九年级数学反比例函数2
- 格式:pdf
- 大小:608.92 KB
- 文档页数:9
反比例函数的图象和性质(二)三维目标一、知识与技能进一步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质.二、过程与方法1.经历用反比例函数的图象和性质解决数学问题的过程.2.进一步体会分类讨论思想特别是数形结合思想的运用.三、情感态度与价值观1.积极参与数学活动、注意多与同伴交流看法.2.在参与数学活动的过程中,体会探索、创新的乐趣,养成乐于探索的习惯.教学重点用反比例函数的图象和性质解决数学中的简单问题.教学难点数形结合的思想在解题中的应用.教具准备多媒体课件.教学过程创设问题情境,引入新课活动11.•作反比例函数图象的基本步骤是:•(•1)•________;•(•2)•_________;•(•3)_________.2.反比例函数y=kx的图象是由_______组成的,通常称为_______,当k>0•时______位于________;当k<0时,_________位于________.3.反比例函数y=kx的图象,当k>0时,在每一个象限内,y的值随x值的增大而________;当k<0时,在每一个象限内,y的值随x的增大而________.4.反比例函数y=kx的图象上任取一点,过这一点分别作x轴、y轴的平行线,与坐标轴围成的矩形的面积是________.5.知识结构反比例函数的图象与性质(1)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩反比例函数的图象是__________(1)当k>0时_________ (2)性质(2)当k<0时__________设计意图:帮助学生回忆节上节课研究过的反比例函数的图象和性质,进一步让学生体会数形结合的思想.师生行为:由学生回答,教师引导学生进一步归纳总结.此活动中,教师应重点关注:①学生能否顺利地完成填空;②学生是否能由反比例函数的图象和性质整合起来理解.二、讲授新课活动2问题:【例3】已知反比例函数的图象经过点A(2,6).(1)这个函数的图象分布在哪些象限?y随x的增大如何变化?(2)点B(3,4),C(-212,-445)和D(2,5)是否在这个函数的图象上?设计意图:根据已知条件确定反比例函数的解析式,并根据函数解析式判断点是否在函数图象上.师生行为:学生独立思考,自己解答.教师巡视解答过程并给予引导.在此活动中,教师应重点关注:①是否理解反比例函数解析式的确定就是k值的确定.②点是否在图象上,只需将点的横、纵坐标代入解析式,看是否符合解析式,即可判断. 生:解:(1)设这个反比例函数为y=k x ,因为它经过点A ,把点A 的坐标(2,6)代入函数式,得6=2k ,解得k=12. 这个反比例函数的表达式为y=12x. 因为k>0,所以这个函数的图象在第一、第三象限,在每个象限内,y 随x 的增大而减小.(2)把点B 、C 和D 的坐标代入y=12x,可知点B 、点C 的坐标满足函数关系式.点D•的坐标不满足函数关系式,所以点B 、点C 在函数y=12x 的图象上,点D 不在这个函数的图象上.活动3问题:【例4】如下图是反比例函数y=5m x的图象的一支,根据图象回答下列问题:(1)图象的另一支在哪个象限?常数m 的取值范围是什么?(2)如上图的图象上任取点A (a ,b )和点B (a ′,b ′)如果a>a ′,那么b 和b ′有怎样的大小关系?设计意图:熟练运用反比例函数的图象和性质解答数学问题,特别强调让学生注意数形结合思想的应用.师生行为:让学生先观察图象,然后结合反比例函数的性质完成此题.教师应给学生充分交流的时间和空间.在此活动中,教师应重点关注:①学生能否从图象的特点得到m-5的符号;②学生能否从图象的特点,结合函数的性质解决问题;③学生能否独立思考问题.生:解:(1)反比例函数的图象的分布只有两种可能,分布在第一、•第三象限,或者分布在第二、四象限,在这个函数的图象的一支在第一象限,则另一支必在第三象限.因此这个函数的图象分布在第一、三象限,所以m-5>0,解得m>5.(2)由函数的图象可知,在双曲线的一支上,y 随x 的增大而减小.所以当a>a ′时,b<b ′.