基于岩体力学与水渗流的研究
- 格式:doc
- 大小:38.00 KB
- 文档页数:7
《岩体渗流的流固耦合问题及其工程应用》篇一一、引言在岩土工程中,岩体渗流和流固耦合现象是一个复杂的、具有挑战性的问题。
岩体渗流涉及到地下水的流动、储存和传输,而流固耦合则涉及到岩体在受到外力作用下的变形和内部应力的变化与地下水的相互影响。
这两者之间的相互作用对岩土工程的设计和施工具有重要影响。
本文将探讨岩体渗流的流固耦合问题及其在工程中的应用。
二、岩体渗流的流固耦合问题(一)基本概念岩体渗流的流固耦合是指岩体中液体流动与岩体变形的相互影响和相互作用的复杂过程。
在这种过程中,液体的流动和岩体的变形相互影响,产生一种动态的、复杂的相互作用关系。
这种关系在许多工程实践中具有重要的应用价值。
(二)主要问题岩体渗流的流固耦合问题主要表现在以下几个方面:首先,岩石和流体之间的相互作用使得两者都发生变化,使得流体的流动和岩石的变形都变得复杂;其次,由于岩体的非均质性和各向异性,使得流固耦合问题更加复杂;最后,在实际工程中,岩体常常处于复杂的应力环境中,使得渗流与变形的相互影响更为明显。
三、岩体渗流的流固耦合问题的工程应用(一)地下工程建设在地下工程建设中,如地铁、隧道、地下商场等,岩体渗流的流固耦合问题是一个重要的考虑因素。
在这些工程中,由于岩体的变形和内部应力的变化会直接影响到地下结构的稳定性和安全性,因此必须考虑流固耦合效应的影响。
同时,了解并预测地下水的流动状态也是工程设计中的重要内容。
(二)水坝建设在水坝建设中,坝体的稳定性是一个关键的问题。
岩体渗流的流固耦合效应会影响坝体的稳定性和安全。
比如,如果地下水的水位升高或者渗流量增加,可能会引起坝体的变形甚至破坏。
因此,在设计和施工中必须考虑流固耦合效应的影响。
(三)地质灾害防治在地质灾害防治中,如滑坡、泥石流等灾害的防治也需要考虑岩体渗流的流固耦合效应。
这些灾害的发生往往与地下水的流动和岩体的变形密切相关。
通过研究和分析岩体渗流的流固耦合效应,可以更好地预测和防治这些地质灾害。
岩石力学的研究与应用岩石力学是研究岩石在受到外力作用时的形变、破裂、变形和变化规律等专门知识领域,其应用范围非常广泛。
本文将从岩石力学的研究背景入手,重点介绍岩石力学的基本概念、应用领域和最新的研究成果等方面。
一、岩石力学的研究背景随着社会和经济的发展,煤炭、石油、天然气等矿产资源的需求不断增加,同时,建筑、交通等基础设施建设也越来越重要。
在这背景下,岩石力学的研究与应用越来越受到人们的重视。
岩石力学的研究能够帮助我们更好地了解岩石的性质、结构和变形规律,为工程建设提供科学依据。
二、岩石力学的基本概念在岩石力学中,有许多基本概念需要了解。
首先,岩石是由矿物质、有机物和空隙组成的,具有一定的物理性质、力学性质和化学性质。
其次,在岩石力学研究中,通常会涉及到应力、应变、弹性模量和破裂等概念。
应力是指单位面积上受到的力,通常用帕斯卡表示;应变是指岩石因受到应力而发生的形变,通常用“με”表示,1με=0.0001%;弹性模量是指岩石在受到应力后的弹性变形能力大小,它能够反映岩石的硬度和韧性;破裂是指在岩石受到过大的应力时,岩石发生裂缝、断裂等现象。
三、岩石力学的应用领域岩石力学的应用非常广泛,以下列举一些重要的领域:1.煤矿安全-煤矿隧道与采煤工作面是煤矿地下工作最常见的形式。
岩石力学可以研究煤山构造特征、煤岩结构变化和应变性质,为矿井工程的稳定性分析、安全生产和采掘方法提供设计思路和理论依据。
2.水电工程-水电站大坝、水库等工程具有巨大的重要性。
岩石力学能够研究岩体变形、岩爆、渗流等工程关键问题,为保证水电工程的安全可靠运行提供分析和控制的手段。
