2.4 分位数回归估计(李子奈高级应用计量经济学)
- 格式:ppt
- 大小:252.50 KB
- 文档页数:25
李子奈《计量经济学》(第4版)笔记和课后习题(含考研真题)详解李子奈《计量经济学》(第4版)笔记和课后习题详解第1章绪论一、计量经济学1计量经济学计量经济学,又称经济计量学,是由经济理论、统计学和数学结合而成的一门经济学的分支学科,其研究内容是分析经济现象中客观存在的数量关系。
2计量经济学模型(1)模型分类模型是对现实生活现象的描述和模拟。
根据描述和模拟办法的不同,对模型进行分类,如表1-1所示。
表1-1 模型分类(2)数理经济模型和计量经济学模型的区别①研究内容不同数理经济模型的研究内容是经济现象各因素之间的理论关系,计量经济学模型的研究内容是经济现象各因素之间的定量关系。
②描述和模拟办法不同数理经济模型的描述和模拟办法主要是确定性的数学形式,计量经济学模型的描述和模拟办法主要是随机性的数学形式。
③位置和作用不同数理经济模型可用于对研究对象的初步研究,计量经济学模型可用于对研究对象的深入研究。
3计量经济学的内容体系(1)根据所应用的数理统计方法划分广义计量经济学根据所应用的数理统计方法包括回归分析方法、投入产出分析方法、时间序列分析方法等;狭义计量经济学所应用的数理统计方法主要是回归分析方法。
需要注意的是,通常所述的计量经济学指的是狭义计量经济学。
(2)根据内容深度划分初级计量经济学的主要研究内容是计量经济学的数理统计学基础知识和经典的线性单方程计量经济学模型理论与方法;中级计量经济学的主要研究内容是用矩阵描述的经典的线性单方程计量经济学模型理论与方法、经典的线性联立方程计量经济学模型理论与方法,以及传统的应用模型;高级计量经济学的主要研究内容是非经典的、现代的计量经济学模型理论、方法与应用。
(3)根据研究目标和研究重点划分理论计量经济学的主要研究目标是计量经济学的理论与方法的介绍与研究;应用计量经济学的主要研究目标是计量经济学模型的建立与应用。
理论计量经济学的研究重点是理论与方法的数学证明与推导;应用计量经济学的研究重点是建立和应用计量模型处理实际问题。
第一章 导 论一、名词解释1、截面数据2、时间序列数据3、虚变量数据4、内生变量与外生变量二、单项选择题1、同一统计指标按时间顺序记录的数据序列称为 ( )A 、横截面数据B 、虚变量数据C 、时间序列数据D 、平行数据2、样本数据的质量问题,可以概括为完整性、准确性、可比性和 ( )A 、时效性B 、一致性C 、广泛性D 、系统性3、有人采用全国大中型煤炭企业的截面数据,估计生产函数模型,然后用该模型预测未来 煤炭行业的产出量,这是违反了数据的哪一条原则。
( ) A 、一致性 B 、准确性 C 、可比性 D 、完整性4、判断模型参数估计量的符号、大小、相互之间关系的合理性属于什么检验? ( )A 、经济意义检验B 、统计检验C 、计量经济学检验D 、模型的预测检验5、对下列模型进行经济意义检验,哪一个模型通常被认为没有实际价值? ( )A 、i C (消费)5000.8i I =+(收入)B 、di Q (商品需求)100.8i I =+(收入)0.9i P +(价格)C 、si Q (商品供给)200.75i P =+(价格)D 、i Y (产出量)0.60.65i K =(资本)0.4i L (劳动)6、设M 为货币需求量,Y 为收入水平,r 为利率,流动性偏好函数为012M Y r βββμ=+++,1ˆβ和2ˆβ分别为1β、2β的估计值,根据经济理论有 ( ) A 、1ˆβ应为正值,2ˆβ应为负值 B 、1ˆβ应为正值,2ˆβ应为正值 C 、1ˆβ应为负值,2ˆβ应为负值 D 、1ˆβ应为负值,2ˆβ应为正值三、填空题1、在经济变量之间的关系中, 因果关系 、 相互影响关系 最重要,是计量经济分析的重点。
2、从观察单位和时点的角度看,经济数据可分为 时间序列数据 、 截面数据 、 面板数据 。
3、根据包含的方程的数量以及是否反映经济变量与时间变量的关系,经济模型可分为 时间序列模型 、 单方程模型 、 联立方程模型 。
第7章计量经济学应用模型7.1 复习笔记一、计量经济学应用模型类型设定1.单方程应用模型类型对被解释变量数据类型的依赖性为模型选择设定类型时,被解释变量的样本观测值数据类型决定了该回归模型的类型。