三、巩固提高活动4练习:1.练习反比例函数的图象经过点A (3,-4).(1)这个函数的图象分布在哪些象限?在图象的每一支上,y 随x 的增大如何变化?(2)点B (-3,4),点C (-2,6)和点D (3,4)是否在这个函数的图象上?2.如下图是反比例函数y=7n x的图象的一支,根据图象回答下列问题:(1)图象的另一支在哪个象限?常数n 的取值范围是什么?(2)在图象上任取一点A (a ,b )和B (a ′,b ′),如果a<a ′,那么b 和b ′有怎样的大小关系?设计意图:进一步熟悉由数得到形的特点,由形得到数的特点,渗透数形结合的思想.师生行为:由学生独立思考完成,教师进一步根据学生的情况进行评析.在此活动中,教师应重点关注:①学生是否具有数形结合的意识.②学生能否有独立思考问题的习惯.生:解:1.(1)设这个反比例函数为y=k x ,因它经过点A (3,-4),把点A 的坐标代入函数式,得-4=3k .解得k=-12.这个反比例函数的表达式为y=-12x.因为k<0,所以这个函数的图象在第二、四象限,在每个象限内,y随x的增大而增大.(2)把点B、C、D的坐标代入y=-12x,可知点B、点C的坐标满足函数关系式,点D的坐标不满足函数关系式,所以点B,点C在函数y=-12x的图象上,点D不在这个函数图象上.2.(1)因为反比例函数的图象的分布只有两种可能,分布在第一、三象限,•或者分布在第二、四象限,这个函数的图象的一支在第二象限,则另一支必在第四象限.因此这个函数的图象分布在第二、第四象限,所以n+7<0,n<-7.(2)由函数的图象可知,在双曲线的一支上,y随x的增大而增大,所以当a<a′时,b<b′.活动5问题:如下图,点A、B在反比例函数y=kx的图象上,且点A、B的横坐标分别为a,2a(a>0),AC⊥x轴,垂足为点C,且△AOC的面积为2.(1)求该反比例函数的解析式.(2)若点(-a,y1),(-2a,y2)在该反比例函数的图象上,试比较y1与y2的大小.设计意图:综合函数与几何知识,提高学生综合运用知识的能力.师生行为:先由学生独立思考,寻找解题的途径.教师应给予适当的引导,特别对于“学困生”.在此活动中,教师应重点关注:①综合运用数学知识的能力;②学生面对困难,有无面对困难的勇气和克服困难的坚强意志;③学生能否借助于新旧知识的联系,转化迁移旧知识.师生共析:通过Rt△AOC的面积S=12OC·AC=2,可知x A·y A=4.又因为点A在双曲线上,所以x A·y A=k,•可求出函数的解析式,再根据反比例函数的性质,k>0,y随x的增大而减小知,•自变量x 越大,函数值反而小,通过比较-a与-2a的大小可知y1与y2的大小.生:(1)解:因为点A在反比例函数y=kx的图象上,设点A的坐标为(a,ka).∵a>0,k>0,∴AC=ka,OC=a,又∵S△AOC=12OC·AC=2.∴12·a·ka=2,k=4,y=4x.即此反比例函数的解析式为y=.(2)∵A点,B点横坐标分别为a;2a(a>0)∴2a>a,即-2a<-a<0.由于点(-2a,y1),(-a,y2)在双曲线上,根据反比例函数的性质k>0,y随x•增大而减小知y1<y2.四、课时小结活动6谈谈你本节课有什么新的收获?掌握反比例函数的性质;会利用待定系数法求函数解析式.设计意图:这种形式的小结,激发学生主动参与的意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功体验的机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要.师生行为:让学生小组讨论、交流本节课的收获.教师根据学生的情况汇总.在活动中,教师应重点关注:①不同层次学生对本节知识的认识程度;②学生独立面对困难和克服困难的能力.板书设计17.1.2反比例函数的图象和性质(二)1.反比例函数①定义②图象③主要性质2.反比例函数的图象和性质的应用例3例43.练习4.小结活动与探究已知力F 所做的功是15焦,则力F 与物体在力的方向上通过的距离s 的图象大致是() 过程:在物理学中,功W=F ·s ,所以F=W s,又因为W=15为定值,所以F 是s 的反比例函数,因为W=15>0,s>0,所以其图象在第一象限.