六年级数学行程问题之相遇和追击
- 格式:doc
- 大小:31.00 KB
- 文档页数:4
相遇与追及问题(三)【例题1】甲乙两车分别从A、B两地同时相向开出,4小时后两车相遇,然后各自继续行驶3小时,此时甲车距B地10千米,乙车距A地80千米.问:甲车到达B地时,乙车还要经过多少时间才能到达A 地?【解析】由4时两车相遇知,4时两车共行A,B间的一个单程.相遇后又行3时,剩下的路程之和10+80=90(千米)应是两车共行4-3=1(时)的路程.所以A,B两地的距离是(10+80)÷(4-3)×4=360(千米)。
因为7时甲车比乙车共多行80-10=70(千米),所以甲车每时比乙车多行 70÷7=10(千米),又因为两车每时共行90千米,所以每时甲车行 50千米,乙车行40千米.行一个单程,乙车比甲车多用360÷40-360÷50=9-7.2=1.8(时)=1时48分.【巩固1】甲、乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B地,A、B两地相距多少米?【解析】相遇时甲走了AB距离减去60×3=180(米),乙走了AB距离加上180米,乙比甲多走了360米,这个路程差需要360÷(90-60)=12(分钟)才能达到,这12分钟两人一共行走了12×(90+60) =1800米.所以AB距离为1800÷2=900(米).【例题2】小红和小强同时从家里出发相向而行。
小红每分钟走52米,小强每分钟走70米,二人在途中的A处相遇。
若小红提前4分钟出发,但速度不变,小强每分钟走90米,则两人仍在A处相遇。
小红和小强的家相距多远?【解析】因为小红的速度不变,相遇地点不变,所以小红两次走的时间相同,推知小强第二次比第一次少走4分。
由(70×4)÷(90-70)=14(分),推知小强第二次走了14分,第一次走了18分,两人的家相距(52+70)×18=2196(米).【巩固2】小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行60米,李大爷每分钟行40米,他们每天都在同一时刻相遇.有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平时提前多少分钟出门?因为提前9分钟相遇,说明李大爷出门时,小明已经比平时多走了两人9分钟合走的路,即多走了(60+40)×9=900(米),所以小明比平时早出门900÷60=15(分).【例题3】小红和小蓝练习跑步,若小红让小蓝先跑20米,则小红跑5秒钟就可追上小蓝;若小红让小蓝先跑4秒钟,则小红跑6秒钟就能追上小蓝.小红、小蓝二人的速度各是多少?【解析】小红让小蓝先跑20米,则20米就是小红、小蓝二人的路程差,小红跑5秒钟追上小蓝,5秒就是追及时间,据此可求出他们的速度差为20÷5=4(米/秒);若小红让小蓝先跑4秒,则小红6秒可追上小蓝,在这个过程中,追及时间为6秒,根据上一个条件,由追及差和追及时间可求出在这个过程中的路程差,这个路程差即是小蓝4秒钟所行的路程,路程差就等于4×6=24(米),也即小蓝在4秒内跑了24米,所以可求出小蓝的速度,也可求出小红的速度.综合列式计算如下:小蓝的速度为:20÷5×6÷4=6(米/秒),小红的速度为:6+4=10(米/秒)【巩固3】甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙.问:甲、乙二人的速度各是多少?【解析】若甲让乙先跑10米,则10米就是甲、乙二人的路程差,5秒就是追及时间,据此可求出他们的速度差为10÷5=2(米/秒);若甲让乙先跑2秒,则甲跑4秒可追上乙,在这个过程中,追及时间为4秒,因此路程差就等于2×4=8(米),也即乙在2秒内跑了8米,所以可求出乙的速度,也可求出甲的速度.综合列式计算如下:乙的速度为:10÷5×4÷2=4(米/秒),甲的速度为:10÷5+4=6(米/秒)【例题4】刘老师骑电动车从学校到韩丁家家访,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进?【解析】这道题没有出发时间,没有学校到韩丁家的距离,也就是说既没有时间又没有路程,似乎无法求速度.这就需要通过已知条件,求出时间和路程.假设有A,B两人同时从学校出发到韩丁家,A每小时行10千米,下午1点到;B每小时行15千米,上午11点到.B到韩丁家时,A距韩丁家还有10×2=20(千米),这20千米是B从学校到韩丁家这段时间B比A多行的路程.因为B比A每小时多行15-10=5(千米),所以B从学校到韩丁家所用的时间是20÷(15-10)=4(时).由此知,A,B是上午7点出发的,学校离韩丁家的距离是15×4=60(千米).刘老师要想中午12点到,即想(12-7=)5时行60千米,刘老师骑车的速度应为60÷(12-7)=12(千米/时).【巩固4】王新从教室去图书馆还书,如果每分钟走70米,能在图书馆闭馆前2分钟到达,如果每分钟走50米,就要超过闭馆时间2分钟,求教室到图书馆的路程有多远?【解析】设从教室去图书馆闭馆时所用时间是x分钟70(x-2)=50(x+2)X=1270×(12-2)=700(米)答:教室到图书馆的路程有700米.【例题5】甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。
