高一抛体运动专题练习(word版
- 格式:doc
- 大小:592.50 KB
- 文档页数:13
一、第五章 抛体运动易错题培优(难)1.如图所示,一小球从一半圆轨道左端A 点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B 点。
O 为半圆轨道圆心,半圆轨道半径为R ,OB 与水平方向夹角为30°,重力加速度为g ,不计空气阻力,则小球抛出时的初速度大小为( )A (323)6gR +B 332gRC (13)3gR +D 33gR【答案】A 【解析】 【分析】根据题意,小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成600角,根据速度方向得到平抛运动的初速度与时间的关系,再根据水平位移与初速度及时间的关系,联立即可求得初速度。
【详解】小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成60°角,则有0tan60y v v =竖直方向y gt =v水平方向小球做匀速直线运动,则有0cos30R R v t +=联立解得0(323)6gRv +=故A 正确,BCD 错误。
故选A 。
【点睛】解决本题的关键是掌握平抛运动在水平方向和竖直方向上的运动规律,抓住速度方向,结合位移关系、速度关系进行求解。
2.在光滑水平面上,有一质量为m 的质点以速度0v 做匀速直线运动。
t =0时刻开始,质点受到水平恒力F 作用,速度大小先减小后增大,运动过程中速度最小值为012v 。
质点从开始受到恒力作用到速度最小的过程经历的时间为t ,发生位移的大小为x ,则判断正确的是( )A .02mv t F=B .04t F =C .204x F=D .28x F=【答案】D 【解析】 【分析】 【详解】AB .在t =0时开始受到恒力F 作用,加速度不变,做匀变速运动,若做匀变速直线运动,则最小速度可以为零,所以质点受力F 作用后一定做匀变速曲线运动。
设恒力与初速度之间的夹角是θ,最小速度100sin 0.5v v v θ==解得sin 0.5θ=设经过t 质点的速度最小,将初速度沿恒力方向和垂直恒力方向分解,故在沿恒力方向上有0cos30-0Fv t m︒= 解得2t F=故AB 错误;CD .垂直于恒力F 方向上发生的位移200(sin )4x v θt F==沿力F 方向上发生的位移22200311()()2228mv Fy at m F F===位移的大小为28s F==故D 正确,C 错误; 故选D 。
一、第五章 抛体运动易错题培优(难)1.如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M ,长杆的一端放在地上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方O 点处,在杆的中点C 处拴一细绳,绕过两个滑轮后挂上重物M ,C 点与O 点距离为L ,现在杆的另一端用力,使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90︒角),此过程中下述说法中正确的是( )A .重物M 做匀速直线运动B .重物M 先超重后失重C .重物M 的最大速度是L ω,此时杆水平D .重物M 的速度先减小后增大 【答案】B 【解析】 【分析】 【详解】ACD .设C 点线速度方向与绳子沿线的夹角为θ(锐角),由题知C 点的线速度为c v L ω=该线速度在绳子方向上的分速度为1v1cos v L ωθ=θ的变化规律是从开始最大(90°)然后逐渐变小,所以1v 逐渐变大,直至绳子和杆垂直,θ变为零度,绳子的速度变为最大,为ωL ;然后,θ又逐渐增大,1v 逐渐变小,绳子的速度变慢。
所以知重物的速度先增大后减小,且最大速度为ωL ,此时杆是与绳垂直,而不是水平的,故ACD 错误;B .上面的分析得出,重物的速度先增大后减小,所以重物M 先向上加速后向上减速,即先超重后失重,故B 正确。
故选B 。
【点睛】解决本题的关键在于掌握运动的合成与分解,把C 点的速度分解为沿绳方向和垂直于绳的方向,沿绳方向的分速度等于重物的速度。
2.一种定点投抛游戏可简化为如图所示的模型,以水平速度v 1从O 点抛出小球,正好落入倾角为θ的斜面上的洞中,洞口处于斜面上的P 点,OP 的连线正好与斜面垂直;当以水平速度v2从O点抛出小球,小球正好与斜面在Q点垂直相碰。
