初中数学八下 《数据的分析》复习 教案
- 格式:doc
- 大小:91.50 KB
- 文档页数:3
数据的分析全章复习(1)【课题】:数据的分析全章复习(1)【设计与执教者】:【教学时间】:40分钟【学情分析】:(适用于特色班)学生在前面已经学习了本章中的平均数、中位数、众数的知识,•积累了一定的经验,在此基础上进行提升,使学生更好地使用统计量解决实际问题。
【教学目标】:1、熟练应用平均数、中位数、众数来表现一组数据的集中趋势,理解这三个统计量的意义;2、会应用平均数、中位数、众数进行数据处理3、经历数据的收集、整理、分析过程,在活动中发展学生的统计意识和数据处理方法与能力【教学重点】:会应用平均数、中位数、众数进行数据处理【教学难点】:正确选用统计量来处理实际问题中的统计内容【教学突破点】:通过典型例题、练习使本章知识条理化、系统化,再通过找规律,把握住数据处理的思想方法,正确应用统计工具解决实际问题.【教法、学法设计】:通过引导让学生感受解决实际问题要经历数据的收集、整理、分析过程,讲练结合,并给予学生充分的时间让他们讨论,从讨论中感受三个统计量的意义。
【课前准备】:课件试问:(1)这三个厂家的广告,分别利用了统计中的哪一个特征数(平均数、中位数、众数)进行宣传?(2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由.7、今年,苏州市政府的一项实事工程就是由政府投人1 000万元资金.对城区4万户家庭的老式水龙头和13升抽水马桶进行免费改造.某社区为配合政府完成该项工作,对社区内1200户家庭中的120户进行了随机抽样调查,并汇总成下表: 改造 情况 均不 改造 改造水龙头改造马桶 1个 2个 3个 4个 1个 2个 户数2031282112692(1)试估计该社区需要对水龙头、马桶进行改造的家庭共有_____户; (2)改造后.一只水龙头一年大约可节省5吨水,一只马桶一年大约可节省15吨水.试估 计该社区一年共可节约多少吨自来水?(3)在抽样的120户家庭中.既要改造水龙头又要改造马桶的家庭共有多少户? 8、2006年青岛市春季房交会期间,某房地产公司对参加本次房交会的消费者进行了随机问卷,共发放1200份调查问卷,实际收回1000份.该房地产公司根据问卷情况,作了以下两方面的统计.I .根据被调查消费者年收入情况制成的统计表: 年收入(元) 2万以下 2万~4万 (不含4万) 4万~6万 (不含6万) 6万~8万(不含8万)各段被调查消费者人数占总被调查消费者人数的百分比50% 26% 14% 7% %II .根据被调查消费者打算购买不同住房面积的人数情况制成的扇形统计图:根据上述信息,解决下列问题:(1)被调查的消费者平均年收入为 万元.(提示:在计算时,2万元以下的都看成1万元,2万~4万元的都看成3万元,依此类推,8万元以上的都看成9万元)(2)打算购买80 m 2~100 m 2的消费者人数为 人.(3)如果你是该房地产公司的开发商,请你从建房面积等方面谈谈你今后的工作打算(不超过30字).答案: 1. 36 2.10 3.215x + 4.C 5、解:(1)该班学生每周做家务劳动的平均时间为0212 1.5628 2.512313 3.544350⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=2.44(小时)。
《统计在实际生活中的应用》本节课是学完统计的相关知识后设计的一节专项复习课。
教学目标:1、学会对“条形图加扇形图”及“频数分布直方图加扇形图”统计应用问题的分析,并能够根据实际问题找到相应的数据来解决。
2、在分析统计图寻找相关数据的过程中,体会统计中全面分析数据对决策的重要性。
3、在解决问题中提高数据处理的能力。
课程分析本节课是在学习完统计的相关知识后设计的一节专项复习课,教学重点:学会分析“条形图加扇形图”及“频数分布直方图加扇形图”统计应用问题。
教学难点:统计知识的综合运用教学方法:自学探究教具准备:PPT 学生用题卡教学过程一、开门见山引出课题热身题教师大屏幕出示一幅扇形统计图,询问学生,“你能从扇形统计中得到什么信息?”学生根据自已的思考进行回答。
设计意图:通过这个扇形统计图的分析,回顾有关扇形统计图的知识。
二、例题展示总结关键题型一扇形统计图+条形统计图例1:网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的。
小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图。
请利用图中所提供的信息解决以下问题:1、小明一共统计了_____个评价;2、请将图1补充完整;3、图2中“中评”所占的百分比是______;4、若该网店一共有8000个评价,估计差评的有多少个?教师在大屏幕上出示例1后,学生进行分析思考,之后师生交流,共同解决例1. 思考:通过刚才这个问题,你认为解决这类问题最关键的是什么?通过刚才这个问题的解决过程,学生尝试用自己的感悟谈关键是从统计图表中提取信息:两个统计图表中都完整的数据是解决这类问题的突破口。