3.地质工程-隧道工程、铁路、公路建设等基础设施工程中,岩石力学非常关键。
岩石力学可以掌握隧道和坑道的稳定性分析、岩壁爆破技术和岩土相互作用等工程关键问题,并提出相应的解决方案。
4.石油工程-岩石力学可以研究地下地质力学的特点、岩石物性的变化及其对采油的影响,为石油工程的勘探、开采和开发提供理论和实践指导。
《河南水利与南水北调》2023年第7期工程建设与管理水库大坝渗流问题及防渗措施郝雷,庄作义(临沂市水利工程处,山东临沂276000)摘要:渗流一直以来是影响水库大坝安全的重要问题,主要影响因素包括地质条件差、坝基岩体不连续或是坝体填筑材料。
目前主要的处理措施包括在基础下设置灌浆帷幕、在黏土芯接触面设置反滤层、坝体下游设置排水沟、坝址处设置防渗墙等。
由于基础材料力学性能不同、水力压裂、不均匀沉降等问题,坝体易形成裂缝并进一步加剧渗流问题,形成渗流通道,故预防水库大坝渗流的关键点就在于排水。
关键词:渗流;水库大坝;水力压裂;排水中图分类号:TV697.3文献标识码:B文章编号:1673-8853(2023)07-0101-02Seepage Problems and Seepage Control Measures of Reservoir DamHAO Lei,ZHUANG Zuoyi(Linyi Water Conservancy Engineering Office,Linyi276000,China)Abstract:Seepage has always been an important problem affecting the safety of reservoir dams.The main influencing factors include poor geological conditions,discontinuity of dam foundation rock mass or dam filling materials.At present,the main treatment measures include setting up the grouting curtain under the foundation,setting up inverted filter layer on the contact surface of clay core,setting up drainage ditch downstream of the dam body,and setting the anti-seepage wall at the dam site.Due to the different mechanical properties of basic materials,hydraulic fracturing,uneven settlement and other problems,the dam body is prone to form cracks and further aggravate the seepage problem,forming seepage channels.Therefore,the key point to prevent seepage of the reservoir dam is drainage.Key words:seepage;reservoir dam;hydraulic fracturing;drainage0引言水库大坝运行期间可能会出现水力问题,从而威胁其安全。
《岩体渗流的流固耦合问题及其工程应用》篇一一、引言岩体渗流是地质工程中常见且重要的研究领域,特别是在地下水运动、水力压裂、采矿工程和地质灾害预防等领域中具有广泛应用。