表7-1 几种计量经济学模型的设定说明2.单方程模型和联立方程模型的选择对经济行为的依赖性计量经济学应用模型是对研究对象经济行为的客观描述,选择单方程模型和联立方程模型依赖于具体的经济行为。
单方程模型:以相对独立的经济活动为研究对象,且研究对象之间存在清晰的单向因果关系。
联立方程模型:以不满足相对独立但属于同一个经济系统的经济活动为研究对象,且经济系统的变量间存在复杂的互为因果的关系。
【名师点拨】该部分简要介绍了设定计量经济学模型的过程中需要注意的一些问题,是对前面章节的回顾和小结。
二、计量经济学应用模型总体回归模型设定1.计量经济学模型总体设定的“一般性”原则(1)总体回归模型设定的“研究目的导向”及其问题任何应用研究都有特定的研究目的,例如分析某两个经济变量之间的关系,或者评价某项经济政策的效果。
于是,按照特定的研究目的进行计量经济学模型总体模型的设定,成为计量经济学研究的普遍现象和最严重的问题。
(2)总体回归模型设定的“一般性”原则计量经济学模型总体设定,必须遵循“唯一性”原则,即作为研究起点的总体模型必须是唯一的。
计量经济学模型总体设定,必须遵循“一般性”的原则,即作为建模起点的总体模型必须能够包容所有经过约化得到的“简洁”的模型。
(3)遵循“一般性”原则的原因从逻辑学上讲,计量经济学模型方法是一种经验实证的方法,它是建立在证伪和证实的不对称性的逻辑学基础之上的。
一旦总体模型被设定,利用样本数据进行的经验检验只能发现已经包含其中的哪些变量是不显著的,而不能发现没有包含其中的显著变量。
从经济学上讲,总体回归模型必须反映现实的经济活动,而现实经济活动中变量之间的关系是复杂的。
一些经济学理论经常采用简洁的语言,揭示两个变量之间的关系。
计量经济学试验 (完整版)——李子奈目录实验一一元线性回归 (4)一实验目的 (4)二实验要求 (4)三实验原理 (4)四预备知识 (4)五实验内容 (4)六实验步骤 (4)1.建立工作文件并录入数据 (4)2.数据的描述性统计和图形统计: (6)3.设定模型,用最小二乘法估计参数: (6)4.模型检验: (7)5.应用:回归预测: (7)实验二可化为线性的非线性回归模型估计、受约束回归检验及参数稳定性检验9一实验目的: (9)二实验要求 (10)三实验原理 (10)四预备知识 (10)五实验内容 (10)六实验步骤 (10)实验三多元线性回归 (11)一实验目的 (11)三实验原理 (11)四预备知识 (11)五实验内容 (11)六实验步骤 (12)6.1 建立工作文件并录入全部数据 (12)6.2 建立二元线性回归模型 (12)6.3 结果的分析与检验 (12)6.4 参数的置信区间 (12)6.5 回归预测 (13)6.6 置信区间的预测 (13)实验四异方差性 (14)一实验目的 (14)二实验要求 (14)三实验原理 (14)四预备知识 (14)五实验内容 (14)六实验步骤 (14)6.1 建立对象: (14)6.2 用普通最小二乘法建立线性模型 (14)6.3 检验模型的异方差性 (14)6.4 异方差性的修正 (15)实验五自相关性 (16)一实验目地 (16)二实验要求 (16)三实验原理 (16)四预备知识 (16)五实验内容 (16)六实验步骤 (17)6.1 建立Workfile和对象 (17)6.2 参数估计、检验模型的自相关性 (17)6.3 使用广义最小二乘法估计模型 (18)6.4 采用差分形式作为新数据,估计模型并检验相关性 (19)实验六多元线性回归和多重共线性 (20)一实验目的 (20)二实验要求 (20)三实验原理 (20)四预备知识 (20)五实验内容 (20)六实验步骤 (20)6.1 建立工作文件并录入数据 (20)6.2 用OLS估计模型 (20)6.3 多重共线性模型的识别 (20)6.4 多重共线性模型的修正 (21)实验七分布滞后模型与自回归模型及格兰杰因果关系检验 (21)一实验目的 (21)二实验要求 (21)三实验原理 (21)四预备知识 (21)五实验内容 (21)六实验步骤 (22)6.1 建立工作文件并录入数据 (22)6.2 使用4期滞后2次多项式估计模型 (22)6.3 格兰杰因果关系检验 (23)实验八联立方程计量经济学模型 (24)一实验目的 (24)二实验要求 (25)三实验原理 (25)四预备知识 (25)五实验内容 (25)六实验步骤 (25)6.1 分析联立方程模型。