教师板书本节课的关键内容。
设计意图:通过对例1的分析与求解总结出解决这类问题的关键。
三、尝试练习巩固提升通过刚才的总结,我们对这种题型有了一定的认识,下面尝试解决两道练习题:尝试练习1:王老师为了了解所教班级学生完成数学课前预习的具体情,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A很好;B较好;C一般;D较差。
八年级数学下册数据分析复习教案八年级数学下册数据分析复习教案_初二数学下册数据的分析期末复习教案实用精品文献资料分享初二数学下册第 20 章数据的分析期末复习教案第 20 章数据的分析(期末复习)保太中学高勇【教学任务分析】教学目标知识技能理解平均数、中位数、众数、极差、方差的概念及作用,能准确地求出一组数据的平均数、中位数和众数,以及极差和方差,能灵活运用它们来处理数据. 过程方法使学生经历对问题的处理,体会分析数据的策略和方法,提高用样本解决问题的能力,发展学生的统计思想及创新实践能力. 情感态度进一步渗透统计的重要数学思想方法,体验用数据的代表和波动的统计量来分析数据并作出决策,增强数学应用意识. 重点灵活运用数据的代表和波动的统计量来解决相关问题. 难点灵活运用数据的代表和波动的统计量来解决相关问题. 【教学环节安排】环节教学问题设计教学活动设计知识回顾 1.数据1,0,-3,2,3,2,-2 的平均数是,中位数是,众数是 . 2.数据 0,1,3,2,4 的极差为,方差为 . 3.已知样本为 2,3,4,5,6,那么此样本的中位数与平均数是(). A. 3,4 B.4,4 C.4,5 D.4,3 4.某服装销售商中进行市场占有率的调查时,他最应该关注的是(). A.服装型号的平均数 B.服装型号的众数 C.服装型号的中位数 D.最小的服装型号 5. 在方差的计算公式中,数字 10 和 20 分别表示的意义是().A. 数据的个数和方差B.平均数和数据的个数C.数据的个数和平均数D.数据的方差和平均数 6.一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数、中位数中的(). A.1 个 B.2 个 C.3 个 D.0 个反思归纳: 1.平均数计算要用到的数据,它的大小与一组数据中的都有关系,任何一个数据的变动都会相应引起平均数的,它能够充分利用所有的数据信息; 2.众数是当一组数据中时,人们往往关心的一个量,众数极端值的影响,这是它的一个优势; 3.中位数仅与有关,某些数据的移动对中位数没有影响,中位数可能出现中所给数据中,也可能不在所给的数据中,当一组数据中的时,可以用中位数描述其趋势. 总之,平均数、中位数、众数都是描述数据的的的统计量. 4.一组数据中的最大数据与最小数据的差叫做这组数据的,它反映了这组数据的 . 5.当两组数据的个数相等、平均数相等或接近时,用方差可以比较其离散程度及稳定性.实用精品文献资料分享一般来说,一组数据的方差越大,这组数据离散程度就越,这组数据就越 . 教师出示回顾训练题学生自主完成,并回顾题目所考查的知识点及解决的方法教师关注:是否能通过回顾训练题的解决,唤醒学生对所学知识的记忆,学生是否能自主解决、加深理解所考查的知识与求解的方法. 答案: 1. , 1, 2; 2.4, 2; 3.B; 4.B;5.C;6.A. 教师引导学生进行组内交流,让学生罗列所复习的主要知识点、方法及规律,培养学生分析、总结、归纳的能力,从而奠定学生可持续发展的基础. 综合应用【例 1】个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资:王某 3000 元,厨师甲 450 元,厨师乙 400 元,杂工 320 元,招待甲 350 元,招待乙 320 元,会计 410 元. (1)计算工作人员的平均工资;(2)计算出的平均工资能否反映出工作人员这个月收入的一般水平?(3)去掉王某的工资后,再计算平均工资;(4)后一个平均工资能代表一般工作人员的收入吗? (5)根据以上计算,从统计的观点看,你对(3)、(4)的结果有什么看法?【解析】(1) =(3000+450+400+320+350+320+410) 7=750 (2)因为工作人员月工资都低于平均水平,所以计算出的平均工资不能反映工作人员这个月的月收入的平均水平. (3) = (450+400+320+350+320+410) 6=375(元). (4)由于该平均数接近于工作人员的月工资的收入,能代表一般工作人员的收入. (5)从本题的计算中可见,个别特殊值对平均数具有很大的影响. 教师提出问题.教师要求学生先尝试独立思考,再小组讨论、交流、做出判断,并说明原因,进而归纳出方法规律、技巧. 各小组推荐代表展示成果,教师多找几名同学叙述,加深印象,最后教师点评、详细讲解.教师深入小组当中,了解他们讨论的情况,如遇有困难的可给与提示.充分讨论后,各小组推选代表展示他们的成果.矫正补偿1.若 3,4,5,的平均数是 12,则的平均数是 . 2. 已知的方差为 2,数据的方差是 . 3.