简单的平移作图
- 格式:doc
- 大小:80.50 KB
- 文档页数:2
图形在坐标中的平移(基础)知识讲解【学习目标】1. 能在直角坐标系中用坐标的方法研究图形的平移变换,掌握图形在平移过程中各点的变化规律,理解图形在平面直角坐标系上的平移实质是点坐标的对应变换.2. 运用点的坐标的变化规律来进行简单的平移作图.【要点梳理】要点一、点在坐标中的平移在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.要点二、图形在坐标中的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、点在坐标中的平移1.写出下列各点平移后的点的坐标:(1)将A(-3,2)向右平移3个单位;(2)将B(1,-2)向左平移3个单位;(3)将C(4,7)向上平移2个单位;(4)将D(-1,2)向下平移1个单位.(5)将E(2,-3)先向右平移1个单位,再向下平移1个单位.【思路点拨】根据平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.即可得出平移后点的坐标.【答案与解析】解:由题意可得:(1)平移后点的坐标为:(0,2);(2)平移后点的坐标为:(-2,-2);(3)平移后点的坐标为:(4,9);(4)平移后点的坐标为:(-1,1);(6)平移后点的坐标为:(3,-4).【总结升华】本题考查了点的平移及平移特征,掌握平移中点的变化规律是关键.2.(荆门)将点P向左平移2个单位,再向上平移1个单位得到P′(-1,3),则点P 的坐标是.【思路点拨】在平面直角坐标系中,图形的平移与图形上某点的平移相同,本题需注意的是已知新点的坐标,求原来点的坐标,注意平移的顺序的反过来的运用.【答案】(1,2).【解析】新点P′的横坐标是-1,纵坐标是3,点P′向右平移2个单位,再向下平移1个单位得到原来的点P,即点P的横坐标是-1+2=1,纵坐标为3-1=2.则点P的坐标是(1,2).【总结升华】左右平移的单位数是平移后点的横坐标减去平移前对应点的横坐标,上下平移的单位数是平移后点的纵坐标减去对应平移前点的纵坐标.举一反三:【高清课堂:第二讲平面直角坐标系2 369935 练习4 】【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】(2015•海安县校级二模)在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,则点B的坐标是.【答案】(0,﹣3).解:∵将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,∴点B的坐标是(﹣2+2,3﹣6),即(0,﹣3).类型二、图形在坐标中的平移3.(2015春•邵阳县期末)在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣3,1),B(1,3).把线段AB平移后得到线段A′B′,A与A′对应,B与B′对应.若点A′的坐标是(﹣1,﹣1),则点B′的坐标为.【思路点拨】各对应点之间的关系是横坐标加2,纵坐标减2,那么让点B的横坐标加2,纵坐标减2即为点B′的坐标.【答案】(3,1).【解析】解:由A(﹣3,1)的对应点A′的坐标为(﹣1,﹣1 ),坐标的变化规律可知:各对应点之间的关系是横坐标加2,纵坐标减2,∴点B′的横坐标为1+2=3;纵坐标为3﹣2=1;即所求点B′的坐标为(3,1).故答案为(3,1).【总结升华】此题主要考查了坐标与图形的变化﹣平移,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.举一反三:【变式】按要求平移下面的图形.(1)将图形①先向右平移3个格,再向下平移5个格.(2)将图形②先向左平移2个格,再向上平移3个格.【答案】解:作图如下:4. 如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求△ABC的面积;(2)如果将△ABC向上平移1个单位长度,得△A1B1C1,再向右平移2个单位长度,得到△A2B2C2,试求A2、B2、C2的坐标;(3)△A2B2C2与△ABC的大小、形状有什么关系.【思路点拨】 (1)已知AB=6,故只要求得C到x轴距离即可.(2)在平面直角坐标系中,将图形向右(或左)平移a个单位长度,那么图形的点(x,y)向右(或向左)平移a个单位长度,可得对应点(x+a,y)或(x-a,y),将图形向上(或向下)平移b个单位长度,可得到对应点(x,y+b)或(x,y-b).(3)可根据平移的性质进行分析和判断.【答案与解析】解:(1)点C到x轴的距离为5,所以11651522ABCS AB h==⨯⨯=△;(2)根据题意求出三角形A2B2C2各顶点的坐标为A2(2,1),B2(8,1),C2(7,6);(3)连接A2B2C2三点可以看出△A2B2C2与△ABC的大小、形状相等或相同.【总结升华】平移只改变图形的位置,不改变图形的形状和大小.举一反三:【变式】如图,三角形DEF经过平移后得到三角形ABC,则点D坐标为,点E的坐标为.【答案】D(2,2),E(3,-2).。
