人教版高中数学必修四1.2.1 任意角的三角函数第二课时教学设计
- 格式:doc
- 大小:221.00 KB
- 文档页数:5
课 题:1.2.1 任意角的三角函数(二)教学目标:(1)掌握三角函数的符号;(2)根据定义理解与运用公式一,把求任意角的三角函数值转化为求0°~360°间的三角函数值.(3)初步应用定义分析与解决与三角函数值有关的一些简单问题. 教学重点:三种三角函数的定义域和函数值在各象限的符号;终边相同的角的同一三角函数值相等(公式一).教学难点: 理解转化,灵活运用诱导公式(一). 教学设想: 一、复习回顾:任意角的三角函数定义是什么? 二、探究新知:1.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:例1.求证:当且仅当不等式组sin 0{tan 0θθ<>成立时,角θ为第三象限角.练习:书P15练习42.提问:角的终边落在坐标轴上三个三角函数值是多少? 完成书上P15练习33.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系? 显然: 终边相同的角的同一三角函数值相等.即有公式一:sin(2)sin k απα+=, cos(2)cos k απα+=,tan(2)tan k απα+= (其中k Z ∈)利用公式一,可以把求任意角的三角函数值, 转化为求0到2π(或0︒到360︒)角的三角函数值.例2.确定下列三角函数值的符号:(1)cos250︒; (2)sin()4π-; (3)tan(672)︒-; (4)tan 3π练习: tan(-666°36’)、tan113π例3.求下列三角函数值:(1)9cos4π; (2)11tan()6π-三、学习小结(1)你能准确判断三角函数值在各象限内的符号吗?(2)请写出各三角函数的定义域;(3)终边相同的角的同一三角函数值有什么关系?你在解题时会准确熟练应用公式一吗?。
课题 1.2.1 任意角的三角函数(二)教学目标知识与技能利用三角函数线表示正弦、余弦、正切的三角函数值;利用三角函数线比较同名三角函数值的大小及表示角的范围。
过程与方法掌握用单位圆中的线段表示三角函数值;从而使学生对三角函数的定义域、值域有更深的理解。
情感态度价值观学习转化的思想,培养学生严谨治学、一丝不苟的科学精神重点正弦、余弦、正切线的概念难点正弦、余弦、正切线的利用教学设计教学内容教学环节与活动设计探究点一三角函数的定义域任意角的三角函数是在坐标系中定义的,角的范围是使函数有意义的实数集.根据任意角三角函数的定义可知正弦函数y=sin x的定义域是__;余弦函数y=cos x的定义域是__;正切函数y=tan x的定义域是____________________________.在此基础上,可以求一些简单的三角函数的定义域.例如:(1)函数y=sin x+tan x的定义域为_____________.答案{x|x∈R且x≠kπ+π2,k∈Z}(2)函数y=sin x的定义域为________________.答案{x|2kπ≤x≤2kπ+π,k∈Z}(3)函数y=lg cos x的定义域为________________.答案{x|2kπ-π2<x<2kπ+π2,k∈Z}问题1 请叙述正弦线、余弦线、正切线的作法?答过任意角α的终边与单位圆的交点P,过点P向x轴作垂线,垂足为M,则由垂足M指向点P的有向线段MP就叫做α的正弦线,位于x轴上,由原点指向垂足M的有向线段OM就是α的余弦线.过点A(1,0)作单位圆的切线,切线与角α的终边或其反向延长线交于点T,则由A指向交点T的有向线段AT教学内容教学环节与活动设计探究点三 三角函数线的应用三角函数线是三角函数的几何表示,是任意角的三角函数定义的一种“形”的补充,线段的长度表示了三角函数绝对值的大小,线段的方向表示了三角函数值的正负.仔细观察单位圆中三角函数线的变化规律,回答下列问题.问题1 若α为任意角,根据单位圆中正弦线和余弦线的变化规律可得:sin α的范围是 ;cos α的范围是.问题2 若α为第一象限角,证明sin α+cos α>1.证明 设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,则sin α=MP ,cos α=OM ,OP =1. 在Rt △OMP 中,由两边之和大于第三边得MP +OM>OP ,即sin α+cos α>1.问题3 若α为任意角,根据单位圆中正弦线和余弦线的变化规律探究sin2α+cos2α与1的关系.解 当α的终边落在x 轴上时,sin α=0,|cos α|=1,sin2α+cos2α=1;当α的终边落在y 轴上时,|sin α|=1,cos α=0, sin2α+cos2α=1;当α的终边不落在坐标轴上时,sin α=MP ,cos α=OM.在Rt △OMP 中,|MP|2+|OM|2=|OP|2=1. ∴sin2α+cos2α=1.综上所述,对于任意角α,都有sin2α+cos2α=1. 例1 在单位圆中画出满足sin α=12的角α的终边,并求角α的取值集合.解 已知角α的正弦值,可知MP =12,则P 点纵坐标为12.所以在y 轴上取点 ⎛⎭⎪⎫0,1.过这点作x 轴的平行线,交教教学内容教学环节与活动设计。