随着科技进步和研究的深入,岩体渗流中的流固耦合问题逐渐成为研究的热点。
本文旨在探讨岩体渗流的流固耦合问题及其在工程中的应用。
二、岩体渗流的流固耦合问题岩体渗流的流固耦合问题主要涉及到岩体中流体与固体骨架的相互作用。
在岩体中,流体(如地下水)的流动会受到固体骨架的约束和影响,同时,固体骨架的变形也会影响流体的流动。
这种相互作用关系复杂,涉及到多物理场耦合、多尺度效应等问题。
(一)流固耦合的基本原理流固耦合的基本原理主要涉及到流体动力学和弹性力学。
在岩体渗流中,流体在岩体孔隙或裂隙中流动时,会受到固体骨架的约束,同时,固体骨架的变形也会改变流体的流动状态。
这种相互作用关系需要通过数学模型进行描述和求解。
(二)流固耦合的数学模型目前,针对岩体渗流的流固耦合问题,常用的数学模型主要包括渗流方程和弹性力学方程。
渗流方程描述了流体在岩体中的流动规律,而弹性力学方程则描述了固体骨架的变形规律。
通过将这两个方程进行耦合,可以描述岩体渗流的流固耦合问题。
三、岩体渗流的流固耦合问题的工程应用岩体渗流的流固耦合问题在工程中具有广泛的应用,主要涉及以下几个方面:(一)地下水运动模拟与预测通过建立岩体渗流的流固耦合模型,可以模拟和预测地下水的运动规律。
这对于地下水资源开发、地下水污染防治、地下水利用等具有重要意义。
(二)水力压裂技术水力压裂技术是一种在采矿工程和油气开采中广泛应用的技术。
通过注入高压流体,使岩石产生裂缝,从而实现对矿石或油气的开采。
在这个过程中,岩体渗流的流固耦合问题具有重要作用。
通过对流固耦合问题的研究,可以优化水力压裂的过程,提高开采效率。
(三)地质灾害预防与治理地质灾害如山体滑坡、地面塌陷等往往与岩体渗流的流固耦合问题密切相关。
通过对岩体渗流的流固耦合问题进行深入研究,可以预测和评估地质灾害的风险,为地质灾害的预防与治理提供科学依据。
岩石力学与地下水流耦合作用的数值模拟研究岩石力学与地下水流耦合作用的数值模拟研究随着人类对地下资源的需求不断增加,地下工程建设也越来越普遍。
然而,地下工程建设往往会涉及到岩石力学和地下水流的耦合作用,这就需要我们对这种作用进行深入的研究。
岩石力学是研究岩石受力及其破坏规律的学科,而地下水流则是指地下水在地下流动的现象。
这两者之间的耦合作用,主要表现在以下几个方面:首先,地下水对岩石的力学性质有很大的影响。
当岩石中存在水分时,水分会填充岩石中的孔隙,从而改变了岩石的物理性质和力学性质。
例如,当岩石中的水分增多时,岩石的强度会降低,容易发生破坏。
其次,岩石的变形也会对地下水流产生影响。
当岩石发生变形时,孔隙的大小和分布也会发生变化,这会影响地下水流的通透性和渗透性。
如果地下工程建设中没有考虑到这种影响,就容易导致地下水流失控,从而给工程带来安全隐患。
为了更好地研究岩石力学与地下水流的耦合作用,我们可以采用数值模拟方法进行研究。
数值模拟方法是一种基于计算机技术的模拟方法,可以对复杂的物理现象进行模拟和分析。
在数值模拟中,我们可以通过建立岩石力学和地下水流的耦合模型来模拟两者之间的相互作用。
具体来说,我们可以将岩石视为一个多孔介质,在此基础上建立岩石力学模型,并考虑地下水流对其产生的影响。
同时,我们还可以建立地下水流模型,并考虑岩石变形对其产生的影响。
通过将这两个模型进行耦合,我们就可以得到一个更加真实、准确的模拟结果。
通过数值模拟方法,我们可以更加深入地了解岩石力学与地下水流之间的耦合作用,并为地下工程建设提供更为可靠的理论依据。
同时,我们还可以通过调整模型参数和优化算法等手段来提高数值模拟的精度和效率,从而更好地应用于实际工程中。