结果:应选B .习题详解习题17.11.(1)S=V h,此函数为反比例函数. (2)y=S x.此函数为反比例函数.2.B 是反比例函数,k=-3 3.(1)>,减小.(2)<,增大,(3)k=3,减小.4.如果y 是x 的反比例函数,那么x 也是y 的反比例函数.5.y 与x 具有正比例函数关系.6.y 与x 具有反比例函数关系.7.(1)设正比例函数y=x 的图象与反比例函数y=k x的图象的交点坐标为(a ,2),则 2,2,4.2;a a k k a =⎧=⎧⎪⎨⎨==⎩⎪⎩解得 所以反比例函数的解析式为y=4x . 当x=-3时,y=-43. (2)反比例函数y=4x 的图象在第三象限函数值y 随x 的增大而减小. 当x=-3时,y=-43;当x=-1时,y=-4. 所以-3<x<-1时,y 的取值范围是-4<y<-43. 8.BD9.(1)y=m x的图象的一支在第一象限,图象的另一支在第三象限,所以>0,得(2)的图象在第一、三象限,所以在每个象限y 随x 的增大而减小,所以b>b ′,•有a<a ′.备课资料参考练习1.如果k>0,那么函数y=k x的图象大致是下图中的( )2.已知y=(a-1)x a 是反比例函数,则它的图象在( )A .第一,三象限B .第二,四象限C .第一,二象限D .第三,四象限3.对于反比例函数y=-2x,下列结论错误的是( ) A .当x>0时,y 随x 的增大而增大B .当x<0时,y 随x 的增大而增大C .x=-1时的函数值小于x=1时的函数值D .在函数图象所在的每个象限内,y 随x 的增大而增大4.对于函数y=-12x,当x>0时,函数的这部分图象在第______象限. 5.若点(-2,-1)在反比例函数y=k x 的图象上,•则当x>•0•时,•y•值随x•值的增大而______.6.如果函数y=kx 222k k +-的图象是双曲线,且在第二、四象限内,那么k=_______.7.已知点P (1,a )在反比例函数y=k x (k ≠0)的图象上,其中a=m 2+2m+3(m 为实数),•则这个函数的图象在第________象限.8.设函数y=(m-2)x 255m m -+.当m 取何值时,它是反比例函数?它的图象位于哪些象限?•在每个象限内,y 随x 的增大而增大还是减小?画出其图象;并利用图象求当12≤x ≤2时,•y 的取值范围. 答案:1.C2.B3.C4.第四象限5.减小6.k=-17.第一、三象限8.m=3时,它是反比例函数,当m=3时,它的图象位于第一、三象限,在每一个象限y 随x•的增大而减小.图略,12≤y ≤2.。
第六章反比例函数第2节反比例函数的图像和性质课堂练习学校:___________姓名:___________班级:___________考生__________ 评卷人 得分一、单选题1.反比例函数y =1x(x <0)的图象位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.对于反比例函数3y x=,下列说法错误的是( ) A .图象经过点()1,3B .图象在第一、三象限C .0x >时,y 随x 的增大而增大D .x 0<时,y 随x 增大而减小3.若点A(x 1,y 1),B(x 2,y 2)在反比例函数3y -x=的图象上,且x 1<0<x 2.则( )A .12y 0y <<B .12y 0y >>C .12y 0y >>D .12y 0y <<4.反比例函数y =mx的图象如图所示,以下结论:①常数m >0;①在每个象限内,y 随x 的增大而增大;①若A (﹣1,h ),B (2,k )在图象上,则h <k ;①若P (x ,y )在图象上,则P '(﹣x ,﹣y )也一定在图象上.其中正确的是( )A .①①B .①①C .①①①D .①①①5.如图,P (x ,y )是反比例函数3y x=的图象在第一象限分支上的一个动点,P A ①x 轴于点A ,PB ①y 轴于点B ,随着自变量x 的逐渐增大,矩形OAPB 的面积( )A .保持不变B .逐渐增大C .逐渐减小D .无法确定6.已知正比例函数1y k x=和反比例函数2kyx=,在同一直角坐标系下的图象如图所示,其中符合120k k⋅>的是()A.