1渗流理论基础
- 格式:ppt
- 大小:1.78 MB
- 文档页数:2
《地下水动力学》习题集第一章渗流理论基础一、解释术语1. 渗透速度2. 实际速度3. 水力坡度4. 贮水系数5. 贮水率6. 渗透系数7. 渗透率8. 尺度效应9. 导水系数二、填空题1.地下水动力学是研究地下水在孔隙岩石、裂隙岩石和岩溶岩石中运动规律的科学。
通常把具有连通性的孔隙岩石称为多孔介质,而其中的岩石颗粒称为骨架。
多孔介质的特点是多相性、孔隙性、连通性和压缩性。
2.地下水在多孔介质中存在的主要形式有吸着水、薄膜水、毛管水和重力水,而地下水动力学主要研究 重力水的运动规律。
3.在多孔介质中,不连通的或一端封闭的孔隙对地下水运动来说是无效的,但对贮水来说却是 有效的。
4. 地下水过水断面包括_空隙_和_固体颗粒_所占据的面积.渗透流速是_过水断面_上的平均速度,而实际速度是_空隙面积上的平均速度。
在渗流中,水头一般是指 测压管水头 ,不同数值的等水头面(线)永远 不会相交。
5. 在渗流场中,把大小等于_水头梯度值_,方向沿着_等水头面_的法线,并指向水头_降低_方向的矢量,称为水力坡度。
水力坡度在空间直角坐标系中的三个分量分别为H x ∂-∂、H y ∂-∂_和Hz ∂-∂。
6. 渗流运动要素包括_流量、_渗流速度、_压强和_水头等等。
7. 根据地下水渗透速度_矢量方向_与_空间坐标轴的关系,将地下水运动分为一维、二维和三维运动。
8. 达西定律反映了渗流场中的_能量守恒与转换_定律。
9. 渗透率只取决于多孔介质的性质,而与液体的性质无关,渗透率的单位为2或。
10. 渗透率是表征岩石渗透性能的参数,而渗透系数是表征岩层透水能力的参数,影响渗透系数大小的主要是岩层颗粒大小以及水的物理性质,随着地下水温度的升高,渗透系数增大。
11. 导水系数是描述含水层出水能力的参数,它是定义在平面一、二维流中的水文地质参数。
12. 均质与非均质岩层是根据_岩石透水性与空间坐标_的关系划分的,各向同性和各向异性岩层是根据岩石透水性与水流方向关系划分的。
高等学校教材地质出版社第一章渗流理论基础习题1-1一、填空题:1.地下水动力学是研究地下水_________、_________和_________中运动规律的科学,通常把____________称为多孔介质,而其中的岩石颗粒称为_________;多孔介质的特点是________、________、________和________。
2.地下水在多孔介质中存在的主要形式有_________、_________、_________和_________,而地下水动力学主要研究的_________的运动规律。
3.在多孔介质中,不连续的或一端封闭的孔隙对地下水运动来说是_________,但对贮存水来说却是________。
4.假想水流的_________、_________、_________以及_________都与真实水流相同,假想水流充满_________。
5.地下水过水断面包括_________和_________所占据的面积;渗透速度是_________上的平均速度,而实际流速是_________的平均速度。
6.在渗流中,水头一般是指_________,不同数值的等水头面(线)永远_________。
7.在渗流场中,把大小等于_________方向沿着_________的法线,并指向水头_________方向的矢量,称为水力坡度;水力坡度在空间直角坐标系中的三个分量分别为_________、_________和_________。
8.渗流运动要素包括_________、_________、_________和_________等等。
9.根据地下水速度_________与_________的关系,将地下水运动分为一维、二维和三维运动。
二、判断题:10.地下水在多孔介质中运动,因此可以说多孔介质就是含水层。
()11.地下水运动时的有效孔隙度等于排水(贮水)时的有效孔隙度。
()12.对含水层来说其压缩性主要表现在空隙和水的压缩上。