小升初应用题追及相遇问题学府教育六年级数学:追击相遇问题概念理解:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式为:路程=速度×时间;路程÷时间=速度;路程÷速度=时间。
关键问题是确定行程过程中的位置,时间相等。
相遇问题的公式为:速度×相遇时间=相遇路程,还有其他公式。
追击问题的公式为:追击时间=路程差÷速度差,还有其他公式。
例题讲解:例1:一列快车和一列慢车同时从甲乙两地相向而行,慢车每小时行50千米,快车比慢车快20%,经过2.5小时,两车相遇。
求甲乙两地相距多少千米?例2:A、B两地相距540千米,一列客车与一列货车分别从A、B两地相向而行,客车每小时行120千米,货车每小时行90千米,已知客车出发1小时后,货车才出发,求货车出发几小时后,两车相遇?练1:甲、乙两地相距102千米,XXX、XXX二人骑自行车分别从两城同时相向出发,XXX每小时行15千米,XXX 每小时行14千米,XXX在中途修车耽误1小时,然后继续前进,他们经过多少小时相遇?练2:XXX和XXX分别从A、B两地同时出发,如果两人同向而行,XXX25分钟赶上小王;如果两人相向而行,10分钟可相遇,又已知小王每分钟行30米,求A、B两地的距离。
练3:XXX和XXX分别从A、B两地同时出发,如果两人同向而行,XXX25分钟赶上小王;如果两人相向而行,10分钟可相遇,又已知XXX每分钟行50米,求A、B两地的距离。
多次往返问题:第一次相遇一个全程,第二次相遇两个全程。
例3:XXX和XXX位于AB两地同时出发往返于AB两地之间,XXX的速度是20米/分钟,大强的速度是30米/分钟,AB间的距离是100米,问第四次相遇点距离B点的距离?例4:快、慢两车同时从甲、已两地相向而行,快车每小时行45千米,慢车每小时行40千米。
两车不断往返于甲、乙两地,当两车第三次相遇后,快车又行了360千米与慢车相遇。
行程问题之相遇和追击学习目标:1、知道相遇问题中总路程、相遇时间、甲乙的速度之和三者之间的关系,能灵活选用适当的关系式解决实际问题。
2、知道追击问题中路程差、追击时间、甲乙的速度之差三者之间的关系,能灵活选用适当的关系式解决实际问题。
一、自学指导:行程问题总是要涉及到三个数量:()、()、()。
这三个数量之间的关系,可以用下面的公式来表示:()。
只要知道其中两个数量,就马上可以求出第三个数量。
(一)、相遇问题:甲、乙两个运动物体分别从A 、B 两地同时相向运动或在环形跑道上同时作背向运动,形跑道上同时作背向运动,随着时间的发展,随着时间的发展,随着时间的发展,必然面对面地相遇,必然面对面地相遇,必然面对面地相遇,这类问题叫做这类问题叫做相遇问题。
它的特点:相遇问题。
它的特点:11、是两个运动物体共同走完总路程。
、是两个运动物体共同走完总路程。
22、它们同时出发到相遇用的时间相等。
所以:总路程所以:总路程==(甲速(甲速++乙速)×相遇时间相遇时间相遇时间==总路程÷(甲速总路程÷(甲速++乙速)甲速甲速++乙速乙速==总路程÷相遇时间练习一:1、两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。
甲乙两地相距多少千米?2、两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。
两车相遇时,第一列火车比第二列火车多行了20千米。
求甲、乙两地间的距离。
3、在一次战役中,敌我双方原来相距62.75千米。
据侦察员报告,敌人已向我处前进了11千米。
我军随即出发迎击,每小时前进6.5千米,敌人每小时前进5千米。
我军出发几小时后与敌人相遇?千米。
我军出发几小时后与敌人相遇?4、A 、B 两个城市相距380千米。
客车和货车从两个城市同时相对开出,经过4小时相遇。
货车比客车每小时快5千米。
六年级行程问题专讲第一部分:相遇问题知识概述:行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个以上物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题。
数量关系:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度注:(1)在处理相遇问题时,一定要注意公式的使用时二者开始运动那一刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。
解题秘诀:(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。
典型例题:例1.东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。
