最大值和最小值问题
- 格式:doc
- 大小:17.41 KB
- 文档页数:2
方法技巧练——最大值与最小值问题1.数字排列中的最大值与最小值。
解决数字排列中的最大值与最小值问题,要清楚:一个自然数,数位越多,这个数越大;数位越少,这个数越小。
(1)一个六位的自然数,各个数位上的数字之和是13,这个自然数最大是( 940000),最小是( 100039)。
(2)一个八位的自然数,各个数位上的数字之和是21,这个自然数最大是( 99300000),最小是( 10000299)。
2.根据近似数推断精确数的最大值与最小值。
根据近似数推断精确数的最大值与最小值,要把两种情况考虑完整:这个精确数可能比近似数大,是经过“四舍”得到的;这个精确数也可能比近似数小,是经过“五入”得到的。
再结合数值最大与最小的原则确定每一位上的数字。
(1)一个自然数,省略万位后面的尾数得到的近似数是93万,最大是多少?最小是多少?最大:934999 最小:925000【提示】“四舍五入”后是93万,“四舍”→万位上的数是3→千位上最大是4,其余各位最大是9→最大数。
“五入”→万位上的数是2→千位上最小是5,其余各位最小是0→最小数。
(2)一个整数的近似数是200万,这个数最大是多少?最小是多少?最大:2004999 最小:19950003.两个数的和一定,积的最大值与最小值。
(1)两个数的和是26,这两个数分别是多少时,积最大?13+13=2613×13=169答:积最大是169。
(2)两个数的和是43,这两个数相乘,积最大是多少?21+22=43 并且两个加数最接近21×22=462答:积最大是462。
(3)两个数的和是52,这两个数相乘,积最大是多少?26+26=52 26×26=676答:积最大是676。
(4)用1,4,5,8这四个数字组成两个无重复数字的两位数,再把这两个数相乘,积最大是多少?最小是多少?积最大:先确定两个因数的十位8,5,再根据两个因数的相近原理确定个位81×54=4374积最小:先确定两个因数的十位1,4,再根据两个因数的相近原理确定个位15×48=720答:积最大是4374,最小是720。
最大值和最小值问题3.2.2最大值、最小值问题教学过程:一、复习引入:1.极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点2.极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点3.极大值与极小值统称为极值注意以下几点:(ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而>(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点二、讲解新课:1.函数的最大值和最小值观察图中一个定义在闭区间上的函数的图象.图中与是极小值,是极大值.函数在上的最大值是,最小值是.一般地,在闭区间上连续的函数在上必有最大值与最小值.说明:⑴在开区间内连续的函数不一定有最大值与最小值.如函数在内连续,但没有最大值与最小值;⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.⑶函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个⒉利用导数求函数的最值步骤:由上面函数的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数在上连续,在内可导,则求在上的最大值与最小值的步骤如下:⑴求在内的极值;⑵将的各极值与、比较得出函数在上的最值三、讲解范例:例1求函数在区间上的最大值与最小值例2已知x,y为正实数,且满足,求的取值范围例3.设,函数的最大值为1,最小值为,求常数a,b例4已知,∈(0,+∞).是否存在实数,使同时满足下列两个条件:(1))在(0,1)上是减函数,在[1,+∞)上是增函数;(2)的最小值是1,若存在,求出,若不存在,说明理由.四、课堂练习:1.下列说法正确的是()A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值C.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则f′(x)()A.等于0B.大于0C.小于0D.以上都有可能3.函数y=,在[-1,1]上的最小值为()A.0B.-2C.-1D.4.函数y=的最大值为()。
初中几何最值问题类型
初中几何中的最值问题类型有以下几种:
1.最大值最小值问题:
求某个几何图形的最大面积或最小周长,如矩形、三角形等。
求抛物线的最高点或最低点,即顶点的坐标。
2.极值问题:
求函数图像与坐标轴的交点。
求函数在某个区间内的最大值或最小值,如求二次函数的最
值等。
3.最优化问题:
求物体从一个点到另一个点的路径问题,如两点之间的最短
路径、最快速度等。
4.最长边最短边问题:
求三角形的最长边或最短边,如用三根木棍构成三角形,求
最长边的长度。
5.相等问题:
求两个几何形状中的某个参数,使得它们的某个关系成立,
如求两个相似三角形的边长比、两个等腰三角形的底角角度等。
这些问题类型都需要通过合理的分析和运用相关的几何定理
来解决。
对于初中学生来说,熟练掌握基本的几何概念和定理,灵活运用数学思维和方法,可以较好地解决这些最值问题。
通
过多做练习和思考,培养几何思维和解决问题的能力。
