数轴标根法
- 格式:ppt
- 大小:305.00 KB
- 文档页数:19
专题:数轴穿根法“数轴穿根法”又称“数轴标根法”第一步:通过不等式得诸多性质对不等式进行移项,使得右侧为0、(注意:一定要保证x 前得系数为正数)例如: (x -2)(x—1)(x+1)>0第二步:将不等号换成等号解出所有根。
例如:(x-2)(x-1)(x+1)=0得根为:x =2,x =1,x=—1第三步:在数轴上从左到右依次标出各根、例如:-1 1 2第三步:画穿根线:以数轴为标准,从“最右根"得右上方穿过根,往左下画线,然后又穿过“次右跟”上去,一上一下依次穿过各根、第四步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内得范围;如果不等号为“<”则取数轴下方,穿根线以内得范围。
例如:若求(x -2)(x-1)(x+1)>0得解。
因为不等号威“〉”则取数轴上方,穿根线以内得范围。
即:-1<x<1或x>2、 穿根法得奇过偶不过定律: “奇穿过,偶弹回”。
还有关于分式得问题:当不等式移项后,可能就是分式,同样就是可以用穿根法得,但就是注意,解不能让原来分式下面得式子等于0专项训练:1、解不等式ﻩ解析:1)一边就是因式乘积、另一边就是零得形式,其中各因式未知数得系数为正。
2)因式、、得根分别就是、、。
在数轴上把它们标出(如图1)。
3)从最大根3得右上方开始,穿线(图象,)。
4)数轴上方曲线对应得得取值区间,为得解集,数轴下方曲线对应得得取值区间,为得解集。
不等式得解集为。
在上述解题过程中,学生存在得疑问往往有:为什么各因式中未知数得系数为正;为什么从最大根得右上方开始穿线;为什么数轴上方曲线对应得得集合就是大于零不等式得解集,数轴下方曲线对应得集合就是小于零不等式得解集。
2、解不等式解析:1)一边就是因式乘积、另一边就是零得形式,其中各因式未知数得系数为正。
2)因式、、得根分别为、、,在数轴上把它们标出(如图2)。
3)从最大根3得右上方开始向左依次穿线,次数为奇数得因式得根一次性穿过,次数为偶数得因式得根穿而不过。
数轴标根法求解一元二次不等式步骤详解数轴标根法是一种直观且实用的方法,用于求解一元二次不等式。
这种方法主要基于一元二次方程的根与不等式解集之间的关系。
以下是将数轴标根法应用于一元二次不等式求解的详细步骤:1. 解一元二次方程首先,你需要解出对应的一元二次方程 ax 2+bx +c =0(其中 a ≠0)的根。
这可以通过求根公式 x =−b±√b 2−4ac 2a 来完成。
记得到的根为 x 1,x 2(注意,有时可能只有一个实根,即重根,或者没有实数根,但在这里我们主要关注有实数根的情况)。
2. 将根标在数轴上然后,将求解得到的根 x 1,x 2(从小到大)标在数轴上。
如果只有一个实根(即重根),则在该位置只标一个点。
3. 判断不等式的符号和开口方向根据不等式的符号(是“>”还是“<”)和二次项系数 a 的符号(决定函数图像的开口方向),你可以确定不等式的解集是在数轴上哪些区间内。
● 如果 a >0,则二次函数图像开口向上。
对于不等式 ax 2+bx +c >0,解集是两根之外的区间;对于不等式 ax 2+bx +c <0,解集是两根之间的区间(如果根存在且不相等)。
● 如果 a <0,则二次函数图像开口向下。
对于不等式 ax 2+bx +c >0,解集是两根之间的区间;对于不等式 ax 2+bx +c <0,解集是两根之外的区间(同样,假设根存在且不相等)。
4. 确定解集最后,根据数轴上的根的位置和二次函数的开口方向,你可以确定满足不等式的x的取值范围,即解集。
示例考虑不等式x2−4x+3<0。
1.解方程x2−4x+3=0,得到根x1=1和x2=3。
2.将根x1=1和x2=3标在数轴上。
3.因为a=1>0,所以二次函数开口向上。
4.由于不等式是“<”号,我们需要找到使函数值小于0的x的取值范围。
5.根据二次函数的开口方向和根的位置,我们可以确定解集是两根之间的区间,即1<x<3。
“数轴标根法”又称“数轴穿根法”或“穿针引线法”是高次不等式的简单解法当高次不等式f(x)>0(或<0)的左边整式、分式不等式φ(x)/h(x)>0(或<0)的左边分子、分母能分解成若干个一次因式的积(x-a1)(x-a2)…(x -an)的形式,可把各因式的根标在数轴上,形成若干个区间,最右端的区间f (x)、φ(x)/h(x)的值必为正值,从右往左通常为正值、负值依次相间,这种解不等式的方法称为序轴标根法。
为了形象地体现正负值的变化规律,可以画一条浪线从右上方依次穿过每一根所对应的点,穿过最后一个点后就不再变方向,这种画法俗称“穿针引线法”,如图1(图片自上而下依次为图一,二,三,四)。