一组数据的的极差是 8,则另一组数据 +1 的极差是 . 4.某次考试 A、B、C、D、E 这 5 名学生的平均分为 62 分,若学生 A 除外,其余的学生的平均分为 60 分,求实用精品文献资料分享学生 A 的得分. 教师出示问题. 学生自己独立思考完成,然后小组交流,小组派代表展示,全班师生共同评价、总结(一组数据的平均数、方差与各数据发生变化后的情况)完善整合小结与反思:请大家反思一下,通过本节课的学习,谈一下你对《数据的分析》的认识和理解. www. 总结:若数据,的平均数为,方差为,则数据的平均数是,方差为,而数据的平均数是,方差为 . 在前面的基础上,教师引导学生总结对“数据的分析”的认识,各抒己见,集思广益. 教师关注:学生的描述情况.(引导学生表达,提高对数据的代表和波动的认识)八年级数学下册数据分析复习教案_八年级数学下册《复习数据的分析与比较》教案新人教版复习数据的分析与比较(7)教学目标: 1、通过回顾思考本章内容,进一步掌握平均数、加权平均数、极差、方差的计算方法,理解它们的统计意义及它们在实际问题中的具体涵义,了解它们在生产和日常生活中的实际应用,学会对数据的特征性质进行概括、分析和比较。
人教版初中数学八年级下册《数据的分析》教学设计一. 教材分析人教版初中数学八年级下册《数据的分析》是学生在掌握了统计学基础知识后,进一步学习数据分析的章节。
本章主要内容包括数据的收集、整理、描述和分析。
通过对数据的分析,使学生能够了解数据的分布特征,掌握数据的处理方法,提高对数据的敏感度和分析能力。
教材通过实例引入,让学生在实际问题中感受数据分析的重要性,培养学生的实际应用能力。
二. 学情分析学生在八年级上册已经学习了统计学的基础知识,对数据的收集、整理、表示有了初步的了解。
但学生在数据分析方面的能力还有待提高,特别是在实际问题中的应用能力和对数据分析方法的理解。
此外,学生的数学思维能力和逻辑推理能力也需进一步培养。
三. 教学目标1.了解数据的分布特征,掌握数据的处理方法。
2.培养学生的数据分析能力,提高对数据的敏感度和分析能力。
3.培养学生将数学知识应用于实际问题的能力。
4.培养学生的数学思维能力和逻辑推理能力。
四. 教学重难点1.数据的分布特征和处理方法的理解。
2.数据分析方法在实际问题中的应用。
3.数据的收集和整理。
五. 教学方法1.采用问题驱动的教学方法,让学生在解决实际问题中学习数据分析的方法。
2.使用案例教学法,通过具体的实例使学生理解和掌握数据分析的知识。
3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
4.使用多媒体教学手段,提高学生的学习兴趣和效果。
六. 教学准备1.准备相关的教学案例和实例。
2.准备教学PPT,进行课件的制作。
3.准备练习题和测试题,用于巩固和检验学生的学习效果。
七. 教学过程1.导入(5分钟)通过一个实际问题引出数据分析的重要性,激发学生的学习兴趣。
例如,以一次考试的成绩数据为例,提出如何分析这次考试的成绩分布,找出优秀的学生和需要改进的学生。
2.呈现(10分钟)讲解数据的分布特征和处理方法,通过PPT展示相关的图表和数据,让学生直观地了解数据的分布情况。
第20章数据的分析数学活动一、内容和内容解析1.内容数据的分析数学活动2.内容解析数据的分析是统计的重要环节,数学活动是在学习了统计的相关知识后,观察身边的事情,提出统计问题,设计数据收集的方案,进行数据的收集、整理、描述和分析,进而发展学生的统计分析能力。
基于以上分析,本节课的教学重点是结合身边素材提出统计问题,发展学生的统计观念。
二、教学目标知识与技能在活动中,进一步理解平均数、中位数、众数、方差等统计量的意义,会用适当的统计量进行数据分析;过程与方法经历提出问题,数据收集、整理、描述、分析等统计过程,体会样本估计总体的思想,发展学生的统计观念;情感、态度与价值观体会统计的实际应用价值.三、教学重难点重点:体验完整的抽样调查过程.难点:选择适当的统计问题,合理分组完成统计任务并进行正确的数据分析.四、教学过程设计1.复习引入我们已经学习了数据的收集、整理、描述、分析等统计活动,我们一般用什么对数据进行描述?分析数据时我们常常用到哪些量?哪些是反应数据集中趋势的?哪些是反应数据离散程度的?师生活动:老师提问,学生回答。
设计意图:为后面学生亲自完成统计调查活动做铺垫。
教师:统计与实际生活紧密联系,其实,我们身边就有大量的统计问题,这节课我们就完整的体验一下处理数据的过程。
2.小组活动活动1:①全班同学课前讨论出大家最感兴趣的5个问题,教师制订好活动方案,确定活动内容,制订好《班级平均情况代表统计表》表格班级平均情况代表统计表年月日②组织成立各调查小组(6人为一小组),指定组织者,明确目标和任务,收集数据,并进行填表、整理、描述和分析。
③将各组的结果汇总到一起,得到全班同学的一个“平均情况”,找出一个最能代表全班“平均情况”的同学.④学生交流整个过程的收获与注意事项。
师生活动:教师布置任务后,小组分工合作,按照任务进行活动,在活动的过程中教师关注各小组的活动情况,进行适当的指导,学生按要求完成数学活动。