2020-2021学年高中数学第一章三角函数1.2.1 任意角的三角函数学案新人教A版必修4年级:姓名:1.2 任意角的三角函数1.2.1 任意角的三角函数(一)内容标准学科素养1.理解任意角的三角函数的定义并利用定义求值.2.结合单位圆定义三角函数,判断三角函数在各个象限的符号.3.掌握三角函数诱导公式一.提升数学运算运用直观想象授课提示:对应学生用书第7页[基础认识]知识点一任意角的三角函数阅读教材P11~12,思考并完成以下问题(1)使锐角α的顶点与原点O重合,始边与x轴的非负半轴重合,在终边上任取一点P,作PM⊥x轴于M,设P(x,y),|OP|=r.那么sin α、cos α、tan α如何用x,y或r表示?提示:sin α=|PM||OP|=yr,cos α=|OM||OP|=xr,tan α=|PM||OM|=yx.(2)对确定的锐角α,sin α,cos α,tan α的值是否随P点在终边上的位置的改变而改变?为什么?提示:不变.三角形相似,对应边成比例.(3)当取|OP|=1时,sin α,cos α,tan α的值怎样表示?提示:sin α=y,cos α=x,tan α=yx.(4)如果α的终边OP在第二象限且|OP|=1,P(x,y),sin α,cos α,tan α的表示变化吗?提示:不变.仍是sin α=y,cos α=x,tan α=yx.前提如图,设α是一个任意角,它的终边与单位圆交于点P(x,y)定义正弦y叫做α的正弦,记作sin α,即sin α=y余弦 x 叫做α的余弦,记作cos α,即cos α=x 正切 y x 叫做α的正切,记作tan α,即tan α=yx(x ≠0) 三角函数正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数值的函数,将它们统称为三角函数.三角函数 定义域 sin α R cos α Rtan α α≠k π+π2,k ∈Z知识点二 阅读教材P 13,思考并完成以下问题根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗? (1)当α的终边在第一象限时,P (x ,y ). 提示:sin α=y >0,cos α=x >0,tan α=y x >0 (2)当α的终边在第二象限时,P (x ,y ). 提示:sin α=y >0,cos α=x <0,tan α=y x<0. (3)当α的终边在第三象限时,P (x ,y ).提示:sin α=y <0,cos α=x <0,tan α=yx>0.(4)当α的终边在第四象限时,P (x ,y ).提示:sin α=y <0,cos α=x >0,tan α=yx<0.知识梳理 口诀概括为:一全正、二正弦、三正切、四余弦(如图).知识点三 诱导公式一阅读教材P 14,思考并完成以下问题当角α分别为30°,390°,-330°时,它们的终边有什么特点? 提示:sin 390°=sin(360°+30°), sin(-330°)=sin(-360°+30°), 故30°、390°、-330°终边相同. 知识梳理 诱导公式一sin(α+k ·2π)=sin α, cos(α+k ·2π)=cos α, tan(α+k ·2π)=tan α, 其中k ∈Z .(1)当α的终边在y 轴正半轴时,P (0,1),则α=π2+2k π,k ∈Z .sin α=sin ⎝ ⎛⎭⎪⎫π2+2k π=sin π2=1.cos α=cos ⎝ ⎛⎭⎪⎫π2+2k π=cos π2=0.(2)当α的终边在y 轴负半轴时,P (0,-1),则α=32π+2k π,k ∈Z .sin α=sin ⎝ ⎛⎭⎪⎫32π+2k π=sin 32π=-1.cos α=cos ⎝ ⎛⎭⎪⎫32π+2k π=cos 32π=0.(3)当α的终边在x 轴正半轴时,P (1,0), 则α=2k π,k ∈Z .sin α=sin(2k π+0)=sin 0=0. cos α=cos(2k π+0)=cos 0=1. tan α=tan(2k π+0)=tan 0=0.(4)当α的终边在x 轴负半轴时,P (-1,0), 则α=2k π+π,k ∈Z .sin α=sin(2k π+π)=sin π=0. cos α=cos(2k π+π)=cos π=-1. tan α=tan(2k π+π)=tan π=0.[自我检测]1.若α是第二象限角,则点P (sin α,cos α)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:D2.α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则sin α=______,cos α =________.答案:35 -45授课提示:对应学生用书第8页探究一 任意角的三角函数的定义及应用[教材P 12例1、例2]方法步骤:(1)确定终边上点的坐标.(2)应用定义求值. 角度1 已知角α终边上一点的坐标求三角函数值[例1] (1)已知θ终边上一点P (x ,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ.[解析] 由题意知r =|OP |=x 2+9, 由三角函数定义得cos θ=x r=xx 2+9.又∵cos θ=1010x ,∴x x 2+9=1010x . ∵x ≠0,∴x =±1. 当x =1时,P (1,3),此时sin θ=312+32=31010, tan θ=31=3.当x =-1时,P (-1,3),此时sin θ=3(-1)2+32=31010, tan θ=3-1=-3.(2)已知角α的终边过点P (-3a ,4a )(a ≠0),求2sin α+cos α的值.[解析] r =(-3a )2+(4a )2=5|a |, ①若a >0,则r =5a ,角α在第二象限.sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,所以2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限,sin α=4a -5a =-45,cos α=-3a -5a =35.所以2sin α+cos α=-85+35=-1.角度2 已知角α终边所在直线求三角函数值[例2] 已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.[解析] 由题意知,cos α≠0.设角α的终边上任一点为P (k ,-3k )(k ≠0), 则x =k ,y =-3k ,r =k 2+(-3k )2=10|k |.(1)当k >0时,r =10k ,α是第四象限角,sin α=y r =-3k 10k =-31010,1cos α=r x =10k k=10,∴10sin α+3cos α=10×⎝ ⎛⎭⎪⎫-31010+310=-310+310=0.(2)当k <0时,r =-10k ,α是第二象限角, sin α=y r =-3k -10k =31010,。