步骤第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。
(注意:一定要保证x前的系数为正数)例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0第二步:将不等号换成等号解出所有根。
例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1第三步:在数轴上从左到右依次标出各根。
例如:-1 1 2第四步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根。
第五步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围。
x的次数若为偶数则不穿过,即奇过偶不过。
例如:若求(x-2)(x-1)(x+1)>0的根。
在数轴上标根得:-1 1 2画穿根线:由右上方开始穿根。
因为不等号为“>”则取数轴上方,穿跟线以内的范围。
即:-1<x<1或x>2。
(如图四)奇过偶不过就是当不等式中含有有单独的x偶幂项时,如(x^2)或(x^4)时,穿根线是不穿过(X-1)^2. 0点的。
但是对于X奇数幂项,就要穿过0点了。
数轴标根法什么是数轴标根法?数轴标根法(Root-finding algorithm)是一种用于求解方程根的数值算法。
方程根指的是方程中使得方程成立的变量值。
数轴标根法最基本的思想是在数轴上标记出方程在某个区间内的根,并根据方程的性质逐步缩小这个区间,直到得到近似的根。
数轴标根法的步骤数轴标根法的步骤如下:1.首先,选择一个合适的初始区间,该区间内有且仅有一个根。
初始区间应该包含方程的根,并且足够窄,以便逐步缩小区间。
2.将初始区间分成若干个等间隔的小区间,可以通过在初始区间上取等间距点来实现。
3.在每个小区间内计算方程的函数值,并判断函数值的正负性。
如果小区间两端的函数值异号,说明在这个小区间内存在根。
4.选取其中一个包含根的小区间,将其继续二分,并重复第3步,直到根的位置足够精确。
数轴标根法的核心思想在于将整个区间不断划分,然后根据函数值正负变化的特征来快速缩小求解区间,从而准确地找到根的近似值。
数轴标根法的优缺点数轴标根法作为一种求解方程根的数值算法,具有一定的优缺点。
优点•数轴标根法相对简单,易于理解和实现。
•可以通过不断划分区间来逐步逼近方程的根,从而显著提高了求解根的效率。
•在求解单根时表现良好,收敛速度较快。
缺点•数轴标根法对于方程存在多个根时,可能只能求解到其中一个或几个近似根。
•如果方程的根位于初始区间之外,或者函数在某些区间上的增减变化比较大,可能会导致算法失效。
数轴标根法的应用领域数轴标根法在实际中有广泛的应用。
以下是一些常见的应用领域:•工程领域:在工程计算中,方程根经常需要被求解,如在电路分析中求解电流和电压的方程根。
•经济学:经济学模型中,方程根求解常用于确定经济模型的平衡点或边界值。
•物理学:在物理学中,方程根的求解经常用于解释实验数据和验证物理学定律等。
•计算机科学:在图形学、人工智能等领域,方程根的求解也是常见的需求。
总之,数轴标根法作为一种求解方程根的数值算法,在各个领域都有广泛的应用。
专题:数轴穿根法“数轴穿根法”又称“数轴标根法”第一步:经由过程不等式的诸多性质对不等式进行移项,使得右侧为0.(留意:必定要包管x前的系数为正数)例如:(x-2)(x-1)(x+1)>0第二步:将不等号换成等号解出所有根.例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1第三步:在数轴上从左到右依次标出各根.例如:-1 1 2第三步:画穿根线:以数轴为尺度,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右跟”上去,一上一下依次穿过各根.第四步:不雅察不等号,假如不等号为“>”,则取数轴上方,穿根线以内的规模;假如不等号为“<”则取数轴下方,穿根线以内的规模.例如:若求(x-2)(x-1)(x+1)>0的解.因为不等号威“>”则取数轴上方,穿根线以内的规模.即:-1<x<1或x>2.穿根法的奇过偶不过定律:“奇穿过,偶弹回”.还有关于分式的问题:当不等式移项后,可能是分式,同样是可以用穿根法的,但是留意,解不克不及让本来分式下面的式子等于0专项练习:1.解不等式0)3)(1)(12(>--+x x x解析:1)一边是因式乘积.另一边是零的情势,个中各因式未知数的系数为正.2)因式)12(+x .)1(-x .)3(-x 的根分离是1-.1.3.