第二章微波遥感的基本原理
- 格式:ppt
- 大小:7.28 MB
- 文档页数:119
微波遥感技术和应用机械工程学院机械设计制造及其自动化张霁1005040221一、遥感技术的介绍遥感技术是20世纪60年代兴起的一种探测技术,是根据电磁波的理论,应用各种传感仪器对远距离目标所辐射和反射的电磁波信息,进行收集、处理,并最后成像,从而对地面各种景物进行探测和识别的一种综合技术。
目前利用人造卫星每隔18天就可送回一套全球的图像资料。
利用遥感技术,可以高速度、高质量地测绘地图。
它好比孙悟空的一双火眼金睛,能从云朵上看清万物根本面目,从高空感知地下和海底的宝藏。
二、微波遥感的定义运用波长为1~1 000mm的微波电磁波的遥感技术。
包括通过接收地面目标物辐射的微波能量,或接收遥感器本身发射出的电磁波束的回波信号,根据其特征来判别目标物的性质,特征和状态,包括被动遥感和主动遥感技术。
微波遥感对云层、地表植被、松散沙层和冰雪具有一定的穿透能力,可以全天侯工作。
微波遥感是传感器的工作波长在微波波谱区的遥感技术,是利用微波投射于物体表面,由其反射回的微波波长改变及频移确定其大小、形态以及移动速度的技术。
常用的微波波长范围为0. 8~30厘米。
其中又细分为K、Ku、X、G、C、S、Ls、L等波段。
微波遥感的工作方式分主动式(有源)微波遥感和被动式(无源)微波遥感。
前者由传感器发射微波波束再接收由地面物体反射或散射回来的回波,如侧视雷达;后者接收地面物体自身辐射的微波,如微波辐射计、微波散射计等。
三、遥感技术的发展史遥感是以航空摄影技术为基础,在20世纪60年代初发展起来的一门新兴技术。
开始为航空遥感,自1972年美国发射了第一颗陆地卫星后,这就标志着航天遥感时代的开始。
经过几十年的迅速发展,目前遥感技术已广泛应用于资源环境、水文、气象,地质地理等领域,成为一门实用的,先进的空间探测技术。
1、萌芽时期1608年制造了世界第一架望远镜。
1609年伽利略制作了放大三倍的科学望远镜并首次观测月球。
1794年气球首次升空侦察。
微波遥感的成像机理微波遥感是一种通过接收地面反射或散射的微波辐射来获取地表信息的技术。
它主要应用于土地覆盖、农业、水文气象、森林和海洋等领域。
微波遥感可以提供高分辨率、全天候和全球性的数据,因此受到了广泛关注。
一、微波遥感成像机理微波遥感成像机理是指微波信号与地表物体相互作用后产生的反射、散射和吸收等现象。
在微波遥感中,主要有两种类型的信号:主动式和被动式。
1. 主动式信号主动式信号是由雷达发射器产生的电磁波,它穿过大气层并与地表物体相互作用后返回雷达接收器。
在这个过程中,电磁波会经历多次反射和散射,最终形成一张反映地表物体特征的图像。
主动式信号可以通过调整雷达发射器的频率和极化方式来实现对不同类型地表物体的探测。
例如,在SAR(合成孔径雷达)中,发射器会以高速旋转方式发出一系列微波脉冲,这些脉冲会穿过大气层并与地表物体相互作用后返回雷达接收器。
通过对这些脉冲进行处理,可以得到高分辨率的地表图像。
2. 被动式信号被动式信号是由地球表面的微波辐射产生的,它可以被接收器直接捕捉到。
在这个过程中,微波辐射会受到大气层、云层和其他干扰因素的影响,因此需要进行校正和处理才能得到准确的地表信息。
被动式微波遥感主要应用于土壤湿度、降雨量、海洋表面温度等领域。
例如,在SMOS(Soil Moisture and Ocean Salinity)卫星中,接收器会捕捉地球表面发出的微波辐射,并通过对其频率和极化方式进行分析来获取土壤湿度和海洋盐度等信息。
二、微波遥感成像技术微波遥感成像技术是指利用主动式或被动式信号来获取地表信息的方法。
根据不同的应用领域和需求,可以选择不同类型的雷达或接收器来实现数据采集和处理。
1. SAR(合成孔径雷达)SAR是一种主动式微波遥感技术,它通过调整雷达发射器的频率和极化方式来实现对不同类型地表物体的探测。
SAR可以提供高分辨率、全天候和全球性的数据,因此在土地覆盖、农业、水文气象、森林和海洋等领域得到广泛应用。
微波遥感原理和应用
微波遥感是利用微波或微波的改变去通过测量这些变化,从而了解下一个特定表面的物理特性的技术。
典型的活动包括回波探测(例如反射、散射和多普勒散射)以及现场探测(吸收率)。
微波遥感最常见的应用是用于从宇航器映射农业、示踪冰盖变化以及测量水文参数,而这也是微波遥感最具开发潜力的领域。
微波遥感的优势在于它能够直接探测到某些表面物理因素,而其它感应器(如光学感应器)需要更多的推断和计算来实现同样的结果。
