材料显微结构分析方法——清华大学研究生课程
- 格式:ppt
- 大小:2.94 MB
- 文档页数:32
材料显微结构分析方法清华大学研究生课程二i iiiii β三IV.电子束与物质的互作用一1.①②③非弹性散射产物形貌二次电子俄歇电子连续与特征X 线长波辐射(红外,可见,紫外)等离子激光(plasma)电子-空穴对晶格振动(声子)内电磁场电子结构晶体结构成份分析XRD XRF 不同深度成份分析(Anger 谱仪)形貌(SEM)可能获得信息3. 散射截面Q(或σ)表征物质对电子的散射能力Q=N/n t n i cm2N:单位体积内电子发生散射的次数n t:单位体积内物质的粒子数n i:单位面积内的入射电子数Q:相当于发生散射的几率,即相当于一个给定的互作用的有效原子截面。
n t =ρN o /A设在dx=λ自由程内,则Q =(1/λ)/(ρN o /A )平均一个电子只发生一次散射。
或λ=A /(N o ρQ )n i =1 N =1/λ1/λ=1/λa + 1/λb + 1/λc + …cm -1平均自由程:Q =N/n t n i cm 2二Z E三2. η的影响因素:数目对Z 敏感,(1) 原子序数对多元素试样:3724103.81086.1016.00254.0Z Z Z −−×+×−+−=η∑=iii mix C ηηBS e 即表明(2)入射电子能量η受影响不大→可多次反射→更多机会被散射(从试样中逸出)→穿透深度深→不易被散射(从试样中逸出)B E Q 在SEM 中作为元素相分析的一种依据。
2.δϕ材料显微结构分析X 光化学分析一XRF激发源:一次X-Raye 束EPMA不必导电,液体可试样:微区导电或镀膜Be 4-U 92相对较低,几百ppm ;绝对较高,10-13-10-14g少量到百分之百可,必须校正照射区域:检测范围:含量限制:灵敏度:定量分析:展谱方式:大面积F 9-U 92 (C 6)相对较高,几-几十ppm ;绝对较低。
微量到百分之百WDS 或EDS二分光晶体:EPMA探测器R*晶体分光优点:分辨率高1. 分光系统复杂晶体分光缺点:2. 元素逐一检测3. 总的灵敏度不高:XRD效率低;进到计数器就更低;立体角小。
材料学院材料科学与工程专业博士生培养方案(自2013级执行)一、适用学科、专业:材料科学与工程(一级学科,工学门类)●材料物理与化学(二级学科、专业)●材料学(二级学科、专业)●材料加工工程(二级学科、专业)二、培养方式1. 实行导师负责制。
必要时可设副导师,鼓励组成指导小组集体指导。
跨学科或交叉学科培养博士生时,应从相关学科中聘请副导师协助指导。
2. 博士生应在导师指导下,学习有关课程,查阅文献资料,参加学术交流,确定具体课题,独立从事科学研究,取得创新性成果。
三、知识结构及课程学习的基本要求1. 知识结构的基本要求要掌握本门学科坚实宽广的基础理论和系统深入的专业知识;要注意拓宽知识面,加强知识的综合性、前沿性和交叉性要求,为学位论文工作的创新性研究打下必要的基础。
2. 课程学习及学分组成A. 普通博士生攻读博士学位期间,需获得学位要求学分不少于14 ,其中公共必修课程 4 学分,学科专业要求课程学分不少于5 ,必修环节 5 学分。
选修或补修课程学分计入非学位要求学分。
课程设置见附录。
B.直博生攻读博士学位期间,需获得学位要求学分不少于30 ,其中公共必修课程学分不少于5,学科专业要求课程学分不少于20 ,必修环节 5 学分,考试学分不少于23 。
选修或补修课程学分计入非学位要求学分。
课设置见附录。
四、主要培养环节及有关要求1. 制定个人培养计划:博士生入学后三个月内,在导师指导下完成个人培养计划。
内容包括:研究方向、课程学习、文献阅读、选题报告、科学研究、学术交流、学位论文及实践环节等方面的要求和进度计划。
2. 文献阅读与选题报告资格考试通过后才能作选题报告。
博士生入学后一年左右应完成选题报告,最迟要在第三学期初完成。