已知甲每小时的速度比乙快10千米,二人每小时的速度各是多少千米?习题:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,相向而行,汽车每小时行50千米,摩托车每小时行40千米,8小时两车相距多少千米?例2.甲港和乙港相距662千米,上午9点一艘“名士”号快艇从甲港开往乙港,中午12点另一艘“日立”号快艇从乙港开往甲港,到16点两艇相遇,“名士”号每小时行54千米,“日立”号的速度比“名士”号快多少千米?习题:甲乙两地的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地。
货车以平均每小时50千米的速度从乙地开往甲地。
要使两车在全程的中点相遇,货车必须在上午几点出发?例3.甲骑摩托车,乙骑自行车,同时从相距126千米的A 、B 两城出发相向而行。
3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。
行程问题一、基本知识点1、常见题型:一般行程问题,相遇问题,追及问题,流水问题,火车过桥问题。
2、行程问题特点:已知速度、时间、和路程中的两个量,求第三个量。
3、基本数量关系:速度x 时间=路程路程速度和x 时间(相遇时间)=路程和(相遇路程)路程和(相遇路程)速度差x 时间(追及时间)=路程差(追击路程)路程差(追击路程)二、学法提示二、学法提示1.火车过桥:火车过桥路程=桥长+车长车长过桥时间=路程÷车速路程÷车速过桥过程可以通过动手演示来帮助理解。
2.水流问题:水流问题: 顺水速度=静水速度+水流速度水流速度逆水速度=静水速度-水流速度水流速度顺水速度-逆水速度=2x 水流速度水流速度3.3.追及问题:追击路程÷速度差追及问题:追击路程÷速度差=追及时间追及时间追击距离÷追及时间=速度差速度差4.相遇问题:相遇问题: 相遇路程÷相遇时间=速度和速度和相遇路程÷速度和=相遇时间相遇时间三、解决行程问题的关键三、解决行程问题的关键画线段图,画线段图,标出已知和未知。
标出已知和未知。
标出已知和未知。
能够从线段图中分析出数量关系,能够从线段图中分析出数量关系,能够从线段图中分析出数量关系,找到解决问找到解决问题的突破口。
题的突破口。
四、练习题四、练习题(一)火车过桥(一)火车过桥1.一列火车长150米,每秒行20米,全车要通过一座长450米的大桥,需要多长时间?长时间?2.一列客车通过860米的大桥要45秒,用同样的速度穿过620米的隧道要35秒,求客车行驶的速度和车身的长度。
求客车行驶的速度和车身的长度。
3.一列车长140米的火车,以每秒10米的速度通过一座大桥,共用30秒,求大桥的长度。
桥的长度。
4.一人在铁路便道上行走,一列客车从身后开来,在她身旁通过的时间为7秒,已知客车长105米。
每小时行72千米,这个人每秒行多少米?千米,这个人每秒行多少米?5.在有上下行的轨道上,两列火车相对开出,甲车长235米,每秒行25米,乙车长215米,每秒行20米,求两车从车头相遇到车尾离开要多长时间。
相遇、追及问题一、相遇问题甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=t S V 和和 二、追及问题有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=t S V 差差一、 在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。
相遇问题:总路程=速度和×相遇时间相遇时间=总路程÷速度和相遇时间=路程差÷速度差速度和=总路程÷相遇时间追及问题:追及路程=速度差×追及时间追及时间=追及路程÷速度差速度差=追及路程÷追及时间一、相遇问题——基础题1、两列火车从两个车站同时出发相对开出,甲车每小时行44千米,乙车每小时行52千米,经过2.5小时两车相遇。
两个车站之间的铁路长多少千米?2、两列火车从两个车站同时相对开出。
甲车每小时行44千米,乙车每小时行52千米,经过2.5小时后两车还相距85千米。
小学数学《行程问题之相遇与追击》练习题(含答案)内容概括我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.在对小学数学的学习中,我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t )、速度(v )和路程(s )这三个基本量,它们之间的关系如下:(1)速度×时间=路程 可简记为:s = vt(2)路程÷速度=时间 可简记为:t = s ÷v(3)路程÷时间=速度 可简记为:v = s ÷t显然,知道其中的两个量就可以求出第三个量.涉及到两个或两个以上物体运动的问题,其中最常见的是相遇问题和追及问题.相遇问题:速度和×相遇时间=路程和 t v S 和和=追及问题:速度差×追及时间=路程差 t v S 差差=对于上面的公式大家已经不陌生了,在下面的学习中我们将和小朋友们一起复习回顾以前的相关知识,而后拓展提高!