第一章 弹性多孔介质渗流理论1 (2)
- 格式:ppt
- 大小:133.00 KB
- 文档页数:21
第一章 渗流力学基本概念和定律1、多孔介质(porous medium ):含有大量任意分布的彼此连通的且形状各异、大小不一的孔隙的固体介质。
2、渗流(permeability ):流体通过多孔介质的流动,也叫渗滤。
3、油藏:具有统一压力系统的油气聚集体4、渗流力学:研究流体在多孔介质中的运动形态和规律的科学。
5、油气层是油气储集的场所和流动空间6、定压边界油藏:层体延伸到地表,有边水供给区,在边界上保持一个恒定的压头。
7、封闭边界油藏:边界为断层或尖灭 没有边水供给 渗流中的力学分析及驱动类型:力学分析:重力、惯性力、粘滞力(大小用牛顿内摩擦定律表示1mPa·s =lcP )、弹性力、毛管力。
驱动类型:依靠何种能量把原油驱入井底。
弹性驱动、水压驱动、溶解气驱、气压驱动(主要靠气顶气或注入气的膨胀能或压能驱油的驱动方式。
刚性气压驱动、弹性气压驱动)、重力驱动 不同驱动方式及开采特征总结:1、能量补充充足(边、底水,气顶、注水/气):刚性驱动:刚性气/水驱;开采特征:Pe 、 Ql 、 Qo 有稳产段。
2、能量补充不充足(无边底水气顶注水注气或有而不足): 弹性驱动:弹性驱动、溶解气驱、弹性气/水驱;开采特征:Pe 、 Ql 、 Qo 均不断下降。
3、 凡是气驱的Rp 都有上升的过程,其它驱动方式Rp 不变。
溶解气驱、刚/弹性气驱4、 Qo 或Rp 的突然变化反映水或气的突破。
供给压力Pe :油藏中存在液源供给区时,在供给边缘上的压力。
井底压力Pw :油井正常生产时,在生产井井底所测得的压力称为井底压力,也称为流动压力,简称流压。
折算压力Pr :油藏中某点折算到某一基准面时的压力,它表示油层中各点流体所具有的总能量。
达西定律:在一定范围内△P 与Q 成直线关系,当流量不断增大,直线关系就会被破坏。
真实流速与渗流速度的关系达西定律适用条件: 液流处于低速、层流,粘滞力占主导地位,惯性主力很小,可忽略。
目录第一章渗流理论基础 (1)1.1渗流的基本概念 (1)1.2渗流基本定律 (7)1.3岩层透水特征及水流折射定律 (11)1.4流网及其应用 (14)1.5渗流连续方程 (19)1.6渗流基本微分方程 (24)1.7数学模型的建立及求解 (32)第一章渗流理论基础1.1 渗流的基本概念1.1.1 多孔介质及其特性1.1.1.1多孔介质的概念多孔介质(Porous medium):地下水动力学中具有空隙的岩石。
广义上包括孔隙介质、裂隙介质和岩溶不十分发育的由石灰岩和白云岩组成的介质,统称为多孔介质。
孔隙介质:含有孔隙的岩层,砂层、疏松砂岩等;裂隙介质:含有裂隙的岩层,裂隙发育的花岗岩、石灰岩等。
1.1.1.2 多孔介质的性质(1) 孔隙性:有效孔隙和死端孔隙。
孔隙度(Porosity)是多孔介质中孔隙体积与多孔介质总体积之比(符号为n),可表示为小数或百分数,n=Vv/V。
有效孔隙(Effective pores)是多孔介质中相互连通的、不为结合水所占据的那一部分孔隙。
有效孔隙度(Effective Porosity)是多孔介质中有效孔隙体积与多孔介质总体积之比(符号为n e),可表示为小数或百分数,n e=V e/V。
死端孔隙(Dead-end pores )是多孔介质中一端与其它孔隙连通、另一端是封闭的孔隙。
(2) 连通性:封闭和畅通,有效和无效。
(3) 压缩性:固体颗粒和孔隙的压缩系数推导。
(4) 多相性:固、液、气三相可共存。
其中固相的成为骨架,气相主要分布在非饱和带中,液相的地下水可以吸着水、薄膜水、毛管水和重力水等形式存在。
固相—骨架matrix气相—空气,非饱和带中液相—水:吸着水Hygroscopic water薄膜水pellicular water毛管水capillary water重力水gravitational water1.1.1.3多孔介质中的地下水运动比较复杂,包括两大类,运动特点各不相同,分别满足于孔隙水和裂隙岩溶水的特点。