函数的最大值与最小值我们常常遇到求最大值和最小值的问题,在许多情况下可以归结为求函数的最大值与最小值.这类问题涉及的知识面广,综合性强,解法灵活,因而对于培养学生的数学能力具有重要作用.本讲从四个方面来讨论如何求解函数的最大值与最小值问题.1.一次函数的最大值与最小值一次函数y=kx+b在其定义域(全体实数)内是没有最大值和最小值的,但是,如果对自变量x的取值范围有所限制时,一次函数就可能有最大值和最小值了.例1 设a是大于零的常数,且a≠1,求y的最大值与最小值.大值a.例2 已知x,y,z是非负实数,且满足条件 x+y+z=30,3x+y-z=50.求u=5x+4y+2z的最大值和最小值.分析题设条件给出两个方程,三个未知数x,y,z,当然,x,y,z的具体数值是不能求出的.但是,我们固定其中一个,不妨固定x,那么y,z都可以用x来表示,于是u便是x的函数了.解从已知条件可解得 y=40-2x,z=x-10.所以u=5x+4y+2z=5x+4(40-2x)+2(x-10)=-x+140.又y,z均为非负实数,所以解得10≤x≤20.由于函数u=-x+140是随着x的增加而减小的,所以当x=10时,u有最大值130;当x= 20时,u有最小值120.2.二次函数的最大值与最小值例3 已知x1,x2是方程 x2-(k-2)x+(k2+3k+5)=0解由于二次方程有实根,所以△=[-(k-2)]2-4(k2+3k+5)≥0,3k2+16k+16≤0,例4 已知函数有最大值-3,求实数a的值.解因为的范围内分三种情况讨论.-a2+4a-1=-3例5 已知边长为4的正方形截去一个角后成为五边形ABCDE(如图3-12),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.解设矩形PNDM的边DN=x,NP=y,于是矩形PNDM的面积 S=xy,2≤X≤4.易知CN=4-x,EM=4-y,且有二次函数S=f(x)的图像开口向下,对称轴为x=5,故当x≤5时,函数值是随x的增加而增加,所以,对满足2≤x≤4的S来说,当x=4时有最大值例6 设p>0,x=p时,二次函数f(x)有最大值5,二次函数g(x)的最小值为-2,且g(p)=25,f(x)+g(x)=x2+1 6x+13.求g(x)的解析式和p的值.解由题设知f(p)=5,g(p)=25,f(p)+g(p)=p2+16p+13,所以 p2+16p+13=30, p=1(p=-17舍去).由于f(x)在x=1时有最大值5,故设 f(x)=a(x-1)2+5,a<0,所以g(x)=x2+16x+13-f(x)=(1-a)x2+2(a+8)x+8-a.由于g(x)的最小值是-2,于是解得a=-2,从而g(x)=3x2+12x+10.3.分式函数的最大值与最小值法是去分母后,化为关于x的二次方程,然后用判别式△≥0,得出y的取值范围,进而定出y的最大值和最小值.解去分母、整理得(2y-1)x2+2(y+1)x+(y+3)=0.△≥0,即△=[2(y+1)]2-4(2y-1)(y+3)≥0,解得-4≤y≤1.时,取最小值-4,当x=-2时,y取最大值1.说明本题求最值的方法叫作判别法,这也是一种常用的方法.但在用判别法求最值时,应特别注意这个最值能否取到,即是否有与最值相应的x值.解将原函数去分母,并整理得yx2-ax+(y-b)=0.因x是实数,故△=(-a)2-4?y?(y-b)≥0,由题设知,y的最大值为4,最小值为-1,所以(y+1)(y-4)≤0,即y2-3y-4≤0.②由①,②得所以a=±4,b=3.4.其他函数的最大值与最小值处理一般函数的最大值与最小值,我们常常用不等式来估计上界或下界,进而构造例子来说明能取到这个上界或下界.解先估计y的下界.又当x=1时,y=1,所以,y的最小值为1.说明在求最小(大)值,估计了下(上)界后,一定要举例说明这个界是能取到的,才能说这就是最小(大)值,否则就不一定对了.例如,本题我们也可以这样估计:但无论x取什么值时,y取不到-3,即-3不能作为y的最小值.例10 设x,y是实数,求u=x2+xy+y2-x-2y的最小值.分析先将u看作是x的二次函数(把y看作常数),进行配方后,再把余下的关于y的代数式写成y的二次函数,再配方后,便可估计出下界来.又当x=0,y=1时,u=-1,所以,u的最小值为-1.例11 求函数的最大值,并求此时的x值,其中[a]表示不超过a的最大整数.练习1.填空:(1)函数y=x2+2x-3(0≤x≤3)的最小值是_____,最大值是_______.(3)已知函数y=x2+2ax+1(-1≤x≤2)的最大值是4,则a=_____.是_______.(5)设函数y=-x2-2kx-3k2-4k-5的最大值是M,为使M最大,k=_____.2.设f(x)=kx+1是x的函数,以m(k)表示函数f(x)=kx+1在-1≤x≤3条件下的最大值,求函数m(k)的解析式和其最小值.3.x,y,z是非负实数,且满足x+3y+2z=3,3x+3y+z=4.求u=3x-2y+4z的最大值与最小值.4.已知x2+2y2=1,求2x+5y2的最大值和最小值.交点间的距离的平方最小,求m的值.6.已知二次函数y=x2+2(a+3)x+2a+4的图像与x轴的两个交点的横坐标分别为α,β,当实数a变动时,求(α-1)2+(β-1)2的最小值.。
方法技巧练——最大值与最小值问题1.数字排列中的最大值与最小值。
解决数字排列中的最大值与最小值问题,要清楚:一个自然数,数位越多,这个数越大;数位越少,这个数越小。
(1)一个六位的自然数,各个数位上的数字之和是13,这个自然数最大是( 940000),最小是( 100039)。
(2)一个八位的自然数,各个数位上的数字之和是21,这个自然数最大是( 99300000),最小是( 10000299)。
2.根据近似数推断精确数的最大值与最小值。
根据近似数推断精确数的最大值与最小值,要把两种情况考虑完整:这个精确数可能比近似数大,是经过“四舍”得到的;这个精确数也可能比近似数小,是经过“五入”得到的。
再结合数值最大与最小的原则确定每一位上的数字。
(1)一个自然数,省略万位后面的尾数得到的近似数是93万,最大是多少?最小是多少?最大:934999 最小:925000【提示】“四舍五入”后是93万,“四舍”→万位上的数是3→千位上最大是4,其余各位最大是9→最大数。
“五入”→万位上的数是2→千位上最小是5,其余各位最小是0→最小数。
(2)一个整数的近似数是200万,这个数最大是多少?最小是多少?最大:2004999 最小:19950003.两个数的和一定,积的最大值与最小值。