①①B.①①C.①①D.①①7.若反比例函数()110ay a xx-=><,图象上有两个点()()1122,,x y x y,,设()1212()m x x y y=--,则y mx m=-不经过第()象限.A.一B.二C.三D.四8.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y3=x (x>0)和y6=x-(x>0)的图象交于B、A两点.若点C是y轴上任意一点,则①ABC的面积为()A.3B.6C.9D.92评卷人得分二、填空题9.已知反比例函数6yx=,当x>3时,y的取值范围是_____.10.如图,直线y=kx与双曲线y=2x交于A,B两点,BC①y轴于点C,则△ABC的面积为_____.11.如果点(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数y=1x图象上的三个点,则y1、y2、y3的大小关系是_____.12.若点A(-2,a),B(1,b),C(4,c)都在反比例函数8yx=-的图象上,则a、b、c大小关系是________.13.若点A(﹣5,y1),B(1,y2),C(2,y3)在反比例函数21ayx+=(a为常数)的图象上,则y1,y2,y3的大小关系是_____.(用“<”连接)14.如图,点A是反比例函数y=kx图象上的一个动点,过点A作AB①x轴,AC①y 轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=________.15.如图,点A在双曲线y=kx的第一象限的那一支上,AB①y轴于点B,点C在x 轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若①ADE的面积为32,则k的值为______.评卷人得分三、解答题16.如图,()A4,3是反比例函数kyx=在第一象限图象上一点,连接OA,过A作AB//x轴,截取AB OA(B=在A右侧),连接OB,交反比例函数kyx=的图象于点P.(1)求反比例函数kyx=的表达式;(2)求点B的坐标及OB所在直线解析式;(3)求OAP的面积.17.如图,反比例函数kyx=与一次函数y x b=-+的图象交于点A(1,3)和点B.(1)求k的值和点B的坐标.(2)结合图象,直接写出当不等式kx bx<-+成立时x的取值范围.(3)若点C是反比例函数kyx=第三象限图象上的一个动点,当CA CB=时,求点C的坐标.18.如图,Rt AOB ∆的直角边OB 在x 轴的正半轴上,反比例函数(0)k y x x=>的图象经过斜边OA的中点D ,与直角边AB 相交于点C . ①若点(4,6)A ,求点C 的坐标: ①若9S OCD ∆=,求k 的值.19.如图,已知一次函数y =kx +b 的图象与反比例函数8y x=-的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是-2.求:(1)一次函数的解析式; (2)△AOB 的面积.20.已知:如图,∆ABC是等腰直角三角形,①B=90°,点B的坐标为(1,2).反比例函数kyx的图象经过点C,一次函数y=ax+b的图象经A,C两点.(1)求反比例函数和一次函数的关系式;(2)直接写出不等式组0<ax+b≤kx的解集.参考答案:1.C 【解析】 【分析】根据题目中的函数解析式和x 的取值范围,可以解答本题. 【详解】解:①反比例函数y =1x(x <0)中,k =1>0,①该函数图象在第三象限, 故选:C . 【点睛】本题考查反比例函数的图象,关键在于熟记反比例函数图象的性质. 2.C 【解析】 【分析】根据反比例函数的性质得出函数的增减性以及所在象限和经过的点的特点分别分析得出即可. 【详解】解:A ,因为133⨯=,所以图象经过点(1)3,,A 选项正确,故不选A ; B ,因为30k =>,图象在第一、三象限,B 选项正确,故不选B ;C ,因为30k =>,图象在第一、三象限,所以0x >时,y 随x 的增大而减小,C 选项错误,故选C ;D ,因为30k =>,图象在第一、三象限,所以0x <时,y 随x 的增大而减小,D 选项正确,故不选D . 