教学方法: 创设情景观察思考分析讨论归纳总结得出结论 教学过程:一课堂导入:问题 1:一家公司打算招聘一名英文翻译。
对甲、乙两名应试者进行了 听、说、读、写的英语水平测试,他们的各项成绩如下:>、亠、—Pz听说读写甲85 78 85 73 乙738082831、如果这家公司想招一名综合能力较强的翻译,计算两名应试者平均 成绩,从他们的成绩看,应该录取谁?2、如果这家公司想招一名笔译能力较强的翻译,听、说、读、写的成 绩按照 2:1:3:4 的比确定,计算两名应试者平均成绩,从他们的成绩看,应 该录取谁?学生思考、讨论解答,教师更正解:1、甲的平均成绩 = 《85+78+85+73>/4=80.25乙的平均成绩 = 《73+80+82+83>/4=79.5 因为 ..的平均成绩比 ..的高,所以应该录取 ...。
知识与技能: 1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法过程与方法:3、通过本节课的学习,使学生理解平均数在数据统计中的意义和作20.1.1平均数用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
情感态度与价值观: 能灵活应用一组数据平均水平解决实际问题 教学重点 :会求加权平均数 教学难点: 对 “权”的理解课 题:2、甲的平均成绩= ...........................................乙的平均成绩= ...................................... ?因为••的平均成绩比••的高,所以应该录取…。
二、合作探究:1、议一议:上叙问题1是利用平均数的公式计算平均成绩,其中每个数据一样重要。
问题2呢?学生思考、分组讨论,之后,看课本p112面,理解“权”的意义,以及加权平均数的公式。
三、交流展示:例1 :课本p112面例题1 学生分组讨论,小组发言,学生演板小结:1、解决例1要用到加权平均数公式,所以说它最直接、最重要的目的是及时复习巩固公式,并且举例说明了公式用法和解题书写格式,给学生以示范和模仿。
数据的分析教案初中教学目标:1. 让学生掌握数据收集、整理和分析的基本方法。
2. 培养学生运用数据解决实际问题的能力。
3. 培养学生合作、探究的学习态度。
教学内容:1. 数据收集与整理2. 数据分析方法3. 实际问题分析教学过程:一、导入(5分钟)1. 教师通过提问方式引导学生思考:在日常生活中,我们为什么要收集和分析数据?2. 学生分享自己的观点,教师总结并导入本节课的主题——数据的分析。
二、数据收集与整理(10分钟)1. 教师提出一个实际问题:某班级要举办一次运动会,需要确定参加跳远、跳绳和跑步三个项目的学生人数。
2. 学生分组讨论,提出数据收集和整理的方法。
3. 各小组汇报自己的方案,教师点评并总结。
三、数据分析方法(10分钟)1. 教师介绍常用的数据分析方法:描述性统计、图表分析、概率论等。
2. 学生通过实例了解各种分析方法的应用。
3. 教师引导学生选择合适的分析方法解决实际问题。
四、实际问题分析(10分钟)1. 教师提出一个实际问题:某班级有50名学生,男生28名,女生22名,请问男生和女生的人数比例是多少?2. 学生分组讨论,选择合适的分析方法解决问题。
3. 各小组汇报自己的解答,教师点评并总结。
五、课堂小结(5分钟)1. 教师引导学生回顾本节课所学内容,总结数据收集、整理和分析的方法。
2. 学生分享自己的学习收获,教师给予鼓励和评价。
六、课后作业(课后自主完成)1. 请学生运用本节课所学方法,分析家中近一个月用电情况,并提出节能建议。
2. 完成课后练习题。
教学反思:本节课通过实际问题的解决,让学生掌握了数据收集、整理和分析的基本方法。
在教学过程中,教师注重引导学生主动参与、合作探究,培养了学生的动手操作能力和解决问题的能力。
同时,通过课后作业的设置,使学生能够将所学知识运用到实际生活中,提高学生的实践能力。
但在教学过程中,教师也发现部分学生对数据分析方法的理解不够深入,需要在今后的教学中加强引导和练习。
人教版八下数学第20章《数据的分析》复习教案【思维导图】【教学目标】知识与技能目标了解平均数、众数、中位数、极差、方差有关概念,掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,能进行计算和解决生产、生活中的有关问题.过程与方法目标能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习能力.情感、态度与价值观目标通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质.【教学重点】掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,能进行计算和解决生产、生活中的有关问题.【教学难点】选择合适的统计量表示数据的集中趋势.【教学准备】教师准备:教学中出示的例题和图片.