在数3)从最大根3的右上方开端,向左依次穿线(数轴上方有线暗示数轴上方有函数图象,数轴下方有线暗示数轴下方有函数图象,此线其实不暗示函数的真实图象).4)数轴上方曲线对应的x 的取值区间,为0)3)(1)(12(>--+x x x 的解集,数轴下方曲线对应的x 的取值区间,为0)3)(1)(12(<--+x x x 的解集.∴不等式0)3)(1)(12(>--+x x x 的解集为),3()1,21(+∞- . 在上述解题进程中,学生计在的疑问往往有:为什么各因式中未知数的系数为正;为什么从最大根的右上方开端穿线;为什么数轴上方曲线对应的x 的聚集是大于零不等式的解集,数轴下方曲线对应x 的聚集是小于零不等式的解集.2.解不等式0)3()121)(2(32<--+x x x解析:1)一边是因式乘积.另一边是零的情势,个中各因式未知数的系数为正.2)因式)2(+x .2)121(-x .3)3(-x 的根分离为2-.2.3,在数轴上把它们标出(如图2).3)从最大根3的右上方开端向左依次穿线,次数为奇数的因式的根一次性穿过,次数为偶数的因式的根穿而不过.4)数轴上方曲线对应的x 的取值区间,为0)3()121)(2(32>--+x x x 的解集,模,为0)3()121)(2(32<--+x x x 的解集. ∴0)3()121)(2(32<--+x x x 的解集为2()2,2( - 数轴标根法.分式不等式.绝对值不等式一.数轴标根法解不等式1.(x-1)(x-2)(x+3)>02. (x-1)(x-2)(x+3)<03. (1- x )(x-2)(x+1)0≤4.(x- 1)2(x-2)3 (x+1)0≥二. 分式不等式思虑 (1)()()303202x x x x ->-->-与解集是否雷同,为什么?(2)()()303202x x x x -≥--≥-与解集是否雷同,为什么? 解:办法1:应用符号轨则转化为一元一次不等式组,进而进行比较.图2办法2:在分母不为0的前提下,双方同乘以分母的平方. 经由过程例1,得出解分式不等式的根本思绪:等价转化为整式不等式(组):(1)()()()()00f x f x g x g x >⇔⋅>(2)()()()()()000f xg x f x g x g x ⋅≥⎧⎪≥⇔⎨≠⎪⎩ 1.302x x -≥- 2.11≤x 3.2113x x ->+ 4.2232023x x x x -+≤-- 5.()2309x x x -≤- 6.101x x<-< 三.含绝对值的不等式的解法|x|>a(a>0)⇔________________ |x|<a(a>0)⇔________________例3:解下列不等式 1. 312≤-x 2. 0)1(1≥+-x x3.|x 2-2x|>x 2.4.0)1(1>+-x x 巩固演习1. 解不等式222310372xx x x ++>-+ 2. 解不等式3113x x+>-- x x x x 1212->-的解集是4 .(2012 山东理)若不等式42kx -≤的解集为{}13x x ≤≤,则实数k =__________.5. 解不等式(2x- 1)2(x-2)3(x+1)0≥6. 解不等式(3- x )2(x-2)(x+1) 70≤不等式解法15种典范例题典范例题一例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x . 剖析:假如多项式)(x f 可分化为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要留意处理好有重根的情形. 解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 按序标上数轴.然后从右上开端画线按序经由三个根,其解集如下图的暗影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于 0)2()5)(4(32>-++x x x⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔2450)2)(4(05x x x x x x 或∴原不等式解集为{}2455>-<<--<x x x x 或或解释:用“穿根法”解不等式时应留意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但留意“奇穿偶不穿”,其法如图.典范例题二例 2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x剖析:当分式不等式化为)0(0)()(≤<或x g x f 时,要留意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ; ②⎩⎨⎧≠≤⋅⇔≤0)(0)()(0)()(x g x g x f x g x f (1)解:原不等式等价于用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(.