总之,岩石力学与地下水流的耦合作用是地下工程建设中不可忽视的重要问题。
通过数值模拟方法进行深入研究,可以为我们提供更为准确、可靠的理论支持,并为实际工程应用提供更好的技术支持。
岩土工程中的渗流力学分析岩土工程作为建筑工程和土木工程的重要组成部分,涉及到土壤和岩石的工程性质与行为研究。
在岩土工程中,渗流力学分析是一项重要的技术和工具,用于研究水流在土体或岩石中的渗透和传递规律。
本文将深入探讨岩土工程中的渗流力学分析。
一、渗流力学分析的基本原理渗流力学分析是基于渗流力学原理进行的。
渗流力学原理可以用达西定律来描述,即水分在渗流时受到的单位面积上水流速度与单位深度上压力梯度成正比。
达西定律可以用数学公式表示为:q = -K(dh/dl)其中,q表示单位面积上的水流速度,K表示渗透系数,dh/dl表示单位深度上的压力梯度。
这个方程可以用于描述土壤或岩石中的水流规律。
二、渗流力学分析的应用领域渗流力学分析广泛运用于岩土工程的各个领域。
在基础工程中,通过渗流力学分析可以评估地下水位对地下室和地下管道的影响;在边坡工程中,可以分析地下水对边坡稳定性的影响,提出相应的排水措施;在水利工程中,可以研究渠道和堤坝的渗流问题,优化设计方案。
渗流力学分析在岩土工程中的应用非常广泛,对于确保工程的安全和可靠性具有重要意义。
三、渗流力学分析的方法和工具在实际工程中,渗流力学分析需要使用一些特定的方法和工具。
常用的分析方法包括数值模拟法和解析解法。
数值模拟方法基于有限元法或有限差分法,通过将分析区域划分为许多小单元,建立数学模型,求解模型方程来获得渗流场的分布规律。
解析解法则是通过求解渗流相关的微分方程来得出解析公式,然后利用这些公式可以直接计算出渗流场的参数。
在实际运用中,根据具体的问题和数据,选择适合的方法和工具进行分析。
四、渗流力学分析的挑战和解决方案渗流力学分析在实际工程中面临一些挑战。
首先,现场土壤或岩石的渗透性质往往难以准确测定,这对渗流力学分析结果的准确性提出了要求。
其次,渗流过程是非线性的,需要考虑各种因素的相互作用,这增加了分析的复杂性。
最后,岩土工程中的渗流问题常常涉及到多尺度的问题,需要采用多尺度分析方法来获得准确的结果。
裂隙岩体的渗流特性试验及理论研究方法摘要:简要叙述岩体裂隙的几何特性,岩石裂隙渗流特性研究的方法。
综述了国内外裂隙岩体单裂隙、水力耦合、非饱和情况下的渗流特性物模试验研究成果,并做了相应的分析和讨论。
分析表明:物模试验在研究裂隙岩体渗流特性方面具有不可替代的作用;需要进行更多的模拟实际岩体裂隙的试验;真正意义上的非饱和渗流试验还很少;分析结果为今后的裂隙岩体渗流特性物模试验研究提供了有益的方向。
关键词:裂隙岩体;渗流 ;单一裂隙;水力耦合;非饱和一 前言新中国成立以后,交通、能源、水利水电与采矿工程各个领域遇到了许多与工程地质及岩土力学密切相关的技术难题,在许多岩土工程、矿山工程及地球物理勘探过程中,岩体的渗透率起到十分重要的作用,但在理论上尚未引起足够的重视,通常将岩体渗流处理为砂土一样的多孔介质,用连续介质力学方法求解。
与孔隙渗流的多孔介质相比,裂隙岩体渗流的特点有:渗透系数的非均匀性十分突出;渗透系数各向异性非常明显;应力环境对岩体渗流场的影响显著;岩体渗透系数的影响因素复杂,影响因子难以确定。
岩石裂隙渗流特性研究的方法通常有直接试验法、公式推导法和概念模型法,而试验研究是其中一个最重要最直接的途径。
本文介绍了当前裂隙岩体渗流试验研究。
二 岩体裂隙的几何特性岩体的节理裂隙及空隙是地下水赋存场所和运移通道。
岩体节理裂隙的分布形状、连通性以及空隙的类型,影响岩体的力学性质和岩体的渗透特性。
岩体中节理的空间分布取决于产状、形态、规模、密度、张开度和连通性等几何参数。