学生准备:复习平均数、中位数、众数,并完成本节学案中的自主学习内容. 【知识梳理与建构】专题一平均数【专题分析】平均数的计算考查频率较高,题型以选择题、填空题为主,也涉及解答题,考查形式有:①直接给一组数据或表格中的数据求平均数;②一组数据中含有未知数,已知某个数据代表求其他数据代表.例1若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是()A.44B.45C.46D.47解析:这组数据共有7个,可以采用简化公式进行计算.将这组数据的每一个数都减去40,得到一组新数据:0,2,3,5,7,7,18,这组新数据的平均数为6,所以原数据的平均数为40+6=46.故选C.[归纳总结]对于由n个数据x1,x2,…,x n组成的一组数据,如果将这组数据中的每一个数据都减去同一个常数a,这组新数据的平均数为',那么原数据的平均数为='+a.对于由n个数据x1,x2,…,x n组成的一组数据,如果x1出现了f1次,x2出现了f2次,…,x k出现了f k次,其中f1+f2+…+f k=n,那么,这组数据的平均数可用加权平均数公式=(f1x1+f2x2+…+f k x k)进行计算.【跟踪训练1】如图所示的是小芹6月1日~7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()A.1小时B.1.5小时C.2小时D.3小时解析:先从折线统计图中获取数据信息,然后用这组数据的和除以数据的个数.(2+1+1+1+1+1.5+3)÷7=1.5.故选B.专题二中位数和众数【专题分析】中位数和众数的计算考查频率较高,题型大多以选择题、填空题为主,考查形式有:①直接给出一组数据或表格中的数据求中位数和众数;②一组数据中含有未知数,已知某个数据代表求其他数据代表.例2数据1,2,4,0,5,3,5,中位数和众数分别是()A.3 和2B.3和3C.0和5D.3和5解析:这7个数据按从小到大的顺序排列,位于第4个的是3,故中位数是3;这7个数据中出现次数最多的数据是5,一共出现了2次,所以众数是5.故选D.[规律方法]找中位数要把数据按从小到大(或从大到小)的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,当数据个数为奇数时,中位数即为中间的一个,当数据个数为偶数时,中位数就是中间两个数的平均数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【跟踪训练2】空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.某市2013年每月空气质量良好以上天数折线统计图某市2013年每月空气质量良好以上天数扇形统计图根据以上信息解答下列问题:(1)该市2013年每月空气质量达到良好以上天数的中位数是天,众数是天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况.(字数不超过30字)解析:(1)将这组数据按照一定的顺序排列,取中间两个数的平均数就是中位数;取次数出现最多的那个数就是众数;(2)20天以上的一共有两个数据,360°×=60°,就是扇形A的圆心角的度数;(3)根据题意只要回答正确就可以.解:(1)由题意可得数据为8,9,12,13,13,13,15,16,17,19,21,21,最中间的是13,15,故该市2013年每月空气质量达到良好以上天数的中位数是14天,众数是13天. (2)360°×=60°,答:扇形A的圆心角的度数是60°.(3)答案不唯一,合理即可.月空气质量良好以上的天数在10~20天的占了多数.专题三方差【专题分析】方差是从不同层面反映一组数据的特征数,在解决问题时,准确掌握这些特征数的概念、对应公式,以及灵活运用公式是关键.题型以选择题、填空题为主,考查形式有:①直接给出一组数据或表格中的数据求方差;②根据比较方差值的大小,判定稳定性,解决实际问题.例1一组数据3,4,5,x,7,8的平均数为6,则这组数据的方差是.解析:可以先根据平均数求出x的值,然后根据方差公式求解.∵3,4,5,x,7,8的平均数为6,∴x=9.∴方差为s2=×[(3-6)2+(4-6)2+(5-6)2+(7-6)2+(8-6)2+(9-6)2]=.故填.[归纳总结]数据中有未知数时,一般先求出这个未知数,再根据方差公式计算即可.若一组数据是由另一组数据逐个加几或减几得到的,则这两组数据的方差相同.【跟踪训练3】我市射击队为了从甲、乙两名运动员中选出一名运动员参加省运会比赛,组织了选拔测试,两人分别进行了五次射击,成绩(单位:环)如下:甲10 9 8 9 9乙10 8 9 8 10则应选派运动员参加省运会比赛.〔解析〕甲的平均数是×(10+9+8+9+9)=9,乙的平均数是×(10+8+9+8+10)=9,甲的方差是=×[(10-9)2+(9-9)2+(8-9)2+(9-9)2+(9-9)2]=0.4,乙的方差是=×[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2]=0.8,∵<,∴甲的成绩稳定,∴应选择甲运动员参加省运会比赛.