(2)解法一:原不等式等价于 027313222>+-+-x x x x 212131><<<⇔x x x 或或,∴原不等式解集为),2()1,21()31,(+∞⋃⋃-∞. 解法二:原不等式等价于用“穿根法”∴原不等式解集为),2()1,21()31,(+∞⋂⋃-∞典范例题三例3 解不等式242+<-x x剖析:解此题的症结是去绝对值符号,而去绝对值符号有两种办法:一是根据绝对值的意义⎩⎨⎧<-≥=)0()0(a a a a a ;二是根据绝对值的性质:a x a x a x a a x >⇔<<-⇔<.,或a x -<,是以本题有如下两种解法.解法一:原不等式⎪⎩⎪⎨⎧+<-<-⎪⎩⎪⎨⎧+<-≥-⇔240424042222x x x x x x 或,即⎩⎨⎧>-<<<-⎩⎨⎧<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<<x ,故原不等式的解集为{}31<<x x .解法二:原不等式等价于 24)2(2+<-<+-x x x即⎪⎩⎪⎨⎧+->-+<-)2(42422x x x x ∴312132<<⎩⎨⎧-<><<-x x x x 故或. 典范例题四例4 解不等式04125622<-++-x x x x . 剖析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号轨则,它等价于下列两个不等式组:⎪⎩⎪⎨⎧>-+<+-041205622x x x x 或⎪⎩⎪⎨⎧<-+>+-041205622x x x x ,所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.解法一:原不等式等价下面两个不等式级的并集:⎪⎩⎪⎨⎧>-+<+-0412,05622x x x x 或⎪⎩⎪⎨⎧<-+>+-0412,05622x x x x ⎩⎨⎧<-+<--⇔;0)6)(2(,0)5)(1(x x x x 或⎩⎨⎧>-+>--;0)6)(2(,0)5)(1(x x x x ;⎩⎨⎧<<-<<⇔62,51x x 或⎩⎨⎧>-<><6,2,5,1x x x x 或或 ,51<<⇔x 或2-<x 或6>x .∴原不等式解集是}6512{><<-<x x x x ,或,或.解法二:原不等式化为0)6)(2()5)(1(>-+--x x x x .画数轴,找因式根,分区间,定符号.)6)(2()5)(1(-+--x x x x 符号 ∴原不等式解集是}6512{><<-<x x x x ,或,或.解释:解法一要留意求两个等价不等式组的解集是求每组两个不等式的交集,再求两组的解的并集,不然会产生误会.解法二中,“定符号”是症结.当每个因式x 的系数为正值时,最右边区间必定是正值,其他各区间正负相间;也可以先决议含0的区间符号,其他各区间正负相间.在解题时要准确应用.典范例题五例5 解不等式x xx x x <-+-+222322. 剖析:不等式阁下双方都是含有x 的代数式,必须先把它们移到一边,使另一边为0再解.解:移项整顿,将原不等式化为0)1)(3()1)(2(2>+-++-x x x x x . 由012>++x x 恒成立,知原不等式等价于0)1)(3()2(>+--x x x . 解之,得原不等式的解集为}321{><<-x x x 或.解释:此题易消失去分母得)23(2222x x x x x -+<-+的错误会法.防止误会的办法是移项使一边为0再解.别的,在解题进程中,对消失的二项式要留意其是否有实根,以便剖析不等式是否有解,从而使求解进程科学合理.典范例题六例6 设R m ∈,解关于x 的不等式03222<-+mx x m .剖析:进行分类评论辩论求解.解:当0=m 时,因03<-必定成立,故原不等式的解集为R .当0≠m 时,原不等式化为0)1)(3(<-+mx mx ;若0>m 时,解得m x m 13<<-;若0<m 时,解得mx m 31-<<. 综上:当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-m x m x 13; 当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<m x m x31. 解释:解不等式时,因为R m ∈,是以不克不及完整按一元二次不等式的解法求解.因为当0=m 时,原不等式化为03<-,此时不等式的解集为R ,所以解题时应分0=m 与0≠m 两种情形来评论辩论. 