图形的平移和旋转【图形的平移】(1)平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.注意:①平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换.②图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据.③图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.(2)平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.注意:①要正确找出“对应线段,对应角”,从而正确表达基本性质的特征.②“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.(3)简单的平移作图平移作图:确定一个图形平移后的位置所需条件为:①图形原来的位置;②平移的方向;③平移的距离.例1.如图,△ABC 绕C 点旋转后,顶点A 的对应点为点D ,试确定顶点B•对应点的位置,以及旋转后的三角形.分析:绕C 点旋转,A 点的对应点是D 点,那么旋转角就是∠ACD ,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB ′=ACD ,•又由对应点到旋转中心的距离相等,即CB=CB ′,就可确定B ′的位置,如图所示. 解:(1)连结CD(2)以CB 为一边作∠BCE ,使得∠BCE=∠ACD (3)在射线CE 上截取CB ′=CB 则B ′即为所求的B 的对应点. (4)连结DB ′则△DB ′C 就是△ABC 绕C 点旋转后的图形.例2.如图,四边形ABCD 是边长为1的正方形,且DE=14,△ABF 是△ADE 的旋转图形. (1)旋转中心是哪一点? (2)旋转了多少度? (3)AF 的长度是多少?(4)如果连结EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE 的长度,由勾股定理很容易得到.•△ABF 与△ADE 是完全重合的,所以它是直角三角形. 解:(1)旋转中心是A 点. (2)∵△ABF 是由△ADE 旋转而成的 ∴B 是D 的对应点 ∴∠DAB=90°就是旋转角 (3)∵AD=1,DE=14∴=4∵对应点到旋转中心的距离相等且F是E的对应点∴AF=4(4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF是等腰直角三角形.【图形的旋转】(1)旋转的概念:图形绕着某一点(固定)转动的过程,称为旋转,这一固定点叫做旋转中心。
第二节 简单的平移作图要点精讲一、简单的平移作图1.平移作图:确定一个图形平移后的位置所需条件为:(1)图形原来的位置(2)平移的方向(3)平移的距离.2.性质:经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形). 相关链接将同一点平移两次,结果可用一次平移表示,即,因此所有平移的集是一个群,称为平移群.典型解析1.将A 点沿着射线XY 方向平移3cm .【答案】【解析】1.过点A 作射线AZ//XY; 2.在射线AZ 上截取线段AB ,使AB=3cm ;3.B 点即为所求作.中考案例1.(2012浙江绍兴4分)在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD ,点A 的坐标是(0,2).现将这张胶片平移,使点A 落在点A′(5,﹣1)处,则此平移可以是()A YA.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位【答案】B.【解析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.因此,根据A的坐标是(0,2),横坐标加5,纵坐标减3得到点A′(5,﹣1),故先向右平移5个单位,再向下平移3个单位.故选B.针对训练1.