故填甲.专题四用样本估计总体【专题知识】一般情况下,如果总体的容量较大,不便分析其数据特征,我们可以通过随机抽取一定的样本,通过样本的数据特征来对总体的数据特征进行估计,但难免有一定误差.本章主要利用平均数、方差的公式,通过计算样本的平均数、方差,估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想.【专题分析】考查用样本估计总体的题目,选择题、填空题或解答题的形式均有可能出现,一般在3~5分.例4杨静在承包的果园里种植了100棵樱桃树,今年已经进入收获期,从中任意采摘了6棵树上的樱桃,分别称得每棵树的产量(单位:千克)如下表:序号 1 2 3 4 5 6产量17 21 19 18 20 19设这组数据的中位数为m,樱桃的总产量为n,则m,n分别为()A.18,2000B.19,1900C.18.5,1900D.19,1850解析:把数据17,21,19,18,20,19按从小到大的顺序排列为17,18,19,19,20,21,∴中位数为19,平均数为==19,即每棵樱桃树的产量约为19千克,∴樱桃的总产量约为19×100=1900千克.故选B.[易错点津]在求中位数时容易出现的错误是没有把数据按大小顺序排列,而是直接求了表格中从左到右中间两个数的平均数.【跟踪训练4】据省环保网发布的消息,吉首市空气质量评价连续两年居全省14个省辖市城市之首,下表是吉首市2014年5月份前10天的空气质量指数统计表.2014年5月1日~10日空气质量指数(AQI)情况(表一)日期1日2日3日4日5日6日7日8日9日10日空气质量指数(AQI) 28 38 94 53 63 149 53 90 84 35空气质量污染指数标准(AQI)(表二)污染指数等级0~50 优51~100 良101~150 轻微污染151~200 轻度污染(1)请你计算这10天吉首市空气质量指数的平均数,并据此判断这10天吉首市空气质量平均状况属于哪个等级;(用科学计算器计算或笔算,结果保留整数)(2)按规定,当空气质量指数AQI≤100时,空气质量才算“达标”,请你根据表(一)和表(二)所提供的信息,估计今年(365天)吉首市空气质量“达标”的天数.(结果保留整数)解析:(1)算出10天空气质量指数的平均数并根据对应表作出判断即可;(2)先统计出样本中“达标”的天数并算出达标率,再算出今年(365天)吉首市空气质量“达标”的天数即可.解:(1)=×(28+38+94+53+63+149+53+90+84+35)=68.7≈69,这10天空气质量平均状况属于良.(2)∵这10天中“达标”的天数为9天,∴365×=328.5≈329,∴今年吉首市空气质量“达标”的天数为329天.专题五统计思想【专题知识】统计学是用方法论科学,在所有涉及实质性现象的领域中,统计方法都发挥着越来越重要的作用.这些统计方法具有内在的联系和逻辑关系,在认识事物时存在比较通用的模式,这些认识模式是统计学的基本思想.本章中,统计思想就是通过数据收集、数据处理和数据分析,更合理地解决实际问题.【专题分析】统计学是与数据打交道的一门学科,研究如何搜集、整理、计算和分析数据,然后从中找出一些规律,统计思想是用统计知识解决现实生活中涉及数据的问题.题型可以以多种形式出现.例5 某工厂有220名员工,财务科要了解员工收入情况.现在抽测了10名员工的本月收入,结果如下:(单位:元)166001540015100167001620015800158001600016200 16200(1)这组数据的中位数和众数分别是多少?(2)员工的月平均收入是多少?(3)估算一下财务科本月应准备多少钱发工资.解:(1)将这组数据按照从小到大的顺序排列为15100,15400,15800,15800,16000, 16200,16200,16200,16600,16700,处于中间位置的两个数为16000和16200,故中位数为16100.该组数据中,出现次数最多的数为16200,故众数是16200.(2)员工的月平均收入为(15100×1+15400×1+15800×2+16000×1+16200×3+16600×1+16700×1)÷10=16000(元).(3)从(2)得到员工的月平均收入为16000元,工厂共有220名员工,所以估计财务科本月应准备16000×220=3520000(元).【针对训练5】请根据所给信息,帮助小颖同学完成她的调查报告.2013年4月叶邑八年级学生每天干家务活平均时间的调查报告调查目的了解八年级学生每天干家务活的平均时间调查内容叶邑中学八年级学生干家务活的平均时间调查方式抽样调查调查步骤1.数据的收集:(1)在回龙八年级每班随机调查5名学生(2)统计这些学生2013年4月每天干家务活的平均时间(单位: min),结果如下(其中A表示10 min,B表示20 min,C表示30 min)B A A B B B B AC B B A B B CA B A A C A B B C B A B B A C2.