相遇问题【例1】 两地相距400千米,两辆汽车同时从两地相对开出,甲车每小时行40千米,乙车每小时比甲车多行5千米,4小时后两车相遇了吗?【例2】 大头儿子的家距离学校3000米,小头爸爸从家去学校,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?【例3】 甲乙两车同时从A 、B 两地出发相向而行,6小时相遇.相遇后甲车继续行驶4小时到达B 地.乙车每小时行30千米,A 、B 两地相距多少千米?【例4】南辕与北辙两位先生对于自己的目的地S城的方向各执一词,于是两人都按照自己的想法驾车同时分别往南和往北驶去,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发5小时他们相距多少千米?【例5】夏夏和冬冬同时从两地相向而行,夏夏每分钟行50米,冬冬每分钟行60米,两人在距两地中点50米处相遇,求两地的距离是多少米?【例6】甲、乙两列火车同时从东西两镇之间的A地出发向东西两镇反向而行,它们分别到达东西两镇后,再以同样的速度返回,已知甲每小时行60千米,乙每小时行70千米,相遇时甲比乙少行120千米,东西两镇之间的路程是多少千米?【例7】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离.追击问题【例8】龟兔赛跑同时出发,全程7000米,乌龟以每分30米的速度爬行,兔子每分钟跑330米.兔子跑了10分钟就停下来睡了200分钟,醒来后立即以原速往前跑.当兔子追上乌龟时,离终点的距离是多少千米?【例9】小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明的文具盒忘在家中,爸爸带着文具盒,立即骑自行车以每分钟280米的速度去追小明.问爸爸出发几分钟后追上小明?【例10】小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第一次超过正南需要多少分钟?第三次超过正南需要多少分钟?【例11】两名运动员在湖的周围环形道上练习长跑。
六年级数学行程问题四种类型专讲六年级行程问题专讲第一部分:相遇问题知识概述:行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个以上物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题。
数量关系:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度注:(1)在处理相遇问题时,一定要注意公式的使用时二者开始运动那一刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。
解题秘诀:(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(2)要充分运用图示、列表等办法,精确反映出数量之间的关系,匡助我们理解题意,疾速的找到解题思路。
典型例题:例1.东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。
已知甲每小时的速度比乙快10千米,二人每小时的速度各是多少千米?题:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,相向而行,汽车每小时行50千米,摩托车每小时行40千米,8小时两车相距多少千米?例2.甲港和乙港相距662千米,上午9点一艘“名士”号快艇从甲港开往乙港,中午12点另一艘“XXX”号快艇从乙港开往甲港,到16点两艇相遇,“名士”号每小时行54千米,“日立”号的速度比“名士”号快多少千米?题:甲乙两地的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地。
货车以平均每小时50千米的速度从乙地开往甲地。
要使两车在全程的中点相遇,货车必须在上午几点出发?例3.甲骑摩托车,乙骑自行车,同时从相距126千米的A、B两城出发相向而行。
3小时后,在离两城中点处24千米的中央,甲、乙二人相遇。
标准中级奥数教程相遇和追击问题【知识要点与基本方法】行程问题:研究运动物体速度、时间与路程(距离)之间关系的问题,我们都可以称为行程问题。
行程问题中最重要的三个量就是速度(v)、时间(t)、路程(s),它们之间的关系就是行程问题解题的依据。
路程=速度×时间;速度=路程÷时间;时间=路程÷速度 (1)相遇和追击问题都是行程问题,就是研究两个或者以上运动物体速度、时间和路程之间关系,在行程问题中,运动物体数量越多,也就难度越大,所以我们先可以从两个甚至三个运动物体的相遇和追击开始研究,然后再探索多个运动物体的相遇和追击。
相遇问题中速度、时间和路程之间的关系:路程和=速度和×时间;速度和=路程和÷时间;时间=路程和÷速度和 (2)追击问题中速度、时间和路程之间的关系:路程差=速度差×时间;速度差=路程差÷时间;时间=路程差÷速度差 (3)在相遇和追击问题中,有一点很重要:如果两人同时出发,那么他们所用的时间是相等的,如果不是同时出发,也可以找到相同的时间点。