第⼀章渗流的基本概念和基本规律第⼀章渗流的基本概念和基本规律内容概要:油⽓渗流是在地下油层中进⾏的,因此学习渗流⼒学⾸先需了解油⽓储集层和多孔介质的概念;流体在地下渗流需要⾥的作⽤,故还要了解流体受到哪些⼒的作⽤、地层中有哪些能量;然后学习渗流的基本规律-达西定律;流体渗流不总是遵循达西定律,就有了⾮达西渗流或称⾮线性渗流;对于地层中有多相流体同时参与流动的情况就是两相或多相渗流了,在本章也做⼀简单介绍。
渗流的基本规律和渗流⽅式内容概要:地层流体渗流规律复杂,但⼀般情况下符合渗流的基本规律,即达西定律;渗流的⽅式也是多种多样的,我们可以对各种渗流⽅式进⾏归类、化简,变成三种基本的渗流⽅式,复杂渗流再由这三种⽅式进⾏组合。
本节应牢固掌握达西定律,真实流速与渗流速度的概念及其关系,掌握三种基本渗流的⽅式。
课程讲解:讲解ppt教材⾃学:第三节渗流的基本规律和渗流⽅式本节导学地层流体渗流规律复杂,但⼀般情况下符合渗流的基本规律,即达西定律;渗流的⽅式也是多种多样的,我们可以对各种渗流⽅式进⾏归类、化简,变成三种基本的渗流⽅式,复杂渗流再由这三种⽅式进⾏组合。
本节重点1、达西定律★★★★★2、真实流速与渗流速度的关系★★★★★3、单向流★★★4、平⾯径向流★★★5、球⾯向⼼流★★★⼀、渗流的基本规律—达西定律多孔介质组成复杂,流体渗流规律复杂。
⼈们最初研究渗流规律是以实验为基础的宏观研究⽅法。
1.达西定律实验步骤:(1)、调节⼊⽔阀,保持⼀定的进⽔⽔位(2)、调节出⽔阀门,得⼀流量Q ;(3)、流动稳定后测流量和压差。
a:出⽔⼝(稳定⽔位) b:滤⽹E:阀门,控制流量和⽔头压差 D:量杯,测流量达西实验装置图做多组实验:不同砂层横截⾯积、L 、流量、砂粒⼤⼩、液体、压差。
1-1截⾯总⽔头⾼度2-2截⾯总⽔头两截⾯⽔头差其折算压差为⼤量实验研究表明,流量Q 与折算压⼒差△Pr 、岩⼼截⾯积A 成正⽐,与液体粘度µ、测压管两截⾯距离△L 成反⽐,其⽐例常数与填砂粒径有关,砂粒粒径越⼤,流量越⼤,反之流量越⼩。
第一章 渗流理论基础§1-1 渗流的基本概念一、渗流及连续介质假说1 多孔介质(porous medium)与连续介质(continuous medium)多孔介质很难给出其精确定义,在地下水动力学中,把具有孔隙的岩石称为多孔介质。
它包括孔隙介质和裂隙介质。
一般来说,具有以下特点的物质就称为多孔介质。
(1)该物体为多相体:固体相-骨架,流体相-空隙;(2)固体相的分布遍及整个多相体所占据的区域;(3)空隙空间具有连通性。
多孔介质由连续分布的多孔介质质点(图1-2)组成—多孔连续介质.此时孔隙度的表示公式为:--为数学点P 处多孔介质的表征体积元(简称为表征体元-REV ),将其所包含的所有流体质点与固体颗粒0v ∆的总体称为多孔介质质点.将其所包含的所有流体质点称为多孔介质流体质点。
图1-2 REV 的定义及孔隙度随体积的变化多孔介质的性质:1)孔隙性2) 压缩性2 渗透(seepage )渗透:地下水受重力作用在岩石空隙中的实际运动称为渗透。
由于岩石空隙结构极为复杂,空隙的大小、延伸方向、形状无一定规律。
渗透具有如下特征:(1)运动途径复杂多变;(2)状态函数非连续;(3)只有平均性质的渗透规律(图1-1),研究地下水质点的运动特征比较困难。
因此,在当前经济技术条件下研究单个孔隙中的水或单个水质点的运动是十分困难的,也没有必要。
vv p n v v v ∆∆=∆→∆0lim)(图1-2岩石中地下水的渗透针对这种极为复杂的地下水运功,在地下水动力学中一般可采用两种研究方法。
1) 研究微观情况下的运动,即研究地下水在以孔隙介质中的骨架为边界孔隙或裂隙中的运动。
由于空隙介质的结构具有随机性,所以用统计平均方法来确定地下水运动的宏观规律性;2) 从宏观角度出发,采用试验及数学分析方法,对大量微观运动进行宏观研究得出各种运动条件下地下水运动的基本规律。
3 渗流(seepage flow)前面已经提到,要研究实际的渗透十分困难,因此,我们用一种假想水流来代替真实水流,这种假想水流是在连续介质的基础上通过概化得出的:(1)假定水流充满整个含水层空间(既包括空隙所占据的空间,也包括颗粒/骨架所占据的空间);(2)只考虑水流运动的总体方向,不考虑水流实际运动途径的复杂变化.将通过上述概化后所得到的假想水流—渗流。