不计空气阻力,重力加速度为g,下列说法正确的是()A.小球落在P点的时间是1tanvgθB.Q点在P点的下方C.v1>v2D.落在P点的时间与落在Q点的时间之比是122vv【答案】D【解析】【分析】【详解】A.以水平速度v1从O点抛出小球,正好落入倾角为θ的斜面上的洞中,此时位移垂直于斜面,由几何关系可知1112112tan12v t vgtgtθ==所以112tanvtgθ=A错误;BC.当以水平速度v2从O点抛出小球,小球正好与斜面在Q点垂直相碰,此时速度与斜面垂直,根据几何关系可知22tanvgtθ=即22tanvtgθ=根据速度偏角的正切值等于位移偏角的正切值的二倍,可知Q点在P点的上方,21t t<,水平位移21x x>,所以21v v>,BC错误;D.落在P点的时间与落在Q点的时间之比是11222t vt v=,D正确。
一、第五章抛体运动易错题培优(难)1.如图所示,半径为R的半球形碗竖直固定,直径AB水平,一质量为m的小球(可视为质点)由直径AB上的某点以初速度v0水平抛出,小球落进碗内与内壁碰撞,碰撞时速度大小为2gR,结果小球刚好能回到抛出点,设碰撞过程中不损失机械能,重力加速度为g,则初速度v0大小应为()A.gR B.2gR C.3gR D.2gR【答案】C【解析】小球欲回到抛出点,与弧面的碰撞必须是垂直弧面的碰撞,即速度方向沿弧AB的半径方向.设碰撞点和O的连线与水平夹角α,抛出点和碰撞点连线与水平夹角为β,如图,则由21sin2y gt Rα==,得2sinRtgα=,竖直方向的分速度为2sinyv gt gRα==,水平方向的分速度为22(2)(2sin)42sinv gR gR gR gRαα=-=-,又00tan yv gtv vα==,而20012tan2gt gtv t vβ==,所以tan2tanαβ=,物体沿水平方向的位移为2cosx Rα=,又0x v t=,联立以上的方程可得3v gR=,C正确.2.如图所示,一块橡皮用细线悬挂于O点,用铅笔靠着线的左侧水平向右匀速移动,运动中始终保持悬线竖直,则橡皮运动的速度A .大小和方向均不变B .大小不变,方向改变C .大小改变,方向不变D .大小和方向均改变 【答案】A 【解析】 【分析】 【详解】橡皮参与了水平向右和竖直向上的分运动,如图所示,两个方向的分运动都是匀速直线运动,v x 和v y 恒定,则v 合恒定,则橡皮运动的速度大小和方向都不变,A 项正确.3.如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M ,长杆的一端放在地上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方O 点处,在杆的中点C 处拴一细绳,绕过两个滑轮后挂上重物M ,C 点与O 点距离为L ,现在杆的另一端用力,使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90︒角),此过程中下述说法中正确的是( )A .重物M 做匀速直线运动B .重物M 先超重后失重C .重物M 的最大速度是L ω,此时杆水平D .重物M 的速度先减小后增大 【答案】B 【解析】 【分析】 【详解】ACD .设C 点线速度方向与绳子沿线的夹角为θ(锐角),由题知C 点的线速度为c v L ω=该线速度在绳子方向上的分速度为1v1cos v L ωθ=θ的变化规律是从开始最大(90°)然后逐渐变小,所以1v 逐渐变大,直至绳子和杆垂直,θ变为零度,绳子的速度变为最大,为ωL ;然后,θ又逐渐增大,1v 逐渐变小,绳子的速度变慢。
一、第五章 抛体运动易错题培优(难)1.2022年第24届冬奥会由北京市和张家口市联合承办。
滑雪是冬奥会的比赛项目之一,如图所示。
若斜面雪坡的倾角37θ=︒,某运动员(可视为质点)从斜面雪坡顶端M 点沿水平方向飞出后,在空中的姿势保持不变,不计空气阻力,若运动员经3s 后落到斜面雪坡上的N 点。
运动员离开M 点时的速度大小用0v 表示,运动员离开M 点后,经过时间t 离斜坡最远。
(sin370.60︒=,cos370.80︒=,g 取210m/s ),则0v 和t 的值为( )A .15m/s 2.0sB .15m/s 1.5sC .20m/s 1.5sD .20m/s 2.0s【答案】C 【解析】 【分析】 【详解】运动员离开M 点做平抛运动,竖直方向上有212h gt =解得45m h =由几何关系有tan hx θ=又0x v t =解得020m/s v =运动员离开斜坡最远时速度方向与斜坡平行,有tan y v v θ=又y gt =v解得1.5s t =选项C 正确,ABD 错误。
故选C。
2.一阶梯如图所示,其中每级台阶的高度和宽度都是0.4m,一小球以水平速度v飞出,欲打在第四台阶上,则v的取值范围是()A6m/s22m/sv<<B.22m/s 3.5m/sv<≤C2m/s6m/sv<<D6m/s23m/sv<<【答案】A【解析】【分析】【详解】若小球打在第四级台阶的边缘上高度4h d=,根据2112h gt=,得1880.4s0.32s10dtg⨯===水平位移14x d=则平抛的最大速度1112m/s0.32xvt===若小球打在第三级台阶的边缘上,高度3h d=,根据2212h gt=,得260.24sdtg==水平位移23x d=,则平抛运动的最小速度2226m/s0.24xvt===所以速度范围6m/s22m/sv<<故A正确。