微波对运动对象的检测也是精确和有效的,因为它们能够非常快速地跨越大量距离。
此外,它还可以在任何时间,任何条件下运行,而光学传感器则受到白天黑夜和气候条件的限制。
因此,微波遥感在日照不足和濛濛雾气的情况下仍然可以正常运行。
另一方面,微波遥感所受到的缺陷将限制它对特定领域的应用,例如视觉表面检测。
在这种情况下,微波的数据处理可能会过于简单(例如进行分类,而不是分析图像),从而无法满足实际应用的要求。
此外,其占存储器的效率也比光学存储低得多,这是由于大小比较大的探测阵列和/或滤波数据处理所导致的。
微波遥感原理微波遥感是一种利用微波进行遥感探测的技术,它可以获取地球表面的信息,包括地形、植被、土壤、水文等。
微波遥感具有天气无关性和全天候性的优点,因此在农业、环境监测、气象预测、国防安全等领域有着广泛的应用。
微波遥感的原理是利用微波与地物之间的相互作用来获取地物的信息。
微波在穿过大气层和与地物相互作用时会发生散射、反射、吸收等现象,不同地物对微波的响应也不同,因此可以通过分析微波与地物之间的相互作用来识别和提取地物信息。
微波遥感的基本原理可以用雷达技术来解释。
雷达是一种利用电磁波进行探测和测距的技术,它发射的微波脉冲被地物反射后再接收,通过测量微波的传播时间和频率的变化来获取地物的位置、形状、运动状态等信息。
在微波遥感中,利用雷达技术可以获取地表的高程、形态、粗糙度等信息。
除了雷达技术,微波遥感还可以利用 passiv 微波遥感技术。
在 passiv 微波遥感中,利用地物自身发射的微波辐射来获取地物的信息。
地物的微波辐射受地物的温度、湿度、盐度等因素影响,因此可以通过分析地物的微波辐射来获取地物的温度、湿度、盐度等信息。
微波遥感技术在农业领域有着广泛的应用。
通过微波遥感可以获取作物的生长状态、土壤湿度、地表温度等信息,帮助农民进行精准农业管理,提高农作物的产量和质量。
同时,微波遥感还可以监测农田的水分状况,帮助农民进行灌溉调度,提高水资源利用效率。
在环境监测领域,微波遥感可以用来监测湖泊、河流、海洋等水体的水质、水温、水位等信息,帮助保护水资源、预防水灾。
此外,微波遥感还可以监测森林、草原、湿地等生态系统的变化,帮助保护生态环境、预防自然灾害。
总的来说,微波遥感技术具有广泛的应用前景,可以为农业、环境监测、气象预测、国防安全等领域提供重要的数据支持。
随着技术的不断发展,微波遥感技术将会发挥越来越重要的作用,为人类社会的可持续发展做出更大的贡献。
微波遥感和成像侧视雷达工作基本原理概述微波遥感和成像侧视雷达是两种常用的遥感技术,它们通过利用微波的特性来获取地球表面信息。
本文将介绍微波遥感和成像侧视雷达的工作基本原理。
一、微波遥感的工作原理微波遥感是利用微波信号对地球物体和环境进行探测和测量的一种技术。
微波遥感系统由微波源、发射器、接收器和数据处理系统等组成。
1. 微波源微波源是产生微波信号的装置,常见的有微波发射机、毫米波源等。
微波源将电能转化为微波能量,并通过天线辐射出去。
2. 发射器发射器是将微波信号传输到目标物体的装置。
它可以调节微波信号的频率、幅度和极化等参数,并将微波信号辐射出去。
3. 接收器接收器是接收由目标物体反射回来的微波信号的装置。
它可以接收微波信号的幅度、相位和极化等信息。
4. 数据处理系统数据处理系统对接收到的微波信号进行处理和分析,从中提取出地球物体的特征信息。
常见的处理方法有滤波、解调、调幅和解调等。
二、成像侧视雷达的工作原理成像侧视雷达(InSAR)是一种利用雷达波束和合成孔径雷达(SAR)数据生成地表高程和表面形变等信息的技术。
1. SAR数据采集SAR是一种全天候、全时序、全天时的遥感技术。
它通过发射和接收脉冲雷达波束,测量地表物体的反射回波。
2. SAR数据处理SAR数据处理主要包括预处理、图像生成和解译等步骤。
预处理用于去除图像中的噪声和干扰,图像生成则是从原始数据中合成出高质量的成像结果。
3. 多幅SAR图像融合成像侧视雷达通过将多幅SAR图像进行融合,可以获取地表高程和形变等信息。
这是通过计算不同时间和角度下的雷达干涉图生成的。
4. 数据解译融合后的数据可以利用地表参考点进行几何校正和高程校正,进而得到具体的地表高程和形变等信息。
总结微波遥感和成像侧视雷达是两种常用的遥感技术,它们利用微波信号对地球物体和环境进行探测和测量。
微波遥感通过微波源、发射器、接收器和数据处理系统等装置,获得地球物体的特征信息。