第一章渗流理论基础一、名词解释1. 渗透速度:表示水流在过水断面上的平均流速,不能代表任何真实水流的速度。
2. 实际速度:表示地下水在孔隙中的真实速度。
3. 水力坡度:把大小等于梯度值,方向沿着等水头面的法线,指向水头降低方向的矢量称为水力坡度。
4. 贮水系数:当水头变化1m时,从单位水平面积,高度为承压含水层厚度的柱体中释放或贮存的水量。
5. 贮水率:当水头下降1m时,单位体积承压含水层释放出来的水量。
6. 渗透系数:也称水力传导系数,当水力坡度J=1时,渗透系数在数值上等于渗透速度。
7. 渗透率:表示多孔介质能使气体或液体通过介质本身的能力,只与岩石性质有关,与液体性质无关。
8. 导水系数:T=KM,是一个水文地质参数,即水力坡度J=1时,通过整个含水层厚度上的单宽流量。
二、填空题1.地下水动力学是研究地下水在、、和中运动规律的科学。
(孔隙岩石、裂隙岩石、岩溶岩石)2.通常把具有连通性的孔隙岩石称为多孔介质,而其中的岩石颗粒称为。
(骨架)3.地下水在多孔介质中存在的主要形式有、薄膜水、毛管水和重力水,而地下水动力学主要研究的运动规律。
(吸着水、重力水)4.在多孔介质中,不连通的或一端封闭的孔隙对地下水运动来说是,但对贮水来说却是。
(无效、有效)5.地下水的过水断面包括空隙和固体颗粒所占据的面积,渗透流速是上的平均速度,而实际速度是的平均速度。
(过水断面、空隙面积)6.在渗流场中,把大小等于,方向沿着的法线,并指向水头降低方向的矢量,称为水力坡度。
(梯度值、等水头面)7.渗流运动要素包括流量Q、、压强p和等。
(渗流速度v、水头H)8.根据地下水与的关系,将地下水运动分为一维、二维和三维运动。
(运动方向、空间坐标轴)9.渗透率是表征的参数,而渗透系数是表征岩层的参数。
(岩层渗透性能、透水能力)10.影响渗透系数大小的主要因素是以及。
(岩石性质、渗透液体的物理性质)11.导水系数是描述含水层的参数,它是定义维流中的水文地质参数。
绪 论地下水动力学:是研究地下水在孔隙岩石、裂隙岩石和岩溶岩石中运动规律的科学。
它是模拟地下水流基本状态和地下水中溶质运移过程,对地下水从数量上和质量上进行定量评价和合理开发利用,以及兴利防害的理论基础。
第一章 渗流理论基础§1—1 渗流的基本概念一、地下水在含水岩石中的运动1 多孔介质:具有孔隙的岩石。
含水介质一般分为三类:孔隙介质:含有孔隙水的岩层。
裂隙介质:含裂隙水的岩层。
岩溶(Karst )介质:含岩溶水的岩层。
二、地下水和多孔介质的性质1 地下水的状态方程地下水的状态方程:实际上是地下水的体积和密度随压力变化的方程。
等温条件下,水的压缩系数为:设初始压强p 0时,水的体积为V 0,当压强变到p 时,体积变为V ,由上式得:用Taylor 级数展开,舍去高次项,得到如下的状态方程:V = V 0[1-β(p-p 0)]ρ=ρ0[1-β(p-p 0)]2 多孔介质的某些性质(1)多孔介质的孔隙性孔隙度:指孔隙体积和多孔介质总体积之比。
有效孔隙:互相连通的、不为结合水所占据的那一部分孔隙。
有效孔隙度:指有效孔隙体积和多孔介质总体积之比。
死端孔隙:一端与其它孔隙连通,另一端是封闭的,其中的地下水是相对停滞的。
(2)多孔介质的压缩性天然条件下,一定深度处的多孔介质,要受到上覆岩层荷重的压力。
荷重增加,将引起多孔介质的压缩。
多孔介质的压缩系数:dp dV V 1-=βdpd ρρβ1-=()()000000p p p p p p VV e V V e V V dp VdV ----==-=⎰⎰βββ多孔介质的压缩包括固体颗粒的压缩和孔隙的压缩。
即:V b =V s +V v 上式令上式变为:α=(1-n )αs +n αp固体骨架的压缩性比孔隙的压缩性小的多,上式变为:α=n αp 三、贮水率和贮水系数1. 水位变化对含水层厚度的影响有效应力地下水位下降,水压力减小,有效应力增大,多孔介质被压缩。