(1)两个数的和是26,这两个数分别是多少时,积最大?13+13=2613×13=169答:积最大是169。
(2)两个数的和是43,这两个数相乘,积最大是多少?21+22=43 并且两个加数最接近21×22=462答:积最大是462。
(3)两个数的和是52,这两个数相乘,积最大是多少?26+26=52 26×26=676答:积最大是676。
(4)用1,4,5,8这四个数字组成两个无重复数字的两位数,再把这两个数相乘,积最大是多少?最小是多少?积最大:先确定两个因数的十位8,5,再根据两个因数的相近原理确定个位81×54=4374积最小:先确定两个因数的十位1,4,再根据两个因数的相近原理确定个位15×48=720答:积最大是4374,最小是720。
2.2 最大值,最小值问题1.函数的最大值和最小值观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x .一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 说明:⑴在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值.如函数xx f 1)(=在),0(+∞内连续,但没有最大值与最小值;⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.⑶函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,⒉利用导数求函数的最值步骤:由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,1.求函数593)(23+--=x x x x f 在]4,2[-上的最大值和最小值。
【解析】)3)(1(3963)(2-+=+-='x x x x x f令0)(='x f ,得3,121=-=x x , 由于15)4(,3)2(,22)3(,10)1(-==--==-f f f f所以,)(x f 在在]4,2[-上的最大值是10)1(=-f ,最小值是22)3(-=f 。
2. 已知某商品的需求函数为x Q 1001000-=,从成本函数为Q C 31000+=。
最大值和最小值问题
3.2.2 最大值、最小值问题教学过程:一、复习引入: 1.极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点 2.极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点 3.极大值与极小值统称为极值注意以下几点:(�。
┘�值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(��)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(�#┘�大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而 > (�ぃ┖�数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点二、讲解新课: 1.函数的最大值和最小值观察图中一个定义在闭区间上的函数的图象.图中与是极小值,是极大值.函数在上的最大值是,最小值是.一般地,在闭区间上连续的函数在上必有最大值与最小值.说明:⑴在开区间内连续的函数不一定有最大值与最小值.如函数在内连续,但没有最大值与最小值;⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.⑶函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件. (4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个⒉利用导数求函数的最值步骤: 由上面函数的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数在上连续,在内可导,则求在上的最大值与最小值的步骤如下:⑴求在内的极值;⑵将的各极值与、比较得出函数在上的最值三、讲解范例:例1求函数在区间上的最大值与最小值例2已知x,y为正实数,且满足,求的取值范围例
3.设 ,函数的最大值为1,最小值为 ,求常数a,b 例4已知 ,
∈(0,+∞).是否存在实数 ,使同时满足下列两个条件:(1) )在(0,1)上是减函数,在[1,+∞)上是增函数;(2)的最小值是1,若存在,求出,若不存在,说明理由. 四、课堂练习: 1.下列说法正确的是( ) A.函数的极大值就是函数的最大值 B.函数的极小值就是函数的最小值 C.函数的最值一定是极值 D.在闭区间上的连续函数一定存在最值 2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则f′(x) ( ) A.等于0 B.大于0 C.小于0 D.以上都有可能 3.函数y= ,在[-1,1]上的最小值为( ) A.0 B.-2 C.-1 D. 4.函数y= 的最大值为( )。
A. B.1 C. D. 5.设y=|x|3,那么y在区间[-3,-1]上的最小值是( ) A.27 B.-3 C.-1 D.1 6.设f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29,且a>b,则( ) A.a=2,b=29 B.a=2,b=3 C.a=3,b=2 D.a=-2,b=-3
五、小结:⑴函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点;⑵函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件;⑶闭区间上的连续函数一定有最值;开区间内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值.。