一、第五章抛体运动易错题培优(难)1.如图所示,半径为R的半球形碗竖直固定,直径AB水平,一质量为m的小球(可视为质点)由直径AB上的某点以初速度v0水平抛出,小球落进碗内与内壁碰撞,碰撞时速度大小为2gR,结果小球刚好能回到抛出点,设碰撞过程中不损失机械能,重力加速度为g,则初速度v0大小应为()A.gR B.2gR C.3gR D.2gR【答案】C【解析】小球欲回到抛出点,与弧面的碰撞必须是垂直弧面的碰撞,即速度方向沿弧AB的半径方向.设碰撞点和O的连线与水平夹角α,抛出点和碰撞点连线与水平夹角为β,如图,则由21sin2y gt Rα==,得2sinRtgα=,竖直方向的分速度为2sinyv gt gRα==,水平方向的分速度为22(2)(2sin)42sinv gR gR gR gRαα=-=-,又00tan yv gtv vα==,而20012tan2gt gtv t vβ==,所以tan2tanαβ=,物体沿水平方向的位移为2cosx Rα=,又0x v t=,联立以上的方程可得3v gR=,C正确.2.如图所示,一小球从一半圆轨道左端A点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B点。
O为半圆轨道圆心,半圆轨道半径为R,OB与水平方向夹角为30°,重力加速度为g,不计空气阻力,则小球抛出时的初速度大小为()A (323)6gR +B 332gRC (13)3gR +D 33gR 【答案】A 【解析】 【分析】根据题意,小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成600角,根据速度方向得到平抛运动的初速度与时间的关系,再根据水平位移与初速度及时间的关系,联立即可求得初速度。
【详解】小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成60°角,则有0tan60y v v =竖直方向y gt =v水平方向小球做匀速直线运动,则有0cos30R R v t +=联立解得0(323)6gRv +=故A 正确,BCD 错误。
一、第五章抛体运动易错题培优(难)1.如图所示,半径为R的半球形碗竖直固定,直径AB水平,一质量为m的小球(可视为质点)由直径AB上的某点以初速度v0水平抛出,小球落进碗内与内壁碰撞,碰撞时速度大小为2gR,结果小球刚好能回到抛出点,设碰撞过程中不损失机械能,重力加速度为g,则初速度v0大小应为()A.gR B.2gR C.3gR D.2gR【答案】C【解析】小球欲回到抛出点,与弧面的碰撞必须是垂直弧面的碰撞,即速度方向沿弧AB的半径方向.设碰撞点和O的连线与水平夹角α,抛出点和碰撞点连线与水平夹角为β,如图,则由21sin2y gt Rα==,得2sinRtgα=,竖直方向的分速度为2sinyv gt gRα==,水平方向的分速度为22(2)(2sin)42sinv gR gR gR gRαα=-=-,又00tan yv gtv vα==,而20012tan2gt gtv t vβ==,所以tan2tanαβ=,物体沿水平方向的位移为2cosx Rα=,又0x v t=,联立以上的方程可得3v gR=,C正确.2.一阶梯如图所示,其中每级台阶的高度和宽度都是0.4m,一小球以水平速度v飞出,欲打在第四台阶上,则v的取值范围是()A 6m/s 22m/s v <<B .22m/s 3.5m/s v <≤C 2m/s 6m/s v <<D 6m/s 23m/s v <<【答案】A 【解析】 【分析】 【详解】若小球打在第四级台阶的边缘上高度4h d =,根据2112h gt =,得 1880.4s 0.32s 10d t g ⨯=== 水平位移14x d = 则平抛的最大速度1112m/s 0.32x v t === 若小球打在第三级台阶的边缘上,高度3h d =,根据2212h gt =,得 260.24s dt g== 水平位移23x d =,则平抛运动的最小速度2226m/s 0.24x v t === 所以速度范围6m/s 22m/s v <<故A 正确。
一、第五章 抛体运动易错题培优(难)1.2022年第24届冬奥会由北京市和张家口市联合承办。
滑雪是冬奥会的比赛项目之一,如图所示。
若斜面雪坡的倾角37θ=︒,某运动员(可视为质点)从斜面雪坡顶端M 点沿水平方向飞出后,在空中的姿势保持不变,不计空气阻力,若运动员经3s 后落到斜面雪坡上的N 点。
运动员离开M 点时的速度大小用0v 表示,运动员离开M 点后,经过时间t 离斜坡最远。
