晶体的常识
- 格式:ppt
- 大小:1.63 MB
- 文档页数:10
晶体的常识晶胞物质常见的三态是气态、液态和固态。
固态物质简称为固体,在固体中,原子、分子、离子或原子团被限制在固定的位置周围振动,所以固体具有比较刚性的结构,难以被压缩。
固体可以是晶态或非晶态,晶体以其结构中原子、分子、离子或原子团的有规则排列而区别于非晶体。
晶体随处可见在日常生活中起着非常重要的作用,例如,食盐、糖、苏打、红宝石、金刚石、石英等都属于晶态。
了解晶体的特征,掌握晶体结构知识,对认识物质性质具有重要意义。
天然红宝石及制品一.晶体的特征人们常从以下三方面来区别晶体和非晶体。
1.晶体有自范性,而非晶体没有。
晶体呈自发形成的规则的几何外形,而非晶体没有一定的外形。
有些晶体很大,直接的呈现出美丽的多面体形状,如石英晶体呈菱柱或菱锥状,明矾晶体呈八面体形,雪花有多种形状,但都为六角形,我国古代早有“雪花多六出”的记载。
菱锥和菱柱状的石英晶体正八面体形的明矾晶体雪花晶体有些晶体很小,肉眼看来是细粉末,似乎没有晶面,但借助于光学显微镜或电子显微镜也可以观察到它们整齐而有规则的外形,如我们可以观察到立方体状的氯化钠、棱柱状的硫酸铜、针状的羟基氧化铁等晶粒外形。
而玻璃、沥青、石蜡等是非晶体,它们冷却凝固时不会自发形成多面体外形,没有特征的形状,所以又称无定形体。
硫酸铜晶体小颗粒和放大的结构放大的氯化钠晶体颗粒我们把晶体在适宜的条件下,能够自发的呈现封闭的规则和凸面体外形的性质叫做晶体的自范性。
晶体自范性是晶体中粒子微观空间里呈现周期性有序排列的的宏观表象。
晶体的自范性是需要在适宜的条件下才能体现的,这个适宜条件通常指生长速率适当,如果熔融态物质冷却凝固速率过快,常常只得到看不到多面体外形的粉末或没有规则外形的块状物。
如玛瑙石熔融态的二氧化硅快速冷却形成的,而水晶是热液缓慢冷却形成的。
缺角的氯化钠晶体在饱和氯化钠溶液中慢慢会变为完美的立方体晶体,这也是晶体自范性的一种表现。
2.晶体具有固定的熔点,而非晶体没有固定的熔点。
第三章晶体结构与性质第一节晶体的常识【知识点梳理】一、晶体与非晶体1、晶体与非晶体①晶体:是内部微粒(原子、离子或分子)在空间按一定规律做周期性重复排列构成的物质。
②非晶体:是内部的原子或分子的排列呈杂乱无章的分布状态的物质。
2、晶体的特征(1)晶体的基本性质晶体的基本性质是由晶体的周期性结构决定的。
①自范性:a.晶体的自范性即晶体能自发的呈现多面体外形的性质。
b.“自发”过程的实现,需要一定的条件。
晶体呈现自范性的条件之一是晶体生长的速率适当。
②均一性:指晶体的化学组成、密度等性质在晶体中各部分都是相同的。
③各向异性:同一晶体构造中,在不同方向上质点排列一般是不一样的,因此,晶体的性质也随方向的不同而有所差异。
④对称性:晶体的外形和内部结构都具有特有的对称性。
在外形上,常有相等的对称性。
这种相同的性质在不同的方向或位置上做有规律的重复,这就是对称性。
晶体的格子构造本身就是质点重复规律的体现。
⑤最小内能:在相同的热力学条件下,晶体与同种物质非晶体固体、液体、气体相比较,其内能最小。
⑥稳定性:晶体由于有最小内能,因而结晶状态是一个相对稳定的状态。
⑦有确定的熔点:给晶体加热,当温度升高到某温度便立即熔化。
⑧能使X射线产生衍射:当入射光的波长与光栅隙缝大小相当时,能产生光的衍射现象。
X射线的波长与晶体结构的周期大小相近,所以晶体是个理想的光栅,它能使X射线产生衍射。
利用这种性质人们建立了测定晶体结构的重要试验方法。
非晶体物质没有周期性结构,不能使X射线产生衍射,只有散射效应。
(2)晶体SiO2与非晶体SiO2的区别①晶体SiO2有规则的几何外形,而非晶体SiO2无规则的几何外形。
②晶体SiO2的外形和内部质点的排列高度有序,而非晶体SiO2内部质点排列无序。
③晶体SiO2具有固定的熔沸点,而非晶体SiO2无固定的熔沸点。
④晶体SiO2能使X射线产生衍射,而非晶体SiO2没有周期性结构,不能使X射线产生衍射,只有散射效应。
晶体常识知识点总结在日常生活中,我们经常听到有关晶体的描述,例如水晶、盐晶、冰晶等。
晶体是许多物质在固态下的一种结晶状态,它们具有一定的规律性和周期性,是物质的一种特殊形态。
在化学、物理、地质学等领域,晶体的研究对于理解物质的性质和应用具有重要的意义。
本文将从晶体的定义、结构、性质、应用等方面进行详细的总结和介绍。
一、晶体的定义晶体是指具有一定规律的空间周期性排列的固态物质,其分子、原子或离子排列在空间上呈现出特定的对称性和周期性。
晶体在固态下有特定的形状和体积,能够反射、折射光线,并具有独特的物理性质。
晶体的结构和性质与其组成物质的种类和结构有关,不同的晶体具有不同的特征和用途。
二、晶体的结构1. 晶格结构晶体的结构是由原子、分子或离子在空间上的排列方式决定的,这种排列方式称为晶格结构。
晶格结构可以分为三种类型:简单立方晶格、面心立方晶格和体心立方晶格。
不同晶体的晶格结构存在差异,其形成取决于原子、分子或离子的大小、电荷和化学键等因素。
2. 晶体形态晶体的形态是指晶体表面的外部形状,它与晶体内部的晶格结构密切相关。
晶体形态一般由晶体面、晶体棱和晶体顶角组成,不同晶体具有特定的形态特征。
晶体形态的研究对于矿物学和材料科学具有重要的意义。
3. 晶体缺陷晶体在生长或形成过程中常常出现一些缺陷,例如晶格中的替位、畴界等,这些缺陷对于晶体的物理性质和化学性质具有重要的影响。
晶体缺陷的研究是晶体学和固体化学的重要内容。
三、晶体的性质1. 光学性质晶体具有特定的光学性质,包括折射、吸收、偏振等。
晶体的光学性质与其晶格结构和分子结构密切相关,不同晶体对光的作用也有所区别。
2. 热学性质晶体的热学性质包括热膨胀、热导率等。
晶体的热学性质与其分子结构、晶格结构和晶体形态有关,不同晶体在热学性质上也存在差异。
3. 电学性质晶体在电场下表现出一些特殊的电学性质,包括电介质、压电效应、铁电效应等。
晶体的电学性质对于电子器件和材料科学有着重要的应用价值。