选题报告由书面报告和口头报告组成。
书面报告与口头报告的要求见有关规定。
3. 资格考试每年春秋季学期开学后第二周进行,具体时间另定。
由院与学科方向组织两级资格考试委员会。
入学一个学期后才能也必须参加资格考试。
材料显微结构分析方法清华大学研究生课程二i iiiii β三IV.电子束与物质的互作用一1.①②③非弹性散射产物形貌二次电子俄歇电子连续与特征X 线长波辐射(红外,可见,紫外)等离子激光(plasma)电子-空穴对晶格振动(声子)内电磁场电子结构晶体结构成份分析XRD XRF 不同深度成份分析(Anger 谱仪)形貌(SEM)可能获得信息3. 散射截面Q(或σ)表征物质对电子的散射能力Q=N/n t n i cm2N:单位体积内电子发生散射的次数n t:单位体积内物质的粒子数n i:单位面积内的入射电子数Q:相当于发生散射的几率,即相当于一个给定的互作用的有效原子截面。
n t =ρN o /A设在dx=λ自由程内,则Q =(1/λ)/(ρN o /A )平均一个电子只发生一次散射。
或λ=A /(N o ρQ )n i =1 N =1/λ1/λ=1/λa + 1/λb + 1/λc + …cm -1平均自由程:Q =N/n t n i cm 2二Z E三2. η的影响因素:数目对Z 敏感,(1) 原子序数对多元素试样:3724103.81086.1016.00254.0Z Z Z −−×+×−+−=η∑=iii mix C ηηBS e 即表明(2)入射电子能量η受影响不大→可多次反射→更多机会被散射(从试样中逸出)→穿透深度深→不易被散射(从试样中逸出)B E Q 在SEM 中作为元素相分析的一种依据。
2.δϕ材料显微结构分析X 光化学分析一XRF激发源:一次X-Raye 束EPMA不必导电,液体可试样:微区导电或镀膜Be 4-U 92相对较低,几百ppm ;绝对较高,10-13-10-14g少量到百分之百可,必须校正照射区域:检测范围:含量限制:灵敏度:定量分析:展谱方式:大面积F 9-U 92 (C 6)相对较高,几-几十ppm ;绝对较低。
微量到百分之百WDS 或EDS二分光晶体:EPMA探测器R*晶体分光优点:分辨率高1. 分光系统复杂晶体分光缺点:2. 元素逐一检测3. 总的灵敏度不高:XRD效率低;进到计数器就更低;立体角小。
材料分析化学材料分析序言Array朱永法*******************电话:62783586 传真:62787601第1章序言材料科学的发展趋势⏹从简单物质到复杂物质⏹从简单结构到结构控制⏹从粉体材料到器件材料⏹从块体材料到薄膜材料⏹从纯物质到复合,掺杂材料⏹从宏观到微观的纳米材料⏹从单功能到多功能和智能材料材料科学涉及的领域⏹电子器件⏹功能材料⏹结构材料⏹纳米材料⏹环境材料⏹化学,化工,地质,冶金,机械,仪器仪表,航空航天,自动化控制,核能,建材等领域材料分析的重要性⏹材料的元素组成⏹材料的物相⏹杂质控制和掺杂⏹材料的化学价态⏹材料的结构材料分析的内容⏹材料的元素成份分析⏹材料的化学结构分析⏹材料的物相结构分析⏹材料的表观形貌分析⏹材料的键合分析⏹材料的表面与界面分析⏹材料的热分析⏹材料的力学性能分析纳米材料分析⏹纳米材料的发展⏹纳米材料的特殊性⏹纳米材料分析的特点本课程的主要内容⏹元素成份分析(AAS,AES,XRF,EDX)⏹化学价键分析(IR,LRS)⏹结构分析(XRD,ED)⏹形貌分析(SEM,TEM,AFM,STM)⏹表面与界面分析(XPS,AES,SIMS)材料分析化学材料的成份分析Array朱永法*******************电话:62783586 传真:62787601元素成份分析简介⏹元素组成与材料性能关系⏹元素成份分析技术原子发射光谱ICP,ICP-MS分析原子吸收光谱X射线荧光光谱电镜的X射线能谱分析电子显微探针分析XPS,AES,SIMS等原子吸收光谱Atomic Absorbtion Spectroscopy, AAS⏹基础知识⏹仪器原理⏹样品制备⏹分析方法⏹应用案例原子吸收光谱基础知识•1802 发现光谱吸收现象•1955年Walsh发表了一篇论文“Application of atomic absorptionspectrometry to analytical chemistry”,解决了原子吸收光谱的光源问题。