(sin370.60︒=,cos370.80︒=,g 取210m/s ),则0v 和t 的值为( )A .15m/s 2.0sB .15m/s 1.5sC .20m/s 1.5sD .20m/s 2.0s【答案】C 【解析】 【分析】 【详解】运动员离开M 点做平抛运动,竖直方向上有212h gt =解得45m h =由几何关系有tan hx θ=又0x v t =解得020m/s v =运动员离开斜坡最远时速度方向与斜坡平行,有tan y v v θ=又y gt =v解得1.5s t =选项C 正确,ABD 错误。
故选C 。
2.如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M ,长杆的一端放在地上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方O 点处,在杆的中点C 处拴一细绳,绕过两个滑轮后挂上重物M ,C 点与O 点距离为L ,现在杆的另一端用力,使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90︒角),此过程中下述说法中正确的是( )A .重物M 做匀速直线运动B .重物M 先超重后失重C .重物M 的最大速度是L ω,此时杆水平D .重物M 的速度先减小后增大 【答案】B 【解析】 【分析】 【详解】ACD .设C 点线速度方向与绳子沿线的夹角为θ(锐角),由题知C 点的线速度为c v L ω=该线速度在绳子方向上的分速度为1v1cos v L ωθ=θ的变化规律是从开始最大(90°)然后逐渐变小,所以1v 逐渐变大,直至绳子和杆垂直,θ变为零度,绳子的速度变为最大,为ωL ;然后,θ又逐渐增大,1v 逐渐变小,绳子的速度变慢。
一、第五章抛体运动易错题培优(难)1.一种定点投抛游戏可简化为如图所示的模型,以水平速度v1从O点抛出小球,正好落入倾角为θ的斜面上的洞中,洞口处于斜面上的P点,OP的连线正好与斜面垂直;当以水平速度v2从O点抛出小球,小球正好与斜面在Q点垂直相碰。
不计空气阻力,重力加速度为g,下列说法正确的是()A.小球落在P点的时间是1tanvgθB.Q点在P点的下方C.v1>v2D.落在P点的时间与落在Q点的时间之比是122vv【答案】D【解析】【分析】【详解】A.以水平速度v1从O点抛出小球,正好落入倾角为θ的斜面上的洞中,此时位移垂直于斜面,由几何关系可知1112112tan12v t vgtgtθ==所以112tanvtgθ=A错误;BC.当以水平速度v2从O点抛出小球,小球正好与斜面在Q点垂直相碰,此时速度与斜面垂直,根据几何关系可知22tanvgtθ=即22tanvtgθ=根据速度偏角的正切值等于位移偏角的正切值的二倍,可知Q点在P点的上方,21t t<,水平位移21x x>,所以21v v>,BC错误;D.落在P点的时间与落在Q点的时间之比是11222t vt v=,D正确。
故选D。
2.不可伸长的轻绳通过定滑轮,两端分别与甲、乙两物体连接,两物体分别套在水平、竖直杆上。
控制乙物体以v=2m/s的速度由C点匀速向下运动到D点,同时甲由A点向右运动到B点,四个位置绳子与杆的夹角分别如图所示,绳子一直绷直。
已知sin37°=0.6,cos37°=0.8。
则下列说法正确的是()A.甲在A点的速度为2m/sB.甲在A点的速度为2.5m/sC.甲由A点向B点运动的过程,速度逐渐增大D.甲由A点向B点运动的过程,速度先增大后减小【答案】C【解析】【分析】【详解】AB.将甲的速度分解为沿绳子方向和垂直于绳子方向,如图所示,拉绳子的速度等于甲沿绳子方向的分速度,设该速度为v绳,根据平行四边形定则得,B点的实际速度cos53Bvv=︒绳同理,D点的速度分解可得cos37Dv v=︒绳联立解得cos53cos37B D v v ︒=︒那么,同理则有cos37cos53A C v v ︒=︒由于控制乙物体以2m s v =的速度由C 点匀速向下运动到D 点,因此甲在A 点的速度为1.5m s A v =,AB 错误;CD .设甲与悬点连线与水平夹角为α,乙与悬点连线与竖直夹角为β,由上分析可得cos cos A C v v αβ=在乙下降过程中,α角在逐渐增大,β角在逐渐减小,则有甲的速度在增大,C 正确,D 错误。
一、第五章 抛体运动易错题培优(难)1.2022年第24届冬奥会由北京市和张家口市联合承办。
滑雪是冬奥会的比赛项目之一,如图所示。
若斜面雪坡的倾角37θ=︒,某运动员(可视为质点)从斜面雪坡顶端M 点沿水平方向飞出后,在空中的姿势保持不变,不计空气阻力,若运动员经3s 后落到斜面雪坡上的N 点。
运动员离开M 点时的速度大小用0v 表示,运动员离开M 点后,经过时间t 离斜坡最远。