在相遇与追击问题里我们可以分两大类:直线相遇(追击)问题、环线相遇(追击)问题。
不管哪一类问题,在解题的时候我们都可以借助线段图来帮助直观分析和理解题意。
【例题精讲】例1.甲、乙两人从A、B两地步行相向而行,甲每小时走3千米,乙每小时走2千米。
相遇时距离中点有3千米。
问A、B两地相距多远?分析:甲每小时比乙多走1千米,相遇时甲走的路程比乙多6千米,也就是甲、乙都走了6小时,可以求出甲了18千米,乙走了12千米,所以路程是30千米。
课堂练习题:甲、乙两车同时从A、B两地相向而行,在距A地60千米处相遇。
它们各自到达对方车站后立即返回,途中又在距A 地40千米处相遇。
求A、B两地相距多少千米例2.甲、乙两人从A、B两地骑车相向而行,2小时后相遇。
相遇后,乙继续向A地前进,而甲返回。
(完整版)相遇问题与追及问题相遇与追及问题一、学习目标1. 理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个基本量之间的关系.会利用这个关系来解决一些简单的行程问题.2. 体会数形结合的数学思想方法.二、主要内容1. 行程问题的基本数量关系式:路程=时间×速度;速度=路程÷时间;时间=路程÷速度.2.相遇问题的数量关系式:相遇路程=相遇时间×速度和;速度和=相遇路程÷相遇时间;相遇时间=相遇路程÷速度和.3.追及问题的数量关系式:追及距离=追及时间×速度差;速度差=追及距离÷追及时间;追及时间=追及距离÷速度差.4. 能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的行程问题.三、例题选讲例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车.例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米?例4甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地相距多少千米?例6一辆卡车和一辆摩托车同时从A、B两地相对开出,两车在途中距A地60千米处第一次相遇.然后,两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在途中距B地30千米处第二次相遇.求A、B两地相距多少千米?例7甲、乙、丙三人进行100米赛跑.当甲到达终点时,乙离终点还有20米,丙离终点还有40米.如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多远?例8小明步行上学,每分行75米,小明离家12分后,爸爸骑单车去追,每分行375米.问爸爸出发多少分后能追上小明?例9解放军某部快艇追击敌舰,追到A岛时,敌舰已逃离该岛15分钟,已测出敌舰每分钟行驶1000米,解放军快艇每分钟行驶1360米,在距离敌舰600米处可开炮射击.问解放军快艇从A岛出发经过多少分钟就可以开炮射击敌舰?例10甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行,乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需要多少分钟?例11两名运动员在湖周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时从两地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?例12甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米,如果她们同时分别从直路两端点出发,跑了6分,那么,这段时间内,两人共迎面相遇了多少次?巩固练习:1、甲、乙两站相距980千米,两列火车由两站相对开出,快车每小时行50千米,慢车每小时行多少千米,两车经10小时能相遇?2、甲车每小时行60千米,1小时后,乙车紧紧追赶,速度为每小时80千米,几小时后乙车可追上甲车?3、早晨6时,有一列货车和一列客车同时从相距360千米的甲、乙两城相对开出,中途相遇,这期间,货车停车一次60分钟,客车停车两次各30分钟,已知货车每小时行42千米,客车每小时行78千米,问两车在几点钟相遇?4、东、西两镇相距240千米,一辆客车从上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12点,两车恰好在两镇间的中点相遇,如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?5、骑单车从甲地到乙地,以每小时10千米的速度行进,下午1点到,以每小时15千米的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进呢?6、某人由甲地去乙地,如果他从甲地先骑摩托车行了12小时,再换骑自行车行9小时,恰好到达乙地.