材料显微结构分析方法Analysis of Materials Microstucture一.内容提纲:材料显微结构分析是材料科学中最为重要的研究方法之一。
准确、快捷的分析结果为材料的制备工艺、材料性能微结构表征研究及其材料显微结构设计提供可靠的实验和理论依据。
本课程主要介绍包括物显微结构形貌观察、物相种类确定及其定量分析、Rietveld拟合方法、择优取向类型及其测定、微晶及纳米粉体尺寸测定、体材料及其微区成分分析和定量测定等;同时侧重介绍进行上述显微结构分析通常所采用的各种现代仪器的主要功能特性及其分析方法,其中包括X射线衍射仪(XRD)、X光荧光分析仪(XRF)、电子探针(EPME)、波谱仪(WDS)、能谱仪(EDS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等,并且按排了相应的实验。
通过本课程的学习,使研究生了解材料科学研究工作者通常关注的主要显微结构分析内容;掌握各种常见分析仪器的功能和基本原理;学会根据不同显微结构分析内容,准确选择、利用各种分析方法和手段,并得出正确的判断。
培养学生分析、解决问题的能力。
二. 教学学时: 48课堂教学 32 实验 16三. 先修课程:1.材料科学基础2.X射线衍射技术3.扫描电子显微镜4. 透射电子显微镜四. 教学对象:适用于金属、陶瓷、有机、半导体、复合材料等学科研究生。
五. 教材:主要教材:自编讲义主要参考书:1. 自编文献汇编2. X光衍射技术基础,王英华主编,原子能出版社3. Svanning Electron Microscopy and X-ray Microanalysis六. 主要讲授内容:1.物相定量分析(1)定量分析基本原理(2)参考强度法(3)含玻璃相的K值法的定量相分析(4)混样无标样定量相分析(5)理论计算定量相分析(6)具有择优取向试样的定量相分析2.织构测定及其应用(1)择优取向的种类、形成及其对性能的影响(2) 择优取向的的测定方法正极图反极图面织构的f因子表示及测定方法分布函数3. 微晶晶粒尺寸的测定(1) 微晶晶粒尺寸测定基本原理(2) 线形分析及测量(3) 微晶尺寸效应和晶格畸变效应4. X射线粉末衍射的Rietveld拟合方法(1) Rietveld方法基本原理(2) Rietveld方法中衍射峰的线形分析(3) Rietveld分析中的校正(4) Rietveld方法的晶体结构(5) Rietveld方法的指标化和相分析4.电子束与物质的相互作用(1) 物质对入射电子的散射(2) 弹性散射截面(3) 非弹性散射的能量损失(4) 背散射电子(5) 二次电子5. 光化学分析(1) 光化学分析原理(2) WDS分光(3) EDS分光(4) X光荧光定量分析方法6.电子探针微区定量分析(1) 定量分析基础(2) 原子吸收因子校正(3) 吸收因子校正(4) 荧光校正(5) Z.A.F校正的循环逼近7.SEM/EDS,WDS显微分析(1) SEM结构原理(2) 探测器(3) 二次电子显微像(4) 背散射电子像与吸收电子像8.TEM/EDS,WDS显微分析(1) TEM结构原理(2) TEM显微成像及衍射花样成像原理(3) 散射衬度(4) 衍衬像(5) 电子衍射二. 主要实验内容:1.采用C值理论计算方法的陶瓷的物相定量分析;2.材料的择优取向定量测定;3.微晶尺寸的XRD测定;4.材料断口形貌的SEM/EDS显微观测与分析;5.材料的TEM电子衍射微区物相分析。