流体力学讲义第十二章渗流第十二章渗流概述一、概念1.渗流(Seepage Flow):是指流体在孔隙介质中的流动。
2.地下水流动:在土建工程中,渗流主要是指水在地表以下的土壤和岩石层中的流动,简称为地下水流动。
判断:地下水的流动与明渠流都是具有自由液面的流动。
错二、渗流理论的应用1.生产建设部门;如水利、化工、地质、采掘等部门。
2.土建方面的应用给水方面排灌工程方面水工建筑物建筑施工方面三、渗流问题确定渗流量:如确定通过闸坝地基或井等的渗流流量。
确定渗流浸润线的位置:如确定土坝坝体内的浸润线以及从井中抽水所形成的地下水面线的位置。
确定渗流压力:如确定渗流作用于闸坝底面上的压力。
估计渗流对土壤的破坏作用:计算渗流流速,估计发生渗流破坏的可能性,以便采取防止渗流破坏的措施。
四、土壤的水力特性不均匀系数:(12-1)式中:d60,d10——土壤颗粒经过筛分时分别有60%,10%重的颗粒能通过筛孔直径。
孔隙率n:是指单位总体积中孔隙所占的体积,。
沙质土:n=0.35~0.45;天然粘土、淤泥:n=0.4-0.6。
1.透水性透水性(hydraulic permeability):是指土或岩石允许水透过本身的性能。
通常用渗透系数k来衡量,k值越大,表示透水性能越强。
均质土壤(homogeneous soil):是指渗流中在同一方向上各处透水性能都一样的土壤。
非均质土壤(heterogeneous soil):是指渗流中在同一方向上各处透水性能不一样的土壤。
1各向同性土壤(isotropic soil):是指各个方向透水性都一样的土壤。
各向异性土壤(anisotropic soil):是指各个方向透水性不一样的土壤。
2.容水度容水度(storativity):是指土壤能容纳的最大水体积与土壤总体积之比,数值与土壤孔隙率相等。
3.持水度持水度(retention capacity):是指在重力作用下仍能保持的水体积与土的总体积之比。
1. 渗流:流体在多孔介质中流动叫做渗流。
渗透率为床力梯度为1时,动力黏滞系数为I的液体在介质中的渗透速度。
是表征土或岩石本身传导液体能力的参数。
其大小与孔隙度、液体渗透方向上空隙的几何形状、颗粒大小以及排列方向等因素有关,而与在介质中运动的液体性质无关。
渗透率(k)用来表示渗透性的大小。
在一定床差下,岩石允许流体通过的性质称为渗透性;在一定压差下, 岩石允许流体通过的能力叫渗透率。
2•开敞式油藏:如果油气藏外币与天然水源相连通,可向汕气藏供液就是开敞式油气藏。
如果外伟1封闭且边缘高程与油水界而高程一致则称为封闭式油藏。
3. 原始地层压力:油气藏开发以前,一般处F平衡状态,此时油层的流体所承受的压力叫原始地层压力。
4. 供给压力:汕气藏中存在液源供给区时,在供给边缘上的压力称为供给压力。
5. 驱动方式可分为:水床驱动,弹性驱动,溶解气驱动和重力驱动。
6. 在渗流过程中,如果运动的备主要元素只随位置变化而与时间没有关系,则称为稳定流,反之,若各主要元素之一与吋间有关,则称为非定常渗流或者不稳定渗流,7•渗流的基本方式:半面一维渗流,平面径向渗流,和球面渗流。
时规定这样的原则:任何相邻两条等床线Z间的床差必须相等,同8.绘制渗流时,任何两条流线之间的流量必须相等。
9•井底结构和井底附近地区油层性质发生变化的井称为渗流不完善井。
不完善井可以分为打开程度不完善,打开性质不完善,双重不完善井。
10.试井:直接从实测的产量圧力数据反求地层参数,然后用求得的地层参数來预测新的工作制度下的产量。
11•井间干扰:油水井工作制度的变化以及新井的投产会使原來的圧力分布状态遭受到破坏引起整个渗流场发生变化,白然会影响到邻井的产量,这种井间柑互影响的现象称为井间干扰。
12•压降叠加原理:多井同时工作时,地层中任一点外的压降等于各井以各〔I不变的产量单•独工作时在该点处造成的压降代数和。
13•势的叠加原理:如果均质等厚不可床缩无限大底层上有许多点源,点汇同时匸作,我们自然会想到地层上任一点的势应该等于每个点源点汇单独工作时在该点所引起的势的代数和,这就是势的叠加原理。