在解出03222=-+mx x m 的两根为m x 31-=,m x 12=后,以为m m 13<-,这也是易消失的错误之处.这时也应分情形来评论辩论:当0>m 时,mm 13<-;当0<m 时,m m 13>-. 典范例题七例7 解关于x 的不等式)0(122>->-a x a ax .剖析:先按无理不等式的解法化为两个不等式组,然后分类评论辩论求解.解:原不等式⎪⎩⎪⎨⎧->-≥->-⇔;)1(2,01,02)1(222x a ax x a ax 或⎩⎨⎧<-≥-.01,02)2(2x a x由0>a ,得:⎪⎪⎩⎪⎪⎨⎧<+++-≤>⇔;01)1(2,1,2)1(22a x a x x a x ⎪⎩⎪⎨⎧>≥⇔.1,2)2(x a x由判别式08)1(4)1(422>=+-+=∆a a a ,故不等式01)1(222<+++-a x a x 的解是a a x a a 2121++<<-+.当20≤<a 时,1212≤-+≤a a a ,121>++a a ,不等式组(1)的解是121≤<-+x a a ,不等式组(2)的解是1>x .当2>a 时,不等式组(1)无解,(2)的解是2a x ≥. 综上可知,当20≤<a 时,原不等式的解集是[)+∞-+,21a a ;当2>a 时,原不等式的解集是⎪⎭⎫⎢⎣⎡+∞,2a . 解释:本题分类评论辩论尺度“20≤<a ,2>a ”是根据“已知0>a 及(1)中‘2a x >,1≤x ’,(2)中‘2a x ≥,1>x ’”肯定的.解含有参数的不等式是不等式问题中的难点,也是近几年高考的热门.一般地,分类评论辩论尺度(解不等式)大多半情形下依“不等式组中的各不等式的解所对应的区间的端点”去肯定.本题易误把原不等式等价于不等式)1(22x a ax ->-.改正错误的办法是闇练控制无理不等式根本类型的解法.典范例题八例8 解不等式331042<--x x .剖析:先去失落绝对值号,再找它的等价组并求各不等式的解,然后取它们的交集即可.解答:去失落绝对值号得3310432<--<-x x ,∴原不等式等价于不等式组 ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<<<-325021x x x 或. 解释:解含绝对值的不等式,症结是要把它化为不含绝对值的不等式,然后把不等式等价转化为不等式组,变成求不等式组的解.典范例题九例9 解关于x 的不等式0)(322>++-a x a a x .剖析:不等式中含有字母a ,故需分类评论辩论.但解题思绪与一般的一元二次不等式的解法完整一样:求出方程0)(322=++-a x a a x 的根,然后写出不等式的解,但因为方程的根含有字母a ,故需比较两根的大小,从而引出评论辩论. 解:原不等式可化为0))((2>--a x a x .(1)当2a a <(即1>a 或<a )时,不等式的解集为:{}2a x a x x><或;(2)当2a a >(即10<<a )时,不等式的解集为:{}ax a x x ><或2;(3)当2a a =(即=a 或1)时,不等式的解集为:{}a x R x x ≠∈且.解释:对参数进行的评论辩论,是根据解题的须要而天然引出的,并不是一开端就对参数加以分类.评论辩论.比方本题,为求不等式的解,需先求出方程的根a x =1,22a x =,是以不等式的解就是x 小于小根或x 大于大根.但a 与2a 两根的大小不克不及肯定,是以须要评论辩论2a a <,2a a >,2a a =三种情形.典范例题十例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.剖析:按照一元二次不等式的一般解法,先肯定系数c 的正负,然后求出方程02=++a bx cx 的两根即可解之.解:(解法1)由题可断定出α,β是方程02=++c bx ax 的两根,∴ab -=β+α,ac =β⋅α.又02>++c bx ax 的解集是{}β<<αx x,解释0<a .而0>α,0>β000<⇒>⇒>αβ⇒c ac ,∴0022<++⇔>++ca x cb x a bx cx .∴2<++ca x cb x ,即0)1)(1()11(2<β-α-+β-α-+x x , 即0)1)(1(<β-α-x x .又β<α<0,∴β>α11,∴0)1)(1(<β-α-x x 的解集为⎭⎬⎫⎩⎨⎧α<<β11x x. (解法2)由题意可断定出α,β是方程02=++c bx ax 的两根,∴ac =β⋅α.又02>++c bx ax 的解集是{}β<<αx x,解释0<a .而0>α,0>β000<⇒>⇒>αβ⇒c ac .对方程02=++a bx cx 双方同除以2x 得0)1()1(2=+⋅+⋅c xb xa .