故选:C . 【点睛】此题主要考查了反比例函数的性质,根据解析式确定函数的性质是解题的关键. 3.B 【解析】 【分析】根据题意和反比例函数的性质可以解答本题.①反比例函数3y -x=,①该函数图像在第二、四象限,在每个象限y 随x 的增大而增大, ①A(x 1,y 1),B(x 2,y 2)在反比例函数3y -x=的图象上,且x 1<0<x 2,①12y 0y >>, 故选B. 【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答. 4.D 【解析】 【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可. 【详解】解:①反比例函数的图象可知,m >0,故①正确;当反比例函数的图象位于一、三象限时,在每一象限内,y 随x 的增大而减小,故①错误; 将A (-1,h ),B (2,k )代入y =mx得到h=-m ,2k=m , ①m >0,①h <k ,故①正确; 将P (x ,y )代入y =m x 得到m=xy ,将P′(-x ,-y )代入y =mx得到m=xy , 若P (x ,y )在图象上,则P′(-x ,-y )也在图象上 故①正确, 故选:D . 【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,熟练掌握反比例函数的图象和性质是解题的关键. 5.A【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S=12|k|,所以随着x 的逐渐增大,矩形OAPB 的面积将不变. 【详解】解:依题意有矩形OAPB 的面积=2×12|k|=3,所以随着x 的逐渐增大,矩形OAPB 的面积将不变. 故选:A . 【点睛】本题考查了反比例函数 y =kx中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,解题的关键是掌握图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|. 6.B 【解析】 【分析】根据正比例函数和反比例函数的图象逐一判断即可. 【详解】解: 观察图像①可得120,0k k >>,所以120k k >,①符合题意; 观察图像①可得120,0k k <>,所以120k k <,①不符合题意; 观察图像①可得120,0k k ><,所以120k k <,①不符合题意; 观察图像①可得120,0k k <<,所以120k k >,①符合题意; 综上,其中符合120k k ⋅>的是①①, 故答案为:B . 【点睛】本题考查的是正比例函数和反比例函数的图像,当k >0时,正比例函数和反比例函数经过一、三象限,当k <0时,正比例函数和反比例函数经过二、四象限. 7.C【分析】利用反比例函数的性质判断出m 的正负,再根据一次函数的性质即可判断. 【详解】 解:①()110a y a x x-=><,, ①a-1>0, ①()110a y a x x-=><,图象在三象限,且y 随x 的增大而减小, ①图象上有两个点(x 1,y 1),(x 2,y 2),x 1与y 1同负,x 2与y 2同负, ①m=(x 1-x 2)(y 1-y 2)<0,①y=mx-m 的图象经过一,二、四象限,不经过三象限, 故选:C . 【点睛】本题考查反比例函数的性质,一次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.D 【解析】 【分析】设P (a ,0),由直线APB 与y 轴平行,得到A 和B 的横坐标都为a ,将x =a 代入反比例函数y 6x-=和y 3x =中,分别表示出A 和B 的纵坐标,进而由AP +BP 表示出AB ,三角形ABC 的面积12⨯=AB ×P 的横坐标,求出即可.【详解】解:设P (a ,0),a >0,则A 和B 的横坐标都为a ,将x =a 代入反比例函数y 6x =-中得:y 6a=-,故A (a ,6a -);将x=a代入反比例函数y3x=中得:y3a=,故B(a,3a),①AB=AP+BP639a a a+==,则S△ABC12=AB•xP19922aa=⨯⨯=,故选D.