天然节理裂隙的表面起伏形态非常复杂,但是从地质力学成因分析,岩体总是受到张拉、压扭、剪切等应力作用形成裂隙,这种作用不论经历多少次的改造,其结构特征仍以一定的形貌保留下来,具有一定的规律性。
裂隙面形态特征的研究越来越受到重视,在确定裂隙面的导水性质及力学性质方面,其作用越来越大。
裂隙面的产状是描述裂隙面在三维空间中方向性的几何要素,它是地质构造运动的果,因而具有一定的规律性,即成组定向,有序分布。
2010-2011学年第1学期重庆交通大学基于岩体力学与水渗流的研究摘要:针对地下水通过物理、化学和力学作用于岩石并引起岩石破坏的特点,分析了岩石水损伤机理,从总体上深化了对水岩作用机理的认识,并结合工程实例进行了说明,以促进地下水渗流对岩体力学性质影响的研究。
关键词:地下水,岩体,作用机理作为影响岩体力学性质的一个活跃因素,水对岩石强度、弹性模量等方面作用的研究越来越受到人们的重视。
然而,水对岩石作用机理的研究是真正关系到能否解决以上诸多问题的关键所在。
1 机理分析地下水是一种重要的地质营力,它与岩体之间的相互作用,一方面改变着岩体的物理、化学及力学性质;另一方面改变着地下水的物理、力学性质及化学组分。
运动着的地下水对岩体产生3种作用,即物理的、化学的和力学的作用。
1.1 地下水对岩体的物理作用这种作用主要是由岩石中的结合水产生的,结合水是由于矿物对水分子的吸附力超过了重力而被束缚在矿物表面的水,水分子运动主要受矿物表面势能的控制,这种水在矿物表面形成一层水膜,产生以下几种作用:1)润滑作用[引。
由可溶盐、胶体矿物连接成的岩石,当有水浸入时,可溶盐溶解,胶体水解,使原有的连接变成水胶连接,导致矿物颗粒间连接力减弱,摩擦力减低。
这个过程在斜坡受降水入渗使得地下水位上升到滑动面以上时尤其显著。
润滑作用使岩石的变形性提高,摩擦角减小。
2)软化和泥化作用。
束缚在矿物表面的水分子通过其吸引力作用将矿物颗粒拉近、接紧,起连接作用,这种作用对于被土填充的结构面的力学性质的影响很明显。
由于岩体结构面中充填物随含水量的变化,发生由固态向塑态直至液态的弱化效应,使岩体的力学性能降低,黏土质岩石尤甚E5]。
此外,当硬岩断层破碎带中含有大量黏土质填充物时需注意这种作用。
3)结合水的强化作用。
处于非饱和带的岩体,其中的地下水是结合水,处于负压状态,按照有效应力原理,非饱和岩体中的有效应力大于岩体的总应力,从而增强了岩体的强度。
4)冻融作用。
孔隙、微裂隙中的水在冻融时的胀缩作用对岩石力学强度破坏很大。
这种作用在我国北方应特别注意。
5)水楔作用。
当有水分子补充到矿物颗粒靠得很近的矿物表面时,矿物颗粒利用其表面吸着力将水分子拉到自己周围,在两个颗粒接触处由于吸着力作用使水分子向两个矿物颗粒之间的缝隙挤入,这种现象称为水楔作用。
饱水岩石在受力过程中,水楔作用的影响更大,岩石强度的降低也较多。
以上几种作用都是与岩石中的结合水有关,而岩石含结合水的多少主要和矿物的亲水性(由黏土质矿物含量决定)有关。
水对岩石的上述几种作用往往是其中几种同时发生,且绝大多数都降低了岩体的力学性能。
根据实验研究,对于多孔隙的砂岩,饱水后的弹性模量甚至降低到干燥时的1/3。
Colback和Wiid对石英质页岩和石英质砂岩的研究,饱水抗压强度仅为干燥时抗压强度的50%Es]。
岩石试件的含水量也显著影响岩石的抗压强度指标值,含水量越大,强度指标值越低。
水对岩石强度的影响通常以软化系数表示。
节理岩体各分区的张量是采用这样的方法确定的:首先依据各分区的6组节理产状、隙宽和问距算出各分区渗透张量的主值和方向,可称之为几何统计资料所确定的值。