数据的处理:以统计图的形式呈现上述统计结果,请补全统计图3.数据的分析:列式计算随机调查的学生每天干家务活平均时间的平均数(结果保留整数)调查结论叶邑中学八年级共有240名学生,其中大约有名学生每天干家务活的平均时间是20 min解析:先从表格中得出平均每天干家务活的时间为30 min的有5名学生,从而补全统计图,再根据A表示10 min,B表示20 min,C表示30 min和学生数即可求出随机调查的学生每天干家务活的平均时间的平均数,最后根据每天干家务活的平均时间是20 min所占的百分比乘240,即可得出大约每天干家务活的平均时间是20 min的学生数.解:从表中可以看出C的学生数是5人,如图所示,每天干家务活平均时间的平均数是(10×10+15×20+5×30)÷30≈18(min),根据题意得240×=120(人),回龙八年级共有240名学生,其中大约有120名学生每天干家务活的平均时间是20 min.专题六方程思想【专题分析】本章中运用方程思想主要是将一组数据中的未知数据用x,y表示,然后根据已知条件列出方程或方程组求解.例6 八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表:参赛同学答对题数答错题数未答题数A19 0 1B17 2 1C15 2 3D17 1 2E//7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知A,B,C,D,E五位同学的成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).解析:本题考查了统计知识及二元一次方程(组)的综合应用,解题的关键是能根据题目的条件建立方程或方程组求解实际问题.(1)根据得分规则分别求得4名学生的成绩,再求平均数.(2)①根据E同学的总分和得分规则利用方程组或方程求得E同学的答对题数和答错题数;②根据题目中出现的表格计算A,B,C,D四位同学的得分,与最后获知的A,B,C,D四位同学的成绩进行比较确定记错答题情况的同学,最后求得他的实际答对题数和答错题数.解:(1)A同学的成绩为5×19-2×0+0×1=95(分),B同学的成绩为5×17-2×2+0×1=81(分),C同学的成绩为5×15-2×2+0×3=71(分),D同学的成绩为5×17-2×1+0×2=83(分).A,B,C,D四位同学成绩的平均分为=82.5(分).答:A,B,C,D四位同学成绩的平均分为82.5分.(2)①设E同学答对x题,答错y题.由题意,得解得答:E同学答对12题,答错1题.②C同学,他实际答对14题,答错3题,未答3题.[归纳总结]根据得分规则及学生答题情况建立方程或方程组解决问题.【跟踪训练6】下表是某校九年级(1)班30名学生期末考试的数学成绩表(已污损):成绩/分50 60 70 80 90 100人数/人 2 5 7 3已知该班学生期末考试的数学成绩的平均分是76分.(1)求该班成绩为80分和90分的各有多少人;(2)设该班30名学生数学成绩的众数为a,中位数为b,求a+b的值.解析:(1)根据已知条件,利用平均数的计算公式列出方程组求解即可.(2)根据众数和中位数的概念确定这组数据的众数和中位数,即可求出a +b 的值. 解:(1)设该班有x 人得80分,有y 人得90分,根据题意和平均数的意义,可列出方程组为:⎪⎩⎪⎨⎧----=+=⨯+++⨯+⨯+⨯375230763031009080770560250y x y x , 整理得⎩⎨⎧=+=+1310998y x y x ,解得⎩⎨⎧==58y x 因此该班成绩为80分的学生有8人,成绩为90分的学生有5人.(2)分析表格中的数据可知该班30名学生数学成绩的众数为80分,中位数(按从小到大排序后第15个数和第16个数的平均数)为80分,所以a +b =80+80=160.专题七 数形结合思想【专题知识】数形结合是指将数(或量)与形(图形)结合起来对问题进行研究,本章中许多题目的信息都是通过统计图给出的,有些问题将数据表现在图上,更能直观地反映数据的特点,解决此类题目我们要把抽象的数据和直观的图形结合起来,使问题达到“化难为易、化抽象为直观”.【专题分析】统计中的题目大部分都是以图表形式提供信息,所以涉及运用数形结合思想较广泛.可以以选择题、填空题或解答题的形式出现.例7 某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如下两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型号校服的学生有多少?(2)在条形统计图中,请把空缺的部分补充完整;(3)在扇形统计图中,请计算185型号校服所对应扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.