多孔介质渗流现象多孔介质渗流现象是指在孔隙度较高的多孔介质中,液体或气体在孔隙中运动的现象。
多孔介质是由许多直径不同、相互连接的孔隙组成的。
在地质勘探、土壤水文学、油田开发等领域,多孔介质渗流现象具有重要的应用价值。
一、多孔介质的特点多孔介质具有孔隙度大、渗透性高的特点。
孔隙度是指多孔介质中孔隙的体积所占比例。
渗透性是指液体或气体通过多孔介质的能力。
多孔介质的特点决定了其在液体或气体传输中的独特性。
二、多孔介质中的渗流规律在多孔介质中,液体或气体的渗流受到多种因素影响,包括孔隙度、渗透性、粘度、重力等。
孔隙度越大、孔隙间的连接越多,渗流速度越快;而孔隙度小、孔隙间的连接少则渗流速度较慢。
此外,液体或气体在多孔介质中的运动路径也会受到渗透性的影响,渗透性越高,渗流路径越短。
三、多孔介质渗流的应用多孔介质渗流现象在地质勘探、土壤水文学、油田开发等领域有广泛的应用。
通过研究多孔介质的渗流规律,可以更好地理解地下水、油气等资源在地壳中的运移规律,为资源勘探与开发提供科学依据。
同时,多孔介质渗流现象也在环境保护、岩土工程等领域发挥着重要作用。
四、多孔介质渗流的模拟与研究为了更准确地模拟多孔介质中的渗流现象,科学家们开展了大量的研究工作。
通过数值模拟、实验验证等手段,揭示了多孔介质中液体或气体的运动规律,为多孔介质渗流现象的理论研究提供了重要的参考。
总之,多孔介质渗流现象是一个复杂而又具有重要应用价值的研究领域。
只有深入理解多孔介质的特点与渗流规律,才能更好地利用地下资源,保护环境,促进人类社会的持续发展。
第一章 渗流理论基础§1-1 渗流的基本概念一、渗流及连续介质假说1 多孔介质(porous medium)与连续介质(continuous medium)多孔介质很难给出其精确定义,在地下水动力学中,把具有孔隙的岩石称为多孔介质。
它包括孔隙介质和裂隙介质。
一般来说,具有以下特点的物质就称为多孔介质。
(1)该物体为多相体:固体相-骨架,流体相-空隙;(2)固体相的分布遍及整个多相体所占据的区域;(3)空隙空间具有连通性。
多孔介质由连续分布的多孔介质质点(图1-2)组成—多孔连续介质.此时孔隙度的表示公式为:--为数学点P 处多孔介质的表征体积元(简称为表征体元-REV ),将其所包含的所有流体质点与固体颗粒0v ∆的总体称为多孔介质质点.将其所包含的所有流体质点称为多孔介质流体质点。
图1-2 REV 的定义及孔隙度随体积的变化多孔介质的性质:1)孔隙性2) 压缩性2 渗透(seepage )渗透:地下水受重力作用在岩石空隙中的实际运动称为渗透。
由于岩石空隙结构极为复杂,空隙的大小、延伸方向、形状无一定规律。
渗透具有如下特征:(1)运动途径复杂多变;(2)状态函数非连续;(3)只有平均性质的渗透规律(图1-1),研究地下水质点的运动特征比较困难。
因此,在当前经济技术条件下研究单个孔隙中的水或单个水质点的运动是十分困难的,也没有必要。
vv p n v v v ∆∆=∆→∆0lim)(图1-2岩石中地下水的渗透针对这种极为复杂的地下水运功,在地下水动力学中一般可采用两种研究方法。
1) 研究微观情况下的运动,即研究地下水在以孔隙介质中的骨架为边界孔隙或裂隙中的运动。
由于空隙介质的结构具有随机性,所以用统计平均方法来确定地下水运动的宏观规律性;2) 从宏观角度出发,采用试验及数学分析方法,对大量微观运动进行宏观研究得出各种运动条件下地下水运动的基本规律。
3 渗流(seepage flow)前面已经提到,要研究实际的渗透十分困难,因此,我们用一种假想水流来代替真实水流,这种假想水流是在连续介质的基础上通过概化得出的:(1)假定水流充满整个含水层空间(既包括空隙所占据的空间,也包括颗粒/骨架所占据的空间);(2)只考虑水流运动的总体方向,不考虑水流实际运动途径的复杂变化.将通过上述概化后所得到的假想水流—渗流。
1.渗流:流体在多孔介质中流动叫做渗流。
