第3章 编码与调制
- 格式:ppt
- 大小:2.73 MB
- 文档页数:72
数据的编码与调制如前所述,网络中的通信信道可以分为模拟信道和数字信道,分别用于传输模拟信号和数字信号,而依赖于信道传输的数据也分为模拟数据与数字数据两类。
为了正确地传输数据,必须对原始数据进行相应的编码或调制,将原始数据变成与信道传输特性相匹配的数字信号或模拟信号后,才能送入信道传输。
如图6-20所示,数字数据经过数字编码后可以变成数字信号,经过数字调制(ASK、FSK、PSK)后可以成为模拟信号;而模拟数据经过脉冲编码调制(PCM)后可以变成数字信号,经过模拟调制(AM、FM、PM)后可以成为与模拟信道传输特性相匹配的模拟信号。
图6-20 数据的编码与调制示意图6.3.1 数字数据的数字信号编码利用数字通信信道直接传输数字信号的方法,称作数字信号的基带传输。
而基带传输需要解决的两个问题是数字数据的数字信号编码方式及收发双方之间的信号同步。
在数字基带传输中,最常见的数据信号编码方式有不归零码、曼彻斯特编码和差分曼彻斯特编码3种。
以数字数据011101001为例,采用这3种编码方式后,它的编码波形如图6-21所示。
1.不归零码(NRZ,Non-Return to Zero)NRZ码可以用低电平表示逻辑“0”,用高电平表示逻辑“1”。
并且在发送NRZ码的同时,必须传送一个同步信号,以保持收发双方的时钟同步。
2.曼彻斯特编码(Manchester)曼彻斯特编码的特点是每一位二进制信号的中间都有跳变,若从低电平跳变到高电平,就表示数字信号“1”;若从高电平跳变到低电平,就表示数字信号“0”。
曼彻斯特编码的原则是:将每个比特的周期T分为前T/2和后T/2,前T/2取反码,后T/2取原码。
曼彻斯特编码的优点是每一个比特中间的跳变可以作为接收端的时钟信号,以保持接收端和发送端之间的同步。
3.差分曼彻斯特编码(Difference Manchester)差分曼彻斯特编码是对曼彻斯特编码的改进,其特点是每比特的值要根据其开始边界是否发生电平跳变来决定,若一个比特开始处出现跳变则表示“0”,不出现跳变则表示“1”,每一位二进制信号中间的跳变仅用做同步信号。
调制与编码策略调制和编码是数字通信中不可或缺的环节。
调制将信息转换为适合传输的形式,而编码则在传输中保证信息的准确性和可靠性。
它们在现代通信技术中的应用对于实现高效、可靠的通信至关重要。
调制是将数字信号转换为模拟信号或改变信号的某些特性,以便在通信中传输。
主要有以下几种调制方式:1.振幅调制(Amplitude Modulation,AM):通过改变信号的振幅来传递信息。
AM广泛应用于广播和短波通信。
2.频率调制(Frequency Modulation,FM):3.通过改变信号的频率来传递信息。
FM常用于广播和音频信号传输。
3.相位调制(Phase Modulation,PM):通过改变信号的相位来传递信息。
PM在一些数字通信系统中使用。
4.正交振幅调制(Quadrature Amplitude Modulation,QAM):结合振幅和相位的调制方式,常用于数字通信系统,提高信道利用率。
编码(Coding):编码是将信息转换为特定的形式,以便在传输或存储中使用。
在数字通信中,编码通常是将数字信号映射为符号序列。
主要的编码策略包括:1.脉冲编码调制(Pulse Code Modulation,PCM):将模拟信号转换为数字信号的编码方式,常用于音频信号的数字化。
2.差分编码(Differential Coding):通过编码相邻样本之间的差异,减少数据传输中的冗余信息。
3.哈夫曼编码(Huffman Coding):通过变长编码方式对不同符号进行编码,以减少整体传输数据量。
4.循环冗余检测(Cyclic Redundancy Check,CRC):在数字通信中用于检测数据传输中的错误,通过添加冗余信息实现。
5.卷积码(Convolutional Coding):通过在数据流中引入冗余信息,提高数据传输的可靠性。