解析: (1)由条形统计图确定165型号的人数,由扇形统计图确定165型号占的百分比,得出总人数,再用总人数乘175型号占的百分比求出穿175型号校服的学生人数;(2)根据人数把条形统计图补充完整;(3)由条形统计图得出穿185型号校服的人数,再计算出百分比,用360°乘百分比求出圆心角的度数;(4)观察各个数据,出现次数最多的是众数,排序后中间的两个数据的平均数是中位数.解:(1)15÷30%=50(人),50×20%=10(人),即该班共有50名学生,其中穿175型号校服的学生有10人.(2)补充如下:(3)圆心角的度数为360°×=14.4°.(4)165和170出现的次数最多,都是15次,故众数是165和170;共50个数据,第25个和第26个数据都是170,故中位数是170.[解题策略]本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,此题还需要准确掌握平均数、中位数、众数的概念及计算方法.【跟踪训练7】在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是() A.众数是90 B.中位数是90 C.平均数是90 D.极差是15解析:根据折线统计图,可以发现数据80出现次数是1,数据85出现次数是2,数据90 出现次数是5,数据95 出现次数是2,按照数据由小到大的次数累加确定中位数,根据次数出现多少判断众数,结合平均数计算方法确定平均数,极差用最大数据减去最小数据即可.易于看出众数是90,A正确,中位数是90,B正确,极差是95-80=15,D正确,运用排除法C错误,也可进一步计算平均数为(80×1+85×2+90×5+95×2)÷10=89,C错误.故选C.人教版八下数学第20章《数据的分析》复习学案【学习目标】知识与技能了解总体、个体、样本等概念,理解统计的基本思想是用样本的特征去估计总体的特征,会用平均数、中位数、众数、极差、方差进行数据处理.过程与方法经历探索数据的收集、整理、分析过程,在活动中发展学生的统计意识和数据处理的方法与能力.情感态度与价值观培养合作交流的意识与能力,提高解决简单的实际问题能力,形成一定的数据意识和解决问题的能力,体会特征数据的应用价值.【学习重点】应用样本数字特征估计总体的相应特征,处理实际问题中的统计内容.【学习难点】方差概念的理解和应用.【自主学习】Step 1:梳理知识夯实基础知识线索:平均数中位数众数极差方差集中趋势波动大小数字特征应用本章思想:平均数是衡量样本(求一组数据)和总体平均水平的特征数,通常用样本的平均数去估计总体的平均数。
数学八年级下册《数据的分析复习》教案
课标解读与
教材分析【课标要求】
1、进一步理解平均数、中位数和众数等统计量的统计意义;
2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势;
3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况;
4、能用计算器的统计功能进行统计计算,进一步体会计算器的优越性;
5、会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想;
6、从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事
求是的科学态度。
教学内容分析:
1、平均数、中位数和众数
2、极差和方差
3、数据的波动情况
教学目标
知识
与
技能
1、平均数、中位数和众数
2、极差和方差
3、数据的波动情况
过程
与
方法
从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系
情感
态度
价值观
感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度
教学重点与难点重点
1、进一步理解平均数、中位数和众数等统计量的统计意义;
2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据
的集中趋势;
3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情
况;
难点
1、进一步理解平均数、中位数和众数等统计量的统计意义;
2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据
的集中趋势;
3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情
况;
4、能用计算器的统计功能进行统计计算,进一步体会计算器的优越性;
5、会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必
要性,体会用样本估计总体的思想;
媒体教
具
课时1课时
教学过程
修改栏
教学内容师生互动
1、P136复习题20 1-9
2、配套练习P79-81 评估与反思考虑学生出现的问题:对“权”的意义理解不深刻,易混淆算术平均数与加权平均数的计算公式。
加强概念的分析,多做对比练习
注意方差是“偏差的平方的平均数”这一重要特征。
或使用计算器计算。
板书设计
作业布置
教学反思。