(sin370.60︒=,cos370.80︒=,g 取210m/s ),则0v 和t 的值为( )A .15m/s 2.0sB .15m/s 1.5sC .20m/s 1.5sD .20m/s 2.0s【答案】C 【解析】 【分析】 【详解】运动员离开M 点做平抛运动,竖直方向上有212h gt =解得45m h =由几何关系有tan hx θ=又0x v t =解得020m/s v =运动员离开斜坡最远时速度方向与斜坡平行,有tan y v v θ=又y gt =v解得1.5s t =选项C 正确,ABD 错误。
故选C。
2.如图所示,一块橡皮用细线悬挂于O点,用铅笔靠着线的左侧水平向右匀速移动,运动中始终保持悬线竖直,则橡皮运动的速度A.大小和方向均不变B.大小不变,方向改变C.大小改变,方向不变D.大小和方向均改变【答案】A【解析】【分析】【详解】橡皮参与了水平向右和竖直向上的分运动,如图所示,两个方向的分运动都是匀速直线运动,v x和v y恒定,则v合恒定,则橡皮运动的速度大小和方向都不变,A项正确.3.甲、乙两船在静水中航行的速度分别为5m/s和3m/s,两船从同一渡口过河,已知甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同。
则水的流速为()A.3m/s B.3.75m/s C.4m/s D.4.75m/s【答案】B【解析】【分析】【详解】由题意,甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同,可知,甲乙实际速度方向一样,如图所示可得tan v v θ=水甲cos v v θ=乙水两式相乘,得3sin =5v v θ=乙甲 则3tan =4v v θ=水甲,解得v 水=3.75m/s ,B 正确,ACD 错误。
一、第五章抛体运动易错题培优(难)1.一种定点投抛游戏可简化为如图所示的模型,以水平速度v1从O点抛出小球,正好落入倾角为θ的斜面上的洞中,洞口处于斜面上的P点,OP的连线正好与斜面垂直;当以水平速度v2从O点抛出小球,小球正好与斜面在Q点垂直相碰。
不计空气阻力,重力加速度为g,下列说法正确的是()A.小球落在P点的时间是1tanvgθB.Q点在P点的下方C.v1>v2D.落在P点的时间与落在Q点的时间之比是122vv【答案】D【解析】【分析】【详解】A.以水平速度v1从O点抛出小球,正好落入倾角为θ的斜面上的洞中,此时位移垂直于斜面,由几何关系可知1112112tan12v t vgtgtθ==所以112tanvtgθ=A错误;BC.当以水平速度v2从O点抛出小球,小球正好与斜面在Q点垂直相碰,此时速度与斜面垂直,根据几何关系可知22tanvgtθ=即22tanvtgθ=根据速度偏角的正切值等于位移偏角的正切值的二倍,可知Q点在P点的上方,21t t<,水平位移21x x >,所以21v v >,BC 错误; D .落在P 点的时间与落在Q 点的时间之比是11222t v t v =,D 正确。
故选D 。
2.如图所示,在坡度一定的斜面顶点以大小相同的初速v 同时水平向左与水平向右抛出两个小球A 和B ,两侧斜坡的倾角分别为30°和60°,小球均落在坡面上,若不计空气阻力,则A 和B 两小球的运动时间之比为( )A .1:1B .1:2C .1:3D .1:4【答案】C 【解析】 【分析】 【详解】A 球在空中做平抛运动,落在斜面上时,有212tan 302A A A A gt y gtx vt v︒===解得2tan 30A v t g ︒=同理对B 有2tan 60B v t g︒=由此解得:tan 30:tan 601:3A B t t =︒︒=故选C 。
一、第五章抛体运动易错题培优(难)1.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2。
则可以求出的物理量是()A.α的值B.小球的初速度v0C.小球在空中运动时间D.小球初动能【答案】A【解析】【分析】【详解】设初速度v0与竖直方向夹角β,则β=90°−α(1);由A点斜抛至至最高点时,设水平位移为x1,竖直位移为y1,由最高点至碰撞点D的平抛过程Ⅱ中水平位移为x2,竖直位移y2。
A点抛出时:sinxv vβ=(2)10cosyv vβ=(3)2112yvyg=(4)小球垂直打到斜面时,碰撞无能力损失,设竖直方向速度v y2,则水平方向速度保持0sinxv vβ=不变,斜面倾角θ=45°,20tan45siny x xv v v vβ===(5)2222yyyg=(6)()22212cos sin2vy y ygββ-∆=-=(7),平抛运动中,速度的偏向角正切值等于位移偏向角的正切值的二倍,所以:()111111tan90222tanyxvyx vββ==-=(8)由(8)变形化解:211cos sin2tanvx ygβββ==(9)同理,Ⅱ中水平位移为:2222sin2tan45vx ygβ==(10)()212sin sin cosvx x xgβββ+=+=总(11)=tan45yx∆总故=y x∆总即2sin sin cosβββ-=-(12)由此得1tan3β=19090arctan3αβ=-=-故可求得α的值,其他选项无法求出;故选:A。