令xt 1=,该方程即为02=++c t b t a ,它的两根为α=1t ,β=2t ,∴α=11x ,β=21x .∴α=11x ,β=12x ,∴方程02=++a bx cx 的两根为α1,β1.∵β<α<0,∴β>α11.∴不等式2>++a bx cx 的解集是⎭⎬⎫⎩⎨⎧α<<β11x x . 解释:(1)万变不离其宗,解不等式的焦点等于肯定首项系数的正负,求出响应的方程的根;(2)联合应用韦达定理,本题中只有α,β是已知量,故所求不等式解集也用α,β暗示,不等式系数a ,b ,c 的关系也用α,β暗示出来;(3)留意解法2顶用“变换”的办法求方程的根.典范例题十二例12 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a .b 的值.剖析:不等式本身比较庞杂,要先对不等式进行同解变形,再根据解集列出关于a .b 式子.解:∵043)21(122>++=++x x x ,043)21(122>+-=+-x x x ,∴原不等式化为0)()2(2>-++--+b a x b a x b a .依题意⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++=-+->-+34231202b a b a b a b a b a ,∴⎪⎪⎩⎪⎪⎨⎧==2325b a . 解释:解有关一元二次方程的不等式,要留意断定二次项系数的符号,联合韦达定理来解.典范例题十三例13 不等式的解集为{}21<<-x x,求a 与b 的值.剖析:此题为一元二次不等式逆向思维题,要使解集为{}21<<-x x,不等式022<-+bx ax 需知足前提0>a ,0>∆,022=-+bx ax 的两根为11-=x ,22=x .解法一:设022=-+bx ax 的两根为1x ,2x ,由韦达定理得:⎪⎪⎩⎪⎪⎨⎧-=⋅-=+a x x a b x x 22121由题意:⎪⎪⎩⎪⎪⎨⎧⨯-=-+-=-21221aab∴1=a ,1-=b ,此时知足0>a ,0)2(42>-⨯-=∆a b . 解法二:结构解集为{}21<<-x x的一元二次不等式:0)2)(1(<-+x x ,即022<--x x ,此不等式与原不等式022<-+bx ax 应为同解不等式,故需知足:2211--=-=b a ∴1=a ,1-=b . 解释:本题考核一元二次方程.一元二次不等式解集的关系,同时还考核逆向思维的才能.对有关字母抽象问题,同窗往往控制得不好.典范例题十四例14 解关于x 的不等式01)1(2<++-x a ax .剖析:本题考核一元一次不等式与一元二次不等式解法,因为含有字母系数,所以还考核分类思惟. 解:分以下情形评论辩论(1)当0=a 时,原不等式变成:01<+-x ,∴1>x (2)当0≠a 时,原不等式变成:0)1)(1(<--x ax ①①当0<a 时,①式变成0)1)(1(>--x ax ,∴不等式的解为1>x 或ax 1<. ②当0>a 时,①式变成0)1)(1(<--x ax . ②∵aa a-=-111,∴当10<<a 时,11>a,此时②的解为ax 11<<.当1=a 时,11=a,此时②的解为11<<x a.解释:解本题要留意分类评论辩论思惟的应用,症结是要找到分类的尺度,就本题来说有三级分类:分类应做到使所给参数a 的聚集的并集为全集,交集为空集,要做到不重不漏.别的,解本题还要留意在评论辩论0<a 时,解一元二次不等式01)1(2<++-x a ax 应首选做到将二次项系数变成正数再求解.典范例题十五例15 解不等式x x x ->--81032.剖析:无理不等式转化为有理不等式,要留意平方的前提和根式有意义的前提,一般情形下,)()(x g x f ≥可转化为)()(x g x f >或)()(x g x f =,而)()(x g x f >等价于:⎩⎨⎧<≥0)(0)(x g x f 或⎪⎩⎪⎨⎧>≥≥2)]([)(0)(0)(x g x f x g x f . 解:原不等式等价于下面两个不等式组:①⎩⎨⎧≥--<-0103082x x x ②⎪⎩⎪⎨⎧->--≥--≥-222)8(103010308x x x x x x 由①得⎩⎨⎧-≤≥>258x x x 或,∴8>x 由②得∴⎪⎪⎩⎪⎪⎨⎧>-≤≥≤.1374258x x x x 或81374≤<x ,所以原不等式的解集为⎭⎬⎫⎩⎨⎧>≤<881374x x x或,即为⎭⎬⎫⎩⎨⎧>1374x x .解释:本题也可以转化为)()(x g x f ≤型的不等式求解,留意:⎪⎩⎪⎨⎧≤≥≥⇔≤2)]([)(0)(0)()()(x g x f x g x f x g x f , 这里,设全集}52{}0103{2≥-≤=≥--=x x x x x x U 或,⎭⎬⎫⎩⎨⎧-≤--=x x x xA 81032,则所求不等式的解集为A的补集A,由2)8(10301030881032222-≤⇒⎪⎩⎪⎨⎧-≤--≥--≥-⇔-≤--x x x x x x x x x x 或13745≤≤x .即⎭⎬⎫⎩⎨⎧≤≤≤=137452x x x A 或,∴原不等式的解集是⎭⎬⎫⎩⎨⎧>=1374x x A .。