分位数回归及应用简介一、本文概述分位数回归是一种统计学中的回归分析方法,它扩展了传统的均值回归模型,以揭示自变量和因变量之间的非线性关系。
本文将简要介绍分位数回归的基本原理、方法及其在各种领域中的应用。
我们将概述分位数回归的基本概念和数学模型,解释其如何适应不同的数据分布和异质性。
接着,我们将讨论分位数回归的统计性质和估计方法,包括其稳健性、灵活性和有效性。
我们将通过实例展示分位数回归在经济学、医学、环境科学等领域中的实际应用,并探讨其未来的发展前景和挑战。
通过本文的阐述,读者可以对分位数回归有更深入的理解,并了解其在处理复杂数据分析问题中的潜力和价值。
二、分位数回归的基本理论分位数回归(Quantile Regression)是统计学中的一种回归分析方法,它不同于传统的最小二乘法回归,旨在估计因变量的条件分位数与自变量之间的关系。
最小二乘法回归主要关注因变量的条件均值,而分位数回归则能够提供更为全面的信息,包括条件中位数、四分位数等。
分位数回归的基本理论建立在分位数函数的基础上,分位数函数是描述随机变量在某个特定概率水平下的取值。
在分位数回归模型中,自变量通过一组参数β影响因变量Y的条件分位数。
这些参数β是通过最小化因变量的实际值与预测值之间的某种损失函数来估计的。
分位数回归的优点在于,它对于因变量的分布假设较为宽松,不需要满足正态分布或同方差性等假设。
分位数回归对异常值和离群点的影响较小,因此具有较高的稳健性。
这使得分位数回归在处理具有复杂分布和非线性关系的实际问题时表现出色。
分位数回归的估计方法主要有线性规划法、单纯形法和非线性规划法等。
这些方法的选择取决于具体的研究问题和数据特点。
在实际应用中,分位数回归通常与一些机器学习算法相结合,如随机森林、支持向量机等,以提高模型的预测精度和泛化能力。
分位数回归在金融、医学、环境科学等领域有着广泛的应用。
例如,在金融领域,分位数回归可以用于预测股票价格的风险价值(VaR)和预期损失(ES),帮助投资者进行风险管理。
计量经济学应用研究的总体回归模型设定*李子奈 内容提要:本文从计量经济学应用研究中总体回归模型设定的任务和目标出发,通过对总体模型设定的研究目的导向、经济学理论导向、数据关系导向的分析与评价,提出总体模型设定的唯一性、一般性、现实性和统计检验必要性原则;最后,提出总体回归模型设定的“经济主体动力学关系导向”原则和框架。
关键词:计量经济学模型 总体回归模型 理论导向 数据导向 动力学关系导向* 李子奈,清华大学经济管理学院,邮政编码:100084,电子信箱:liz inai @mail .ts inghua .edu .cn 。
本文受国家社会科学基金重点项目(08AJY001,计量经济学模型方法论基础研究)的资助。
作者十分感谢冯燮刚博士的博士论文给予本文的启示,感谢匿名审稿人的宝贵建议。
当然,文责自负。
一、问题的提出及其重要性计量经济学模型方法,说到底,就是回归分析方法。
任何一项计量经济学应用研究课题,首先的也是最重要的工作是设定总体回归模型。
只有设定了正确的总体回归模型,才能通过严格的数学过程和统计推断,得到正确的研究结果。
因此,它决定了应用研究的成败。
在我国,计量经济学模型已经成为经济理论研究和实际经济分析的一种主流的实证研究方法。
以《经济研究》发表的文章为例,我们对1984—2006年《经济研究》发表的3100余篇论文进行统计分析,以计量经济学模型方法作为主要分析方法的论文占全部论文的比重(参见图1),1984年为0%,到1998年为11%,然后迅速提高,2004年为40%,2005为56%,2006年为53%。
这个比重已经超过美国同类刊物《美国经济评论》(A me ric an Economic Re vie w )同期的水平。
而且研究对象遍及经济的各个领域,所应用的模型方法遍及计量经济学的各个分支。
其他经济类刊物,例如《金融研究》、《世界经济》等,无不如此。
在经济学门类各个学科的研究生学位论文中,为了提高和体现论文的学术水平,建立与应用计量经济学模型更成为一种普遍现象。