2.如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M,长杆的一端放在地上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方O点处,在杆的中点C处拴一细绳,绕过两个滑轮后挂上重物M,C点与O点距离为L,现在杆的另一端用力,使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90︒角),此过程中下述说法中正确的是()A.重物M做匀速直线运动B.重物M先超重后失重C.重物M的最大速度是Lω,此时杆水平D .重物M 的速度先减小后增大 【答案】B 【解析】 【分析】 【详解】ACD .设C 点线速度方向与绳子沿线的夹角为θ(锐角),由题知C 点的线速度为c v L ω=该线速度在绳子方向上的分速度为1v1cos v L ωθ=θ的变化规律是从开始最大(90°)然后逐渐变小,所以1v 逐渐变大,直至绳子和杆垂直,θ变为零度,绳子的速度变为最大,为ωL ;然后,θ又逐渐增大,1v 逐渐变小,绳子的速度变慢。
一、第五章抛体运动易错题培优(难)1.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2。
则可以求出的物理量是()A.α的值B.小球的初速度v0C.小球在空中运动时间D.小球初动能【答案】A【解析】【分析】【详解】设初速度v0与竖直方向夹角β,则β=90°−α(1);由A点斜抛至至最高点时,设水平位移为x1,竖直位移为y1,由最高点至碰撞点D的平抛过程Ⅱ中水平位移为x2,竖直位移y2。
A点抛出时:sinxv vβ=(2)10cosyv vβ=(3)2112yvyg=(4)小球垂直打到斜面时,碰撞无能力损失,设竖直方向速度v y2,则水平方向速度保持0sinxv vβ=不变,斜面倾角θ=45°,20tan45siny x xv v v vβ===(5)2222yyyg=(6)()22212cos sin2vy y ygββ-∆=-=(7),平抛运动中,速度的偏向角正切值等于位移偏向角的正切值的二倍,所以:()111111tan90222tanyxvyx vββ==-=(8)由(8)变形化解:211cos sin2tanvx ygβββ==(9)同理,Ⅱ中水平位移为:2222sin2tan45vx ygβ==(10)()212sin sin cosvx x xgβββ+=+=总(11)=tan45yx∆总故=y x∆总即2sin sin cosβββ-=-(12)由此得1tan3β=19090arctan3αβ=-=-故可求得α的值,其他选项无法求出;故选:A。
2.如图所示,一小球从一半圆轨道左端A点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B点。
O为半圆轨道圆心,半圆轨道半径为R,OB与水平方向夹角为30°,重力加速度为g,不计空气阻力,则小球抛出时的初速度大小为()A(323)6gR+B332gRC(13)3gR+D33gR【答案】A【解析】【分析】根据题意,小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成600角,根据速度方向得到平抛运动的初速度与时间的关系,再根据水平位移与初速度及时间的关系,联立即可求得初速度。
一、第五章抛体运动易错题培优(难)1.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2。
则可以求出的物理量是()A.α的值B.小球的初速度v0C.小球在空中运动时间D.小球初动能【答案】A【解析】【分析】【详解】设初速度v0与竖直方向夹角β,则β=90°−α(1);由A点斜抛至至最高点时,设水平位移为x1,竖直位移为y1,由最高点至碰撞点D的平抛过程Ⅱ中水平位移为x2,竖直位移y2。
A点抛出时:sinxv vβ=(2)10cosyv vβ=(3)2112yvyg=(4)小球垂直打到斜面时,碰撞无能力损失,设竖直方向速度v y2,则水平方向速度保持0sinxv vβ=不变,斜面倾角θ=45°,20tan45siny x xv v v vβ===(5)2222yyyg=(6)()22212cos sin2vy y ygββ-∆=-=(7),平抛运动中,速度的偏向角正切值等于位移偏向角的正切值的二倍,所以:()111111tan 90222tan y x v y x v ββ==-=(8) 由(8)变形化解:2011cos sin 2tan v x y gβββ==(9)同理,Ⅱ中水平位移为:22022sin 2tan 45v x y gβ==(10)()2012sin sin cos v x x x gβββ+=+=总(11) =tan45yx ∆总故=y x ∆总即2sin sin cos βββ-=-(12)由此得1tan 3β=19090arctan 3αβ=-=-故可求得α的值,其他选项无法求出; 故选:A 。