根据理产状可以认定压水试验所得值反映了NW 方向的节理的导水能力,可以利用大量压水试验所得到的K值修正以前计算所得的,NE组节理的导水能力与NW 组的节理的比值在不同区域各不相同,由地质工程师根据试验确定,这样可修正通过这种综合的方法确定节理岩体各分区的渗透张量。
还有50个分区的断层和帷幕的渗透主值是由试验值确定的,一般断层都是各向异性,法向渗透主值一般为顺层渗透主值。
1.2 地下水对岩体的化学作用主要是指地下水与岩体之间的离子交换、溶解作用(岩溶)、水化作用(膨胀岩的膨胀)、水解作用、溶蚀作用、氧化还原作用等。
通过近20 a的全国性地质调研及分析,初步确定了甘肃北山作为高放废物深埋处置重点研究区域。
甘肃北山地区地貌为低山陵区,高程为l 440~2 070 1TI,相对高差较小,地势低缓,为典型内陆干旱性气候,大部分为干旱戈壁或基岩裸露的低山。
该区位于北山南带中段,大地构造位置处于塔里木板块东端,属二级大地构造单元塔里木地台和北山古生代褶皱带的衔接部。
研究区南北两侧以区域性EW 向断裂、褶皱和韧性剪切带为主,中部以NE向断裂为主导的构造格局,其岩性主要为似斑状二长花岗岩、云英闪长岩及黑云母花岗岩⋯。
在稳定的地质环境巾,工程地质、岩体力学及现场渗流特性等的确定与描述是高放废物深埋处置可行研究中关键的基础数据,而岩体力学性质取决于岩石本身的物理力学性质、岩体中的结构面及岩体的赋存环境;岩体作为高放废物的地质隔离体系,其水力学性质决定其能否安全、有效地处置高放核废物。
因此,研究岩体力学与渗流特性对高放废物处置具有重要意义。
近年来,用统计学方法对岩体结构参数进定量化描述和分析已取得了显著的研究成果。
关于岩体结构网络的计算机模拟,目前仍主要采用Monte Carlo模拟方法进行。
Monte Carlo方法又称随机抽样方法,由于其解决了已知概率分布进行随机变量抽样的数学问题,在分布模拟中占有十分重要的地位。
早在20世纪70年代末到80年代初,欧美学者开始进行岩体结构面的研究,如:Baecher 和Lanney,Paul,及国内陈剑平、王清等人的研究工作,这些研究主要是在二维情况下从有限露头上测得的节理迹长推求全迹长。
陶振宁、干宏、徐光黎、潘别桐等对长江三峡水利枢纽三斗坪坝基和船闸岩体进行了二维结构概率模型的专题研究。
美国GOLDER公司等己开发出专门分析岩体结构的Fracman商用程序。
邬爱清等将三维网络模拟与关键块体理论结合起来对三峡船闸高边坡岩体进行了结构概化模型研究。
MEYER等对Boston地区的三维连通网络进行了搜索,指出了渗流可能发牛的路径。
然而在具体程序的叮视化实现上尚有所欠缺,1)离子交换。
地下水与岩体之间的离子交换是由物理力和化学力吸附到岩土体颗粒上的离子和分子与地下水的一种交换过程。
通常富含Ca离子或Mg离子的地下淡水在流经富含Na离子的土体时,使得地下水中的Ca离子或Mg离子置换了土体中的Na,一方面由水中Na的富集使天然地下水软化;另一方面新形成的富含Ca离子和Mg离子的黏土增加了孔隙度及渗透性能,使得岩土体的结构改变,从而影响岩土体的力学性质。
2)溶解作用和溶蚀作用。
天然的大气降水在经过渗入土壤带、包气带或渗滤带时,溶解了大量的气体,弥补了地下水的弱酸性,增强了地下水的侵蚀性。
这些具有侵蚀性的地下水对可溶性岩石如石灰岩(CaCO3)、白云岩(CaMgC03)、石膏(CASK)4)、岩盐(NaCI)以及钾盐(KC1)等产生溶蚀作用,增大了岩石的空隙率及渗透性。
3)水化作用。
是水渗透到岩土体的矿物结晶格架中或水分子吸附到可溶性岩石的离子上,使岩石的结构发生微观、细观及宏观的改变,减小岩土体的内聚力。
4)水解作用。