4-1.2.1 任意角的三角函数(二)方案二:【学情分析】:(适用于平行班)三角函数是中学数学的重要内容之一,而三角函数线的概念及其应用不仅体现了数形结合的数学思想,又贯穿整个三角函数的教学.借助三角函数线可以推出三角函数公式,求解三角函数不等式,探索三角函数的图像和性质,……可以说,三角函数线是研究三角函数的有利工具.学习本节前,学生已经掌握任意角三角函数的定义,三角函数值在各象限的符号,以及诱导公式一,为三角函数线的寻找做好了知识准备.【教学目标】:(1)复习三角函数的定义、定义域与值域、符号、及诱导公式;(2)掌握利用单位圆中的有向线段分别表示任意角的正弦、余弦、正切函数值,对三角函数的定义域、值域有更深的理解;(3)能利用三角函数线解决一些简单的三角函数问题,如利用三角函数线比较两个同名三角函数值的大小及表示角的范围;(4)培养学生善于观察、勇于探索的数学能力,学习转化思想,提高解题能力.【教学重点】:三角函数线的作法及其简单应用.【教学难点】:利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用它们的几何形式表示出来.【教学突破点】:通过对有向线段的复习,分解教学难点,同时引导学生动手画图操作,通过观察、分析,获得新知.【教法、学法设计】:(1)教法选择:“引出问题、温故知新、分解难点、引导讨论、巩固应用”——启发式教学(2)学法选择:类比,达到知识迁移;动手实验,以理解知识;分析讨论,学会应用知识.【课前准备】:课件教学环节教学活动设计意图一、复习回顾1、三角函数的定义;2、三角函数在各象限角的符号;3、三角函数在轴上角的值;4、诱导公式(一):终边相同的角的同一三角函数的值相等;要求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,所以,凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆.巩固上节课内容,并为本节课的学习作铺垫二、设置疑问,点明主题前面我们学习了角的弧度制,角α弧度数的绝对值rl=α,其中l是以角α作为圆心角时所对弧的长,r是圆的半径.特别地, 当r =1时,l=α,此时的圆称为单位圆,这样就可以用单位圆中弧的长度表示所对圆心角弧度数的绝对值,那么能否用几何图形来表示任意角的正弦、余弦、正切函数值呢?这就是我们今天一起要研究的问题.既可以引出单位圆,又可以使学生通过类比联想主动、快速的探索出三角函数值的几何形式.起点,正弦线和正切线以此线段与坐标轴的公共点为起点,其中点A为定点(1,0).六、巩固训练,提高能力例1 作出下列各角的正弦线、余弦线、正切线:(1)3π;(2)136π-.学生先做,然后投影展示一个学生的作品,并强调三角函数线的位置和方向.解:图略.例2 利用三角函数线比较下列各组数的大小:(1)32sinπ与54sinπ;(2) cos32π与cos54π; (3) tan32π与tan54π解:如图可知:32sinπ>54sinπcos32π>cos54πtan32π< tan54π学生先做,教师引导学生利用三角函数线解题,并投影展示一个学生作品,强调数形结合思想.例3利用三角函数线画出适合下列条件的角α的终边:(1)21sin=α;(2)21cos-=α;(3)1tan=α.共同分析(1),设角α的终边与单位圆交于P(yx,),则αsin=y,所以要作出满足21sin=α的角的终边,只要在单位圆上找出纵坐标为21的巩固练习,准确掌握三角函数线的作法.巩固新知,提高运用知识的能力体会三角函数线的用处和实质.逆向思维,灵活运用三角函数线,并为利用三角函数线求解三角函数不等式(组)作铺垫.oBAT2T1P2 P1M2M1。
课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
(老师读,学生读,加深理解。
第一章三角函数1.1任意角和弧度制1.1.1任意角一、教学目标:1、知识与技能(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法回忆-观察-讲解-归纳-推广.四、教学设想【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置OA,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒” (即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角如果一条射线没有做任何旋转,我们称它形成了一个零角.如教材图1.1.3(1)中的角是一个正角,它等于750︒;图1.1.3(2)中,正角210α︒=,负角150,660βγ︒︒=-=-;这样,我们就把角的概念推广到了任意角,包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.角的顶点与原点重合,角的始边与x 轴的非负半轴重合。