2.如图所示,一块橡皮用细线悬挂于O 点,用铅笔靠着线的左侧水平向右匀速移动,运动中始终保持悬线竖直,则橡皮运动的速度A .大小和方向均不变B .大小不变,方向改变C .大小改变,方向不变D .大小和方向均改变 【答案】A 【解析】 【分析】【详解】橡皮参与了水平向右和竖直向上的分运动,如图所示,两个方向的分运动都是匀速直线运动,v x 和v y 恒定,则v 合恒定,则橡皮运动的速度大小和方向都不变,A 项正确.3.如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M ,长杆的一端放在地上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方O 点处,在杆的中点C 处拴一细绳,绕过两个滑轮后挂上重物M ,C 点与O 点距离为L ,现在杆的另一端用力,使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90︒角),此过程中下述说法中正确的是( )A .重物M 做匀速直线运动B .重物M 先超重后失重C .重物M 的最大速度是L ω,此时杆水平D .重物M 的速度先减小后增大 【答案】B 【解析】 【分析】 【详解】ACD .设C 点线速度方向与绳子沿线的夹角为θ(锐角),由题知C 点的线速度为c v L ω=该线速度在绳子方向上的分速度为1v1cos v L ωθ=θ的变化规律是从开始最大(90°)然后逐渐变小,所以1v 逐渐变大,直至绳子和杆垂直,θ变为零度,绳子的速度变为最大,为ωL ;然后,θ又逐渐增大,1v 逐渐变小,绳子的速度变慢。
一、第五章 抛体运动易错题培优(难)1.不可伸长的轻绳通过定滑轮,两端分别与甲、乙两物体连接,两物体分别套在水平、竖直杆上。
控制乙物体以v =2m/s 的速度由C 点匀速向下运动到D 点,同时甲由A 点向右运动到B 点,四个位置绳子与杆的夹角分别如图所示,绳子一直绷直。
已知sin37°=0.6,cos37°=0.8。
则下列说法正确的是( )A .甲在A 点的速度为2m/sB .甲在A 点的速度为2.5m/sC .甲由A 点向B 点运动的过程,速度逐渐增大D .甲由A 点向B 点运动的过程,速度先增大后减小 【答案】C 【解析】 【分析】 【详解】AB .将甲的速度分解为沿绳子方向和垂直于绳子方向,如图所示,拉绳子的速度等于甲沿绳子方向的分速度,设该速度为v 绳,根据平行四边形定则得,B 点的实际速度cos53B v v =︒绳同理,D 点的速度分解可得cos37D v v =︒绳联立解得cos53cos37B D v v ︒=︒那么,同理则有cos37cos53A C v v ︒=︒由于控制乙物体以2m s v =的速度由C 点匀速向下运动到D 点,因此甲在A 点的速度为1.5m s A v =,AB 错误;CD .设甲与悬点连线与水平夹角为α,乙与悬点连线与竖直夹角为β,由上分析可得cos cos A C v v αβ=在乙下降过程中,α角在逐渐增大,β角在逐渐减小,则有甲的速度在增大,C 正确,D 错误。
故选C 。
2.甲、乙两船在静水中航行的速度分别为5m/s 和3m/s ,两船从同一渡口过河,已知甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同。
则水的流速为( ) A .3m/s B .3.75m/sC .4m/sD .4.75m/s【答案】B 【解析】 【分析】 【详解】由题意,甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同,可知,甲乙实际速度方向一样,如图所示可得tan v v θ=水甲cos v v θ=乙水两式相乘,得3sin =5v v θ=乙甲 则3tan =4v v θ=水甲,解得v 水=3.75m/s ,B 正确,ACD 错误。