是地下水与岩土体(实质上是岩土物质中的离子)之间发生的一种反应,该反应一方面改变着地下水的pH值;另一方面也使岩土体物质发生改变,从而影响岩土体的力学性质。
5)氧化还原作用。
是一个电子从一个原子转移到另一个原子的化学反应。
地下水和岩土体之间常发生的氧化过程有:硫化物的氧化过程产生Fe203和H2SO4,碳酸盐岩的溶蚀产生了co2。
地下水与岩土体之间发生的氧化还原作用,既改变着岩土体中的矿物组成,又改变着地下水的化学组分及侵蚀性,从而影响岩土体的力学性质。
以上地下水对岩土体产生的各种化学作用大多是同时发生的,一般地说化学作用进行的速度很慢。
地下水对岩土体产生的化学作用主要是改变岩土体的矿物组成,改变其结构性而影响岩土体的力学性能。
1.3 地下水对岩体的力学作用岩石中的自由水不受矿物表面吸着力控制,其运动主要受重力作用控制,它对岩石力学性质的影响主要表现在孔隙水压力作用和溶蚀、潜蚀作用。
地下水对岩体的力学作用主要通过孔隙静水压力和孔隙动水压力作用对岩体的力学性质施加影响。
前者减小岩体的有效应力而降低岩体的强度;后者对岩体产生切向的推力以降低岩体的抗剪强度。
孔隙和微裂隙中含有重力水的岩石突然受载而水来不及排出时,岩石孔隙或裂隙中将产生高孔隙水压,减小了颗粒之间的压应力,从而降低了岩石的抗剪强度,甚至使岩石的微裂隙端部处于受拉状态,从而破坏岩石的连接。
地下水在松散破碎岩体及软弱夹层中运动时对土颗粒施加体积力,可将岩石中可溶物质溶解带走,在孔隙动水压力的作用下可使岩体中的细颗粒物质产生移动,甚至被携出岩体之外,从而使岩石强度大为降低,变形加大,前者称为溶蚀作用,后者称为潜蚀作用,在岩石中有酸性或碱性水流时,极易出现溶蚀作用,当水力梯度很大时,对于孔隙度大、连接差的岩石易产生潜蚀作用。
在岩体裂隙或断层中的地下水对裂隙壁施加两种力:1)垂直于裂隙壁的空隙静水压力(面力),该力使裂隙产生垂向变形;2)平行于裂隙壁的空隙动水压力(面力),该力使裂隙产生切向变形。
具体理论公式见表1。
表1 水对岩体力学性质影喻的理论公式类型 l 地下水未充满岩体空隙地下水充满岩体空隙静水1 =d+P =d—P动水l =rJ Vd=6yJ/2其中,为岩体的有效应力;为岩体的总应力;P为岩体中的空隙静水压力(负压);为岩体中的动水压力;y为地下水的容重;J为地下水的水力坡度;b为裂隙的宽度。
2 工程实例平庄西露天煤矿。
它的第16次滑坡,滑体长395 m,宽181 m,高41 m。
滑坡体积为4.212×10 m3,主要岩性为砂页岩和页岩,滑坡前的倾角为20。
,滑后的坡角为16。
30 ,滑坡面的倾角为18。
40 。
在滑坡顶部由于降丽积水,形成一条长约300 m的积水区,它浸泡着软弱岩层。
采用SARMA法进行稳定性演算时,在有水的情况下,其安全系数K=1.15~1.21;如边坡处于疏干状态时,其安全系数K=1.50~1.56。
通过现场节理调查、地应力及高压水试验和室内岩石力学试验,研究了高放废物处置片甘肃北山预选区岩体力学和渗流特性:(1)甘肃北山预选区BS03钻孔的岩石均只有高密度、低含水量、低吸水率和低孔隙率的特性,岩石非常致密。
(2)浅部岩石均匀性差,300 m以下岩石均匀性好。
英云闪长岩岩性不均匀,300 m 以下似斑状长花岗岩岩石均匀,单轴抗压强度和弹性模最较高。
(3)测孔的最大水平主应力为l7.52 MPa,最小水平力为l1.12 MPa,属rfJ等应力区。
(4)岩体的渗透系数为l0 ~10 cm/s,属低渗透性岩体。
(5)岩体节理以陡倾角的剪节理为主,节理倾向分布可用正态函数有效地拟合,而丌度 J 用负指数函数有效地拟合。
(6)编制的渗透张量计算和理二维模拟程序可较好地反映岩体的渗透性质和节理的三维分布。