【点睛】本题主要考查反比例函数图象k的几何意义,解决本题的关键是要熟练掌握反比例函数k 的几何意义.9.0<y<2【解析】【分析】根据反比例函数的性质可以得到反比例函数y=6x,当x>3时,即可得到y的取值范围.【详解】①y=6x,6>0,①当x>0时,y随x的增大而减小,当x=3时,y=2,①当x>3时,y的取值范围是0<y<2,故答案为0<y<2【点睛】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.10.2【解析】【分析】根据直线y=kx与双曲线y=2x交于A,B两点,可得A、B关于原点对称,从而得到S△BOC=S△AOC,然后根据反比例函数的系数k的几何意义求出的S△BOC面积即可.【详解】①直线y=kx与双曲线y=2x交于A,B两点,①点A与点B关于原点对称,①S△BOC=S△AOC,而S△BOC=12×2=1,①S△ABC=2S△BOC=2.故答案为2.【点睛】反比例函数中比例系数k的几何意义是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.11.y2>y3>y1【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据各点横坐标的特点进行解答即可.【详解】解:①1>0,反比例函数y=1x图象在一、三象限,并且在每一象限内y随x的增大而减小,因为-1<0,①A点在第三象限,①y1<0,①2>1>0,①B、C两点在第一象限,①y2>y3>0,①y2>y3>y1.故答案是:y2>y3>y1.【点睛】本题主要考查的是反比例函数图象上点的坐标特点,解决本题的关键是要熟练掌握反比例函数图象性质.12.a>c>b【解析】【分析】根据题意,分别求出a 、b 、c 的值,然后进行判断,即可得到答案.【详解】解:①点A 、B 、C 都在反比例函数8y x =-的图象上,则 当2x =-时,则842a =-=-; 当1x =时,则881b =-=-; 当4x =时,则824c =-=-; ①a c b >>;故答案为:a c b >>.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.y 1<y 3<y 2.【解析】【分析】先计算出自变量为﹣5、1、2对应的函数值,从而得到y 1,y 2,y 3的大小关系. 【详解】当x =﹣5时,y 1=﹣15(a 2+1); 当x =1时,y 2=a 2+1;当x =2时,y 3=12(a 2+1), 所以y 1<y 3<y 2.故答案为:y 1<y 3<y 2.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.-4【解析】【详解】试题分析:由于点A是反比例函数y=kx上一点,矩形ABOC的面积S=|k|=4,则k的值为-4.考点:反比例函数15.83【解析】【分析】如下图,连接CD,由AE=3EC,①ADE的面积为32,得到①CDE的面积为12,则①ADC 的面积为2,设A点坐标为(a,b),则k=ab,AB=a,OC=2AB=2a,BD=OD=b,利用S梯形OBAC=S△ABD+S△ADC+S△ODC即可得出ab的值进而得出结论.【详解】如下图,连CD①AE=3EC,①ADE的面积为32,①①CDE的面积为12,①①ADC的面积为2,设A点坐标为(a,b),则AB=a,OC=2AB=2a,①点D为OB的中点,①BD=OD=12b,①S梯形OBAC=S△ABD+S△ADC+S△ODC,①12(a+2a)×b=12a×12b+2+12×2a×12b,①ab=83,把A(a,b)代入双曲线y=kx得,k =ab =83. 故答案为:83. 【点睛】本题考查利用几何图形的面积求解反比例函数的解析式,解题关键是将几何图形的面积和点的坐标结合起来,然后利用待定系数法求得解析式.16.(1)12y x =(2)(9,3);13y x = (3)5 【解析】【分析】(1)直接代入A 点坐标课的k 的值,进而可得函数解析式;(2)过点A 作AC①x 轴于点C ,利用勾股定理计算出AO 的长,进而可得AB 长,然后可得B 点坐标.