已知9m÷322m +=1()3n,求n 的值;20.(5分)若a =255,b =344,c =433,试比较a 、b 、c 的大小21.(6分)(1)你发现了吗?(23)2=23×23,(23)2-=21113322222()333=⨯=⨯,由上述计算,我们发现(23)2 (23)2- (2)仿照(1),请你通过计算,判断3354()()45-与之间的关系。
(3)我们可以发现:()m b a - ()ma b(0ab ≠)。
(4)计算:2277()()155-。
22.22.(8分)阅读下列材料:9一般地,n 个相同的因数a 相乘, 记为n a .如2×2×2=32=8,此时,3叫做以2为底8的对数,记为log 8a (即log 8a =3).一般地,若n a =6(a >0且a ≠1,6>0),则n 叫做以a 为底b 的对数,记为log a b (即log a b =n).如34=81,则4叫做以3为底81的对数,记为3log 81 (即3log 81=4). (1)计算以下各对数的值:2l o g 4= ;2l o g 16= ;2l o g 64= . (2)观察(1)中三数4、16、64之间满足怎样的关系式,2log 4、2log 16、2log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?l o g l o ga a M N += (a>0且a≠1,M>0,N>0); (4)根据幂的运算法则:n m a a =n m a +以及对数的含义证明上述结论.参考答案1.C 2.B 3.D 4.A 5.A 6.B 7.B8.10--<(一2)°<11()6-<(一3)29.±以42,2n a b + 10.6 11.—8 12.200313.6x 14.-2或1或015.(1)155x (2) 4a - (3) 384- (4)25()p a b +- 16.(1)-1.25 (2)-25 17.36378a b ,-371018.一162 19.(1) 3m = (2)36 (3) 2n =20.∵555111144111133311112(2)32,3(34)81,4(4)64a b c ========= 又∵1132<1164<1181,∴a <C<b . 21.(1)= (2)= (3)= (4)9 22.解:(1)2 4 6(2)4×16=64,222log 4log 16log 64+=; (3) log log log ()a a a M N MN +=; (4)证明:设1,2og log a a M b N b ==, 则12,bba M a N ==, ∴M·N= 1ba ,2ba =21b b a+.∴12log ()a b b MN +=,即l o g l o g l o g (a a a M N M N +=。