一、第五章抛体运动易错题培优(难)1.如图所示,半径为R的半球形碗竖直固定,直径AB水平,一质量为m的小球(可视为质点)由直径AB上的某点以初速度v0水平抛出,小球落进碗内与内壁碰撞,碰撞时速度大小为2gR,结果小球刚好能回到抛出点,设碰撞过程中不损失机械能,重力加速度为g,则初速度v0大小应为()A.gR B.2gR C.3gR D.2gR【答案】C【解析】小球欲回到抛出点,与弧面的碰撞必须是垂直弧面的碰撞,即速度方向沿弧AB的半径方向.设碰撞点和O的连线与水平夹角α,抛出点和碰撞点连线与水平夹角为β,如图,则由21sin2y gt Rα==,得2sinRtgα=,竖直方向的分速度为2sinyv gt gRα==,水平方向的分速度为22(2)(2sin)42sinv gR gR gR gRαα=-=-,又00tan yv gtv vα==,而20012tan2gt gtv t vβ==,所以tan2tanαβ=,物体沿水平方向的位移为2cosx Rα=,又0x v t=,联立以上的方程可得3v gR=,C正确.2.一小船在静水中的速度为3m/s,它在一条河宽150m、水流速度为4m/s的河流中渡河,则该小船()A.能到达正对岸B.渡河的时间不少于50sC.以最短时间渡河时,它渡河的位移大小为200mD.以最短位移渡河时,位移大小为150m【答案】B【解析】 【分析】 【详解】A .因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸,选项A 错误;B .当船在静水中的速度垂直河岸时,渡河时间最短min 150s 50s 3d t v ===船 选项B 正确;C .船以最短时间50s 渡河时,沿水流方向的位移大小450m 200m min x v t ==⨯=水渡河位移应为水流方向的位移与垂直河岸方向位移的合位移,选项C 错误; D .因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸。
一、第五章抛体运动易错题培优(难)1.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2。
则可以求出的物理量是()A.α的值B.小球的初速度v0C.小球在空中运动时间D.小球初动能【答案】A【解析】【分析】【详解】设初速度v0与竖直方向夹角β,则β=90°−α(1);由A点斜抛至至最高点时,设水平位移为x1,竖直位移为y1,由最高点至碰撞点D的平抛过程Ⅱ中水平位移为x2,竖直位移y2。
A点抛出时:sinxv vβ=(2)10cosyv vβ=(3)2112yvyg=(4)小球垂直打到斜面时,碰撞无能力损失,设竖直方向速度v y2,则水平方向速度保持0sinxv vβ=不变,斜面倾角θ=45°,20tan45siny x xv v v vβ===(5)2222yyyg=(6)()22212cos sin2vy y ygββ-∆=-=(7),平抛运动中,速度的偏向角正切值等于位移偏向角的正切值的二倍,所以:()111111tan 90222tan y x v y x v ββ==-=(8) 由(8)变形化解:2011cos sin 2tan v x y gβββ==(9)同理,Ⅱ中水平位移为:22022sin 2tan 45v x y gβ==(10)()2012sin sin cos v x x x gβββ+=+=总(11) =tan45yx ∆总故=y x ∆总即2sin sin cos βββ-=-(12)由此得1tan 3β=19090arctan 3αβ=-=-故可求得α的值,其他选项无法求出; 故选:A 。
2.2022年第24届冬奥会由北京市和张家口市联合承办。
滑雪是冬奥会的比赛项目之一,如图所示。
一、第五章抛体运动易错题培优(难)1.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2。
则可以求出的物理量是()A.α的值B.小球的初速度v0C.小球在空中运动时间D.小球初动能【答案】A【解析】【分析】【详解】设初速度v0与竖直方向夹角β,则β=90°−α(1);由A点斜抛至至最高点时,设水平位移为x1,竖直位移为y1,由最高点至碰撞点D的平抛过程Ⅱ中水平位移为x2,竖直位移y2。
A点抛出时:sinxv vβ=(2)10cosyv vβ=(3)2112yvyg=(4)小球垂直打到斜面时,碰撞无能力损失,设竖直方向速度v y2,则水平方向速度保持0sinxv vβ=不变,斜面倾角θ=45°,20tan45siny x xv v v vβ===(5)2222yyyg=(6)()22212cos sin2vy y ygββ-∆=-=(7),平抛运动中,速度的偏向角正切值等于位移偏向角的正切值的二倍,所以:()111111tan 90222tan y x v y x v ββ==-=(8) 由(8)变形化解:2011cos sin 2tan v x y gβββ==(9)同理,Ⅱ中水平位移为:22022sin 2tan 45v x y gβ==(10)()2012sin sin cos v x x x gβββ+=+=总(11) =tan45yx ∆总故=y x ∆总即2sin sin cos βββ-=-(12)由此得1tan 3β=19090arctan 3αβ=-=-故可求得α的值,其他选项无法求出; 故选:A 。
2.2022年第24届冬奥会由北京市和张家口市联合承办。
滑雪是冬奥会的比赛项目之一,如图所示。