00穿根法000“数轴穿根法”又称“数轴标根法” 000第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0,并分解因式。
(注意:一定要保证x前的系数为正数)000例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0 000第二步:将不等号换成等号解出所有根。
000例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1 000第三步:在数轴上从左到右依次标出各根。
000例如:-1 1 2 000第三步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根。
000第四步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围。
000例如:000若求(x-2)(x-1)(x+1)>0的根。
000在数轴上标根得:-1 1 2 000画穿根线:由右上方开始穿根。
000因为不等号威“>”则取数轴上方,穿根线以内的范围。
即:-1<x<1或x>2。
000穿根前应注意,每项X系数均为正,否则应先则提取负号,改变相应不等号方向,再穿根。
例如(2-x)(x-1)(x+1)<0,要先化为(x-2)(x-1)(x+1)>0,再穿根。
000穿根法的奇过偶不过定律:就是当不等式中含有有单独的x偶幂项时,如(x^2)或(x^4)时,穿根线是不穿过0点的。
但是对于X奇数幂项,就要穿过0点了。
还有一种情况就是例如:(X-1)^2.当不等式里出现这种部分时,线是不穿过1点的。
但是对于如(X-1)^3的式子,穿根线要过1点。
也是奇过偶不过。
可以简单记为“奇穿过,偶弹回”或“自上而下,从右到左,奇次跟一穿而过,偶次跟一穿不过”(口诀秘籍嘿嘿)。
000还有关于分号的问题:当不等式移项后,可能是分式,同样是可以用穿根法的,直接把分号下面的乘上来,变成乘法式子。
1“数轴穿根法”又称“数轴标根法”第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。
(注意:保证X最高次项系数为正)例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0第二步:将不等号换成等号解出所有根。
例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1第三步:在数轴上从左到右依次标出各根。
例如:-112第四步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根“上去,一上一下依次穿过各根。
第五步:观察不等号,如果不等号为“>”,则取数轴上方,穿跟线以内的范围;如果不等号为“<”则取数轴下方,穿跟线以内的范围。
例如:若求(x-2)(x-1)(x+1)>0的根。
在数轴上标根得:-112画穿根线:由右上方开始穿根。
因为不等号威“>”则取数轴上方,穿跟线以内的范围。
即:-1<x<1或x>2。
编辑本段穿根法的奇过偶不过定律:就是当不等式中含有有单独的x偶幂项时,如(x^2)或(x^4)时,穿根线是不穿过0点的。
但是对于X奇数幂项,就要穿过0点了。
还有一种情况就是例如:(X-1)^2.当不等式里出现这种部分时,线是不穿过1点的。
但是对于如(X-1)^3的式子,穿根线要过1点。
也是奇过偶不过。
可以简单记为“奇穿过,偶弹回”。
编辑本段还有关于分式的问题:当不等式移项后,可能是分式,同样是可以用穿根法的,直接把分号下面的乘上来,变成乘法式子。
继续用穿根法,但是注意,解不能让原来分式下面的式子等于0数轴的作用(观察通道)规定了原点,正方向,单位长度的直线,叫做数轴。
在某一事物上通过某一维度的评估,可以将事物分成很多不同的层次加以认识。
这样,能够更加准确,详细地描述事物的本质。