如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A1的坐标是()A.(6,1)B.(0,1)C.(0,-3)D.(6,-3)2.在平面直角坐标系中,将点M(1,2)向左平移2个长度单位后得到点N,则点N的坐标是()A.(-1,2)B.(3,2)C.(1,4)D.(1,0)3.下列说法正确的是()A.由平移得到的两个图形的对应点连线长度不一定相等B.我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿着铁轨方向的平移”C.小明第一次乘观光电梯,随着电梯向上升,他高兴地对同伴说:“太棒了,我现在比大楼还高呢,我长高了!”D.在图形平移过程中,图形上可能会有不动点4.在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为 ____________ .5.如图,在平面直角坐标系中,△ABC经过平移后点A的对应点为点A′,则平移后点B的对应点B′的坐标为 ____________ .6.在平面直角坐标系中,将点P(﹣1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点P1,则点P1的坐标为____________ .7.如图,A.B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=____________ .8.在平面直角坐标系中,△ABC 的三个顶点的坐标分别是A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1 的位置,点A、B、C 的对应点分别是A1B1C1,若点A1 的坐标为(3,1).则点C1 的坐标为____________ .参考答案1.【答案】B【解析】∵四边形ABCD先向左平移3个单位,再向上平移2个单位,∴点A也先向左平移3个单位,再向上平移2个单位,∴由A(3,-1)可知,A′坐标为(0,1).故选B.2.【答案】A【解析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.因此,将点M(1,2)向左平移2个长度单位后得到点N的坐标是(1-2,2),即(-1,2).故选A.3.【答案】B【解析】根据平移性质判断4.【答案】(1,2)【解析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.因此,一青蛙从点A(-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为(-1+2,0+2),即(1,2).5.【答案】(﹣2,1)【解析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.因此,由图可得,点A(1,﹣1),A′(﹣3,3),∴平移的规律是:向左平移4个单位,再向上平移4个单位.∵点B的坐标为(2,﹣3),∴B′的坐标为(﹣2,1).6.【答案】(1,1)【解析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.因此,∵点P(﹣1,4)向右平移2个单位长度,向下平移3个单位长度,∴﹣1+2=1,4﹣3=1.∴点P1的坐标为(1,1).7.【答案】2【解析】∵A(1,0)转化为A1(2,a)横坐标增加了1,B(0,2)转化为B1(b,3)纵坐标增加了1,∴a=0+1=1,b=0+1=1.∴a+b=1+1=2.8.【答案】(7,-2)【解析】根据A点平移后的坐标变化,确定三角形的平移方法,得到C点的平移方法:由A(-2,3)平移后点A1的坐标为(3,1),可得A点横坐标加5,纵坐标减2,则点C的坐标变化与A点的变化相同,故C1(2+5,0-2),即(7,-2).扩展知识线段的平移作法作法1:将线段两端点分别平移,然后将两个平移后的点连成线段,即为原线段平移后的线段;作法2:将线段一端点平移,然后过平移后的点作原线段的平行线,在该平行线适当方向截取长度为指定线段长度,则所得线段为所求.。