如果他从甲地先骑自行车行了21小时,再换骑摩托车行8小时,也恰好到达乙地.问:全程骑摩托车需要多少小时才能到达乙地?7、兄妹两人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门口时,发现忘了带课本,立即沿原路返回去取,行至离校门口180米处与妹妹相遇,他们家离学校多少米?8、兄妹两人在周长300米的圆形水池边玩.从同一地点同时背向饶水池而行.哥哥每分钟走13米,妹妹每分钟走12米.他们第5次相遇时,哥哥共走了多长的路?课后作业:1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙多少小时可追上甲?2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有多少米?3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用多少分钟可赶上父亲?4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们。
行程问题之相遇和追击
学习目标:
1、知道相遇问题中总路程、相遇时间、甲乙的速度之和三者之间的关系,能灵活选用适当的关系式解决实际问题。
2、知道追击问题中路程差、追击时间、甲乙的速度之差三者之间的关系,能灵活选用适当的关系式解决实际问题。
一、自学指导:
行程问题总是要涉及到三个数量:()、()、()。
这三个数量之间的关系,可以用下面的公式来表示:()。
只要知道其中两个数量,就马上可以求出第三个数量。
(一)、相遇问题:甲、乙两个运动物体分别从A、B两地同时相向运动或在环形跑道上同时作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
它的特点:1、是两个运动物体共同走完总路程。
2、它们同时出发到相遇用的时间相等。
所以:总路程=(甲速+乙速)×相遇时间
相遇时间=总路程÷(甲速+乙速)
甲速+乙速=总路程÷相遇时间
练习一:1、两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。
甲乙两地相距多少千米?
2、两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。
两车相遇时,第一列火车比第二列火车多行了20千米。
求甲、乙两地间的距离。
3、在一次战役中,敌我双方原来相距62.75千米。
据侦察员报告,敌人已向我处前进了11千米。
我军随即出发迎击,每小时前进6.5千米,敌人每小时前进5千米。
我军出发几小时后与敌人相遇?
4、A、B两个城市相距380千米。
客车和货车从两个城市同时相对开出,经过4小时相遇。
货车比客车每小时快5千米。
这两列车每小时各行多少千米?
5、一辆货车一辆客车从a地驶往b地速度比是3:4 两车在离中点18千米的地方相遇,a地到b地的距离是多少千米
6、客车与货车速度比是3:2,两车分别从AB两站同时相对开出,两车距中点30千米出相遇,求AB距离
7、客车和货车同时从A地、B地相对开出,客车每小时行60千米,货车每小时行全程的1/10,当货车行到全程的13/24时,客车已经行了全程的5/8,。
A、B 两地间的路程是多少千米?
(二)、追击问题:有甲、乙两个远动物体同时从A、B两地同向远动,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”。
它的特点是:1、是两个运动物体的路程差就是AB之间的距离。
2、它们同时出发到追上所用的时间相等。
路程差=(快速-慢速)×追及时间
追及时间 = 路程差÷(快速-慢速)
快速-慢速= 路程差÷追及时间
练习二、1.一列快车长170米,每秒行23米,一列慢车长130米,每秒行18米。
快车从后面追上慢车到超过慢车,共需多少秒?
2、在解放战争的一次战役中,我军侦察到敌军在我军南面6千米的某地,正以每小时5.5千米的速度向南逃窜,我军立即以每小时8.5千米的速度追击敌人。
在追上敌人后,只用半小时就全歼敌军。
从开始追击到全歼敌军,共用了多长时间?
3、一排解放军从驻地出发去执行任务,每小时行5千米。
离开驻地3千米时,排长命令通讯员骑自行车回驻地取地图。
通讯员以每小时10千米的速度回到驻地,取了地图立即返回。
通讯员从驻地出发,几小时可以追上队伍?
4、一辆客车与一辆货车的速度比是5:4,货车先从甲地开往乙地,当距离甲地1 6.8千米时,客车从乙地出发开往甲地,两车相遇时货车行了全程的一半,求甲乙两地相距多少千米?
二、挑战数学竞赛
1、甲乙两辆汽车同时从东站开往西站。
甲车每小时比乙车多行12千米。
甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31.5千米的地方和乙车相遇,甲车每小时行多少千米?(列综合算式或分步列式)第二届《小数报》数学竞赛初赛应用题第6题
答案:42(千米)。