2数轴穿根法什么时候会有连续穿?就是在数轴下方向上穿时,碰到根后不上去,继续反弹回来,此时在下面而不是在上面希望有哪位知道的老师能为晚辈解答,谢谢了.最佳答案穿针引线法,标根分区法.或者叫穿根法,呵呵,是解高次不等式的一个好技巧,第一:最高次项系数化为正数.保证因式分解后各因式中x的系数为正.第二:将这若干个根按从小到大的顺序标在数轴上,注意是空心点(不能取到)还是实心点(可以取到).第三:按照从右至左,从上至下的顺序画一条曲线,穿过这些点,注意"奇过偶不过"(奇次方的点过,偶次方的点不过).第四:根据第一步整理的不等式的不等号的方向来写出解集,大于号取在数轴上方的区间,小于号取在数轴下方的区间.。
数轴标根法现行教材在讲高次不等式,分式不等式的解法,以及在求函数单调区间,极值时,都是用列表法,甚至求函数的凹凸性,拐点也是用的列表法。
这种方法列表繁,耗时多。
使用“数轴标根法”解这些问题,非常方便,学生易掌握,也节省了大量时间。
数轴标根法叙述如下:设)(x f 的分子和分母共有k 个零点:k x x x <<< 21,它们依次为k n n n ,,21重零点。
第一步 标根:将零点依次标在数轴上;第二步 画线:若)(x f 的最高项系数为正(即kx x >时,)(x f >0)则从数轴右上方开始用一条曲线去经过各零点:奇穿偶跳。
奇穿:当i n 为奇数,即i x 为奇重根(含单根)时,曲线在经过该零点时从数轴的一边穿到另一边;偶跳:当i n 为偶数,即i x 为偶重根时,曲线在经过该零点时不穿过数轴,跳过该点在同侧前进。
若)(x f 的最高项系数为负(即k x x>时,)(x f <0)则从数轴右下方开始画曲线;第三步 得结论:第一应用 解不等式,先把不等式变为)(x f >0(<0,≥0,≤0)>0:取上面有弧的区间;<0:取下面有弧的区间; ≥0:取上面有弧的区间及分子的零点; ≤0:取下面有弧的区间及分子的零点。
第二应用 求函数的单调性和极值,先求函数的一阶导数为)(x f增区间:上面有弧的区间;减区间:下面有弧的区间。
极大值点:由增到减的零点;(有意义) 极小值点:由减到增的零点。
(有意义) 的三应用 求函数的凹凸性和拐点,求函数的二阶导数为)(x f凹区间:上面有弧的区间;凸区间:下面有弧的区间。
拐点:曲线穿过数轴的点。
(有意义)例1 解不等式:02)2(≤+-x x x解 如图,解集为:(-∞,-2)及[0,2].2例2求2824+-=x x y 的单调区间和极值。
解)2)(2(41643-+=-='x x x x x y增区间:(-2,0)及(2,+∞)减区间:(-∞,-2)及(0,2))0 2==x y (极大14-=极小y (2±=x ).例3求)1ln(2x y +=的凹凸区间和拐点。
专题:数轴穿根法之南宫帮珍创作“数轴穿根法”又称“数轴标根法”第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。
(注意:一定要包管x前的系数为正数)例如:(x-2)(x-1)(x+1)>0第二步:将不等号换成等号解出所有根。
例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1第三步:在数轴上从左到右依次标出各根。
例如:-1 1 2第三步:画穿根线:以数轴为尺度,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右跟”上去,一上一下依次穿过各根。
第四步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围。
例如:若求(x-2)(x-1)(x+1)>0的解。
因为不等号威“>”则取数轴上方,穿根线以内的范围。
即:-1<x<1或x>2。
穿根法的奇过偶不过定律:“奇穿过,偶弹回”。
还有关于分式的问题:当不等式移项后,可能是分式,同样是可以用穿根法的,但是注意,解不克不及让原来分式下面的式子等于0专项训练:1、解不等式0)3)(1)(12(>--+x x x解析:1)一边是因式乘积、另一边是零的形式,其中各因式未知数的系数为正。
2)因式)12(+x 、)1(-x 、)3(-x 的根分别是21-、1、3。
3)从最大根3的右上方开始,向左依次穿线(数轴上方有线暗示数轴上方有函数图象,数轴下方有线暗示数轴下方有函数图象,此线其实不暗示函数的真实图象)。
4)数轴上方曲线对应的x 的取值区间,为0)3)(1)(12(>--+x x x 的解集,数轴下方曲线对应的x 的取值区间,为0)3)(1)(12(<--+x x x 的解集。
∴不等式0)3)(1)(12(>--+x x x 的解集为),3()1,21(+∞- 。
在上述解题过程中,学生存在的疑问往往有:为什么各因式中未知数的系数为正;为什么从最大根的右上方开始穿线;为什么数轴上方曲线对应的x 的集合是大于零不等式的解集,数轴下方曲线对应x 的集合是小于零不等式的解集。