设OB 所在直线解析式为y=mx (m≠0)利用待定系数法可求出BO 的解析式;(3)首先联立两个函数解析式,求出P 点坐标,过点P 作PD①x 轴,延长DP 交AB 于点E ,连接AP ,再确定E 点坐标,最后求面积即可.【详解】解:()1将点()A 4,3代入()k y k 0x=≠, 得:12k =,则反比例函数解析式为:12y x =; () 2如图,过点A 作AC x ⊥轴于点C ,则OC 4=、AC 3=,22OA 435∴=+=,AB//x 轴,且AB OA 5==,∴点B的坐标为()9,3;设OB所在直线解析式为()y mx m0=≠,将点()B9,3代入得13=m,OB∴所在直线解析式为1y x3=;()3联立解析式:1y x312yx⎧=⎪⎪⎨⎪=⎪⎩,解得:x6,y2=⎧⎨=⎩可得点P坐标为()6,2,过点P作PD x⊥轴,延长DP交AB于点E,连接AP,则点E坐标为()6,3,AE2∴=,PE1=,PD2=,则OAP的面积()11126362215222=⨯+⨯-⨯⨯-⨯⨯=.【点睛】此题主要考查了待定系数法求反比例函数和正比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.17.(1)3k=,B(3,1);(2)1x3<<或x0<;(3)C(33--,)【解析】【分析】(1)分别把()1,3A代入一次函数与反比例函数,可得,k b的值,联立两个解析式,解方程组可得B的坐标;(2)由k x<x b -+,则反比例函数值小于一次函数值,所以反比例函数的图像在一次函数的图像的下方,从而可得答案;(3)由,CA CB = 则C 在AB 的垂直平分线上,利用直线AB 与坐标轴构成的三角形是等腰直角三角形,证明AB 的垂直平分线经过原点,再求解垂直平分线的解析式,联立两个解析式解方程组即可得到答案.【详解】解:(1)把()1,3A 代入y x b =-+,13,b ∴-+=4,b ∴=所以:一次函数为:4,y x =-+把()1,3A 代入k y x=, 133,k ∴=⨯= 3,y x∴= 3,4y x y x ⎧=⎪∴⎨⎪=-+⎩ 34,x x∴=-+ 2430,x x ∴-+=121,3,x x ∴== 把11x =代入4,y x =-+13,y ∴=把23x =代入4,y x =-+21,y ∴=121213,,31x x y y ==⎧⎧∴⎨⎨==⎩⎩ 经检验:方程的解符合题意,()3,1.B ∴(2)由kx<x b-+,则反比例函数值小于一次函数值,所以反比例函数的图像在一次函数的图像的下方,结合图像可得:1x3<<或0x<.(3),CA CB=C∴在AB的垂直平分线上,记AB的中点为D,()()1,3,3,1,A B∴()2,2,D∴记AB与,x y轴的交点分别为,F EAB为4,y x=-+()()4,0,0,4,F E∴4,OE OF∴==OD∴为AB的垂直平分线,设OD为,y mx=把()2,2D代入:22,m=1,m∴=AB∴的垂直平分线为:,y x=,3y xyx=⎧⎪∴⎨=⎪⎩解得:121233,,33x x y y ⎧⎧==-⎪⎪⎨⎨==-⎪⎪⎩⎩ 经检验:方程的解符合题意,C 在第三象限,()3,3.C ∴--【点睛】本题考查的是利用待定系数法求解一次函数与反比例函数中的字母参数,同时考查利用图像判断一次函数值与反比例函数值的大小,还考查线段的垂直平分线的性质,函数的交点坐标问题,一元二次方程的解法,掌握以上知识是解题的关键.18.①(4,32);①k=12 【解析】【分析】①根据点D 是OA 的中点即可求出D 点坐标,再将D 的坐标代入解析式求出解析式,从而得到C 的坐标;①连接OC, 设A(a,b),先用代数式表示出三角形OAB,OBC,OCD 的面积,再根据条件列出方程求k 的值即可.