图形的平移与旋转(1)知识概述1、生活中的平移.在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2、简单的平移作图.二、重点知识归纳及讲解1、图形的平移是日常生活中比较常见的几何图形变换形式,属全等变化的一种情况.平移不改变图形的大小和形状,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.2、对于简单的平移作图,要注意选好一个“基本图形”,把基本图形中的每一个点都沿着相同的方向平行移动相同的距离,再连结相应线段,就可得到平移后的图形.三、难点知识剖析1、如图(1),将△ABC在图中平移,(平移时△ABC的三个顶点一定落在图中两线交点上),最多能平移几次?分析:抓住将三角形ABC平移,就是将顶点A、B、C向同一方向平移相同的单位.解答:能平移三次,具体做法见图(2).将△ABC先向下移一个单位得到△AˊBˊCˊ,再沿AˊCˊ向左上方平移到△A"B"C"处,然后向下平移到△位置.2、如图,经过平移,四边形的顶点A移到了点E,作出平移后的四边形EFGH.分析:根据平移的对应线为平行且相等的性质作图.解答:分别过B、C、D三点向右方作AE的平行线,并依次截取BH=AE,CG=AE,DF=AE,再连接成四边形EFGH,即为平移后的四边形.一、选择题1、如图,A、B、C、D是视力表中一行图案,可以通过平移图形①得到的是()A.B.C.D.2、下列各商标图案是利用平移来设计的个数是()A.1个B.2个C.3个D.4个3、在图中,由△ABC平移而得到的三角形共有()个A.2个B.3个C.4个D.5个4、下面A、B、C、D四个图案,那么平移图案(1),得到图案()A.B.C.D.5、如图,下列哪一项的右边图形是由左边图形平移而得()A.B.C.D.6、如图的图案中,可由一个“基本图案”平移而成的是()A.B.C.D.7、如图,△ABE沿射线XY的方向平移一定距离后成为△CDF,那么下面结论:①△CDF≌ABE;②AC∥EF;③∠AEB=∠CFD;④BD=EF,其中正确的有()A.1个B.2个C.3个D.4个B 卷二、解答题1、将图中的图案的一个顶点A移到了点F,请作出平移后的图案.2、将图中的正方形ABCD平移,顶点A移到了点E,作出平移后的正方形.3、如图,能由△AOB平移而得的图形是哪个?4、如图在正方体ABCD——AˊBˊCˊDˊ中,哪些线段可看做是由C ˊDˊ平移得到的?哪些线段可看做是由B Bˊ平移得到的?AˊDˊ是否也可由CˊDˊ或B Bˊ平移得到?5、如图,图中由△ABC平移而得的三角形共有多少个?如果照这个图沿AB、AC方向延伸平移下去,第n排有多少个平移而得的三角形?6、观察下面两幅图案,分析这两个图案是通过怎样的“基本图案”变化而成.答案:1、略2、向左边的方向,过B、C、D点分别作AE的平行线,依次截取与AE等长的线段为BF、CG、DH,则正方形EFGH是平移后的正方形.3、△EOF和△COD4、AB、AˊBˊ,CD可以看作是由CˊDˊ平移得到的,AAˊ,CC ˊ,DDˊ可以看作是由BBˊ平移得到的,AˊDˊ无法由CˊDˊ或BB ˊ平移得到5、9个,n个6、如图(1)(2)中的阴影部分分别向上、下、左、右平移就可以得到整个图案.图形的平移与旋转(2)知识概述1、生活中的旋转在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.2、简单的旋转作图3、简单的图案设计二、重点知识归纳及讲解1、旋转之后得到的图形与原来的图形全等,即旋转不改变图形的大小和形状.2、画旋转后的图形时,首先必须明确旋转中心,其次要注意对应点到旋转中心的距离相等,还要注意,在同一个图形中的旋转角相等.3、在认识图形变化时,要根据我们已掌握的对称的性质,平移和旋转的特征去仔细观察、分析,同时要注意“基本图案”是经过怎样的变化形成美观的图案.4、学习简单的图案设计,学会利用平移、旋转的知识,画出精美的几何图案,培养创新意识,创意美丽作品。
一、教学目标:
1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;
2、能力目标:①在实践操作过程中,逐步探索图形之间的平移关系;②对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;
3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。
二、重点与难点:
重点:图形连续变化的特点;
难点:图形的划分。
三、教学方法:
讲练结合
四、自学过程:
1、观察下面的图案:
(1)这个图案有什么特点?
(2)它可以通过什么“基本图案”经过怎样的平移而形成?(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了
2、分析下图:由其中一对兔子和乌龟怎样得到下面漂亮图案?
3、请观察下列图案,并分析图案形成过程。
二、练习
1、利用平移分析下图的形成过程。
2、请你为班级“学习专栏”设计报头图案,并用文字说明图案的
含义,如图①。
(要求是由“基本图形”经过平移而形成,要有创意!
学教反思:。