渗透率为压力梯度为1时,动力黏滞系数为l的液体在介质中的渗透速度。
是表征土或岩石本身传导液体能力的参数。
其大小与孔隙度、液体渗透方向上空隙的几何形状、颗粒大小以及排列方向等因素有关,而与在介质中运动的液体性质无关。
渗透率(k)用来表示渗透性的大小。
在一定压差下,岩石允许流体通过的性质称为渗透性;在一定压差下,岩石允许流体通过的能力叫渗透率。
2.开敞式油藏:如果油气藏外围与天然水源相连通,可向油气藏供液就是开敞式油气藏。
如果外围封闭且边缘高程与油水界面高程一致则称为封闭式油藏。
3.原始地层压力:油气藏开发以前,一般处于平衡状态,此时油层的流体所承受的压力叫原始地层压力。
4.供给压力:油气藏中存在液源供给区时,在供给边缘上的压力称为供给压力。
5.驱动方式可分为:水压驱动,弹性驱动,溶解气驱动和重力驱动。
6.在渗流过程中,如果运动的各主要元素只随位置变化而与时间没有关系,则称为稳定流。
反之,若各主要元素之一与时间有关,则称为非定常渗流或者不稳定渗流。
7.渗流的基本方式:平面一维渗流,平面径向渗流,和球面渗流。
8.绘制渗流图时规定这样的原则:任何相邻两条等压线之间的压差必须相等,同时,任何两条流线之间的流量必须相等。
9.井底结构和井底附近地区油层性质发生变化的井称为渗流不完善井。
不完善井可以分为打开程度不完善,打开性质不完善,双重不完善井。
10.试井:直接从实测的产量压力数据反求地层参数,然后用求得的地层参数来预测新的工作制度下的产量。
11.井间干扰:油水井工作制度的变化以及新井的投产会使原来的压力分布状态遭受到破坏引起整个渗流场发生变化,自然会影响到邻井的产量,这种井间相互影响的现象称为井间干扰。
12.压降叠加原理:多井同时工作时,地层中任一点外的压降等于各井以各自不变的产量单独工作时在该点处造成的压降代数和。
13.势的叠加原理:如果均质等厚不可压缩无限大底层上有许多点源,点汇同时工作,我们自然会想到地层上任一点的势应该等于每个点源点汇单独工作时在该点所引起的势的代数和,这就是势的叠加原理。
开课编号:323004Z渗流力学Mechanics of Fluid Flow in Porous Media课程编号:323004Z课程属性:专业基础课学时/学分:40/2预修课程:偏微分方程,数值计算方法,弹性力学有限单元法教学目的和要求:系统掌握渗流的基本知识,掌握渗流分析理论,了解渗流数值方法,学会利用渗流计算有限元软件,分析渗流问题。
内容提要:第一章:张量的基本知识(1)张量的指标符号表示法第二章:渗流的基本概念与定律(1)多孔介质、连续介质假设、连续流体、连续介质场等基本概念;(2)流体的实际平均速度与渗流速度(3)达西定律(定律及其适用范围、定律在多相多维渗流中的推广)与非线性运动方程(低速非线性、高速非线性、低渗介质非线性、非牛顿流体渗流)(4)岩土材料的基本物理特性(5)岩土材料的非饱和渗流特性第三章:渗透变形与渗流破坏(1)渗透变形的类型(2)渗透变形的判别方法(3)渗透变形的防护第四章:流体的偏微分方程与定解条件(1)单相渗流连续性方程(2)两相不溶混渗流连续性方程(3)流体与骨架的状态方程(4)单相流体的偏微分方程(5)定解条件(初始条件与边界条件)第五章:渗流的理论计算方法(1)Dupuit假定及其应用(2)井的渗流计算方法第六章:渗流的数值方法(1)有限差分法介绍(2)有限单元方法介绍(3)渗流的边界条件及其处理方法(4)非线性方程组的求解方法第七章:渗流与岩土体变形的相互作用(1)岩土体的应力变形及其有限元方法(2)渗流与岩土体变形的耦合相互作用(3)岩土体的水力劈裂第八章:渗流计算软件与工程分析(1)利科渗流分析软件介绍(2)利科软件的应用实例第九章:岩土介质中溶质的输运教材:无主要参考书:1 毛昶熙,渗流计算分析与控制,中国水利出版社;2 孔祥言,高等渗流力学,中国科学技术大学出版社;3 刘杰,土的渗透稳定与渗流控制,水利电力出版社撰写人:吴梦喜(中国科学院力学所)撰写日期:2010年7月。