【详解】解:①①D 是OA 的中点,点A 的坐标为(4,6),①D (42,62),即(2,3) ①k=2×3=6①解析式为6y x= ①A 的坐标为(4,6),AB①x 轴①把x=4代入6y x=得y=32 ①C 的坐标为(4,32) ①连接OC,设A(a,b),则D(2a , 2b ) 可得k=4ab ,ab=4k ①解析式为4ab y x= ①B(a,0),C(a, 4b ) ①11222OAB SOB AB ab k === 1122OBC S OB BC k =•= 11()22OCD OAC OAB OBC S S S S ∴==- ①11(2)922k k -= 解得:k=12【点睛】本题考查了一次函数的性质,要正确理解参数k 的几何意义,能用代数式表达三角形OCD 的面积是解题的关键.19.(1)y =-x +2;(2)6【解析】【分析】(1)把点A 的横坐标代入8y x=-,可得4y =,即可求出A 点的坐标,把B 点的纵坐标代入8y x=-,可得4x =,即可求出B 点的坐标,把A B 、两点的坐标代入一次函数的解析式即可求解;(2)首先求出直线AB 与x 轴的交点坐标M ,然后根据AOB AOM BOM S S S ∆∆∆=+进行求解即可;【详解】解:(1)把2A x =-代入8y x=-中,得4A y = ① 点()2,4A -把2B y =-代入8y x=-中,得4B x = ① 点()4,2B -把AB 、两点的坐标代入y kx b =+中,得 42,24.k b k b ⎧⎨-⎩=-+=+ 解得1,2.k b ⎧⎨⎩=-= ① 所求一次函数的解析式为2y x =-+(2)当0y =时,2x =, ①2y x =-+与x 轴的交点为()2,0M ,即2OM =①AOB AOM BOM S S S ∆∆∆=+ B A y OM y OM ⋅⋅⋅⋅2121+=11242222⨯⨯⨯⨯=+=6【点睛】本题主要考查反比例函数与一次函数的综合,熟练掌握一次函数的解析式求法以及图中的面积求法是求解本题的关键.20.(1)反比例函数关系式为y =6x,一次函数函数关系式为y =x-1;(2)1<x ≤3 【解析】【分析】①根据等腰三角形的性质求出A,C 点的坐标,即可求出反比例和一次函数关系式 ①观察图像即可找出x 的解集【详解】解:(1)①∆ABC 是等腰直角三角形且点B 的坐标为(1,2)①AB =BC =2①点C 的坐标为(3,2),点A 的坐标为(1,0)把点C 的坐标代入y =k x,解得k =6 ①反比例函数关系式为y =6x 把点C(3,2),点A(1,0)代入一次函数y=ax+b320a b a b +=⎧⎨+=⎩解得11a b =⎧⎨=-⎩①一次函数函数关系式为y =x-1(2)由函数图像及A ,C 两点坐标可得不等式组的解集为:1<x ≤3【点睛】本题解题的关键是根据等腰直角三角形的性质求出A,C 点的坐标,写x 的范围时可以先用笔画出符合要求的线段不易出错。
反比例函数教案(优秀7篇)反比例函数教案篇一一、背景分析1.对教材的分析本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。
本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
本节课前一课时是在具体情境中领会反比例函数的意义和概念。
函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。
同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。
传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。
本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。
因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。
在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。
这也充分体现了重视获取知识过程体验的新课标的精神。
(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3)难点:探索并掌握反比例函数的主要性质。
2、对学情的分析九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。