页岩气容积法储量计算方法及实例应用_徐海霞.caj
- 格式:pdf
- 大小:1.54 MB
- 文档页数:5
页岩气资源评价中含气量计算方法初探宋涛涛;毛小平【摘要】As unconventional gas resources, shale gas is mainly consistent of the free, adsorbed and dissolved gas accumulated in dark shale beds. Among these occurrences, adsorbed and free gases are the dominated phases. Calculating adsorbed gas and free gas content is the key part of the shale gas Resource Evaluation. The key controlling free gas, adsorbed gas are porosity of shale, amount and maturation of organic matter. Based on the analysis of the key parameters in the shale gas resource evaluation, the paper mainly introduced main control factors and calculation method of free gas and adsorbed gas.%页岩气是以游离、吸附和溶解状态赋存于暗色泥页岩中的天然气,其赋存形式具有多样性,其中以游离态和吸附态为主,仅存在少量溶解态.页岩气资源评价的关键是吸附气和游离气含量的计算.游离气的主控因素是泥页岩有效孔隙度和气体饱和度,吸附气量的主控因素是有机质数量和有机质成熟度.本文在分析页岩气资源评价工作中关键参数的基础上,主要了介绍游离气和吸附气的主控因素及计算方法.【期刊名称】《中国矿业》【年(卷),期】2013(022)001【总页数】4页(P34-36,52)【关键词】页岩气;游离气;吸附气;资源评价【作者】宋涛涛;毛小平【作者单位】中国地质大学(北京)能源学院,北京100083【正文语种】中文【中图分类】P618.1页岩气是21世纪一种新型非常规天然气资源。
预测页岩气单井产量及最终储量的经验法分析李海涛;王科;补成中;张庆;张砚【摘要】为了简单、快速且准确有效地预测页岩气单井产气量及估算最终储量(EUR),详细分析了目前最常用的2种适用于页岩气藏单井产量及EUR预测经验方法的优缺点,以此为基础,提出了一种基于裂缝流主导的产量递减预测新方法,并结合四川盆地一口页岩气井详细地给出了该方法的应用步骤.实例应用表明,与YM-SEPD法和Duong法的预测结果相比,新方法预测的未来日产气量和EUR最为准确,预测EUR相对误差仅为3.98%.该方法为准确、快速预测页岩气单井的未来日产气量及EUR提供了借鉴,对裂缝线性流主导的致密气井产能预测具有一定指导意义.【期刊名称】《特种油气藏》【年(卷),期】2019(026)003【总页数】5页(P74-78)【关键词】页岩气;经验方法;产量预测;EUR;四川盆地【作者】李海涛;王科;补成中;张庆;张砚【作者单位】西南石油大学,四川成都 610500;西南石油大学,四川成都 610500;中国石油川庆钻探工程有限公司,四川成都 610051;中国石油川庆钻探工程有限公司,四川成都 610051;中国石油西南油气田分公司,四川江油 621700【正文语种】中文【中图分类】TE3280 引言页岩气藏存在吸附气[1]及需经过分段多簇压裂改造才能有效产气[2]的特征,其产气规律有别于常规气藏[3-5]。
因此,根据常规油气藏产量递减规律总结得到的Arps经典递减模型[6-7],并不适用于页岩气藏。
前人经过研究,提出了几种适用于页岩气藏的经验方法[3,8-16],但大多存在如下缺点:参数较多,且以试算得到,没有累计产气量的直接计算公式,计算过程复杂,计算结果误差大。
只有YM-SEPD法及Duong法的模型参数可通过Excel拟合历史产量数据获取,不需要预估试算或者通过专门图版拟合获取,计算步骤简单,不会产生多解[4]。
因此,这2种方法在石油工业被广泛使用,但YM-SEPD及Duong法依然有较大的缺陷。
2017年03月页岩储层含气量测井解释方法及其应用研究徐忠良(长城钻探工程有限公司测井公司,辽宁盘锦124011)摘要:页岩储层测井的常见特征项为电阻率、声波时差、自然伽马、中子值、密度等,较难进行精密计算。
本文对EROMANGA 油田的Toolebuc 页岩建立了测井解释模型,并对其应用进行分析。
关键词:页岩储层;含气量;解释方法;应用研究页岩气通常以吸附和游离的形式存在于细粒碎屑岩中,是天然气的一种。
天然气测井技术是评价页岩储层含气的关键,但其隐秘性和复杂性使得测井解释十分困难,且解释模型与常规储层有所差异。
1测井解释模型建立1.1孔隙度和矿物含量Toolebuc 页岩中包含了干酪根、灰质、泥质和砂质,利用SPSS 进行统计学分析,得出孔隙度、干酪根、有机物含量(TOC )和矿物之间的关系。
①TOC (有机物含量):有两种方法分别为声波电阻率和密度计算,交汇分析可知,密度和有机物含量之间的相关性较强,两者呈反比,利用密度计算法发现TOC =-37.172×DEN +89.408,R =0.955,DEN 为密度测井值,单位为g/cm 3,R 是相关系数。
页岩声波时差曲线为高值的原因主要是油气和发育的裂缝都会增大声波时差,所以声波曲线和TOC 为正比例相关。
通常情况下泥质岩电阻率较低,但在裂缝的油气层段电阻率较大,说明电阻率曲线与TOC 存在较高的相关性。
所以可得X =lg ()R t R j +K ×()AC -AC j ,TPC =14.671×X +0.3806,R =0.84,其中R t 为地层电阻率(Ω·m ),AC 为声波数值(μs/ft ),AC j 为非源岩声波(μs/ft ),K 是刻度系数,一般为0.02。
由关系式可知,通过密度法计算的TOC 更为准确和可靠。
②GLG (干酪根含量):储层中的GLG 会对TOC 产生直接的影响,交汇分析EROMANGA 油田的多口井可知:GLG =2.491+1.144×TOC +0.013×TOC 2,其中系数R 为0.895,GLG 单位为%。
中 国 地 球 物 理2013 ·685·利用测井资料评价页岩气层含气量的方法郑 伟* 莫修文吉林大学地球探测科学与技术学院 长春 130026页岩气储集层的特殊性质使得页岩气存在形式分为三种,即吸附于有机质表面的吸附气,游离于孔隙中的游离气及少量的溶解气。
在计算时需对吸附气和游离气分别评价,溶解气含量少可忽略不计。
1.吸附气含量的确定。
吸附气的确定可分为等温吸附法、统计拟合法、解吸法及地质类比法,前两种在利用测井资料评价中应用广泛。
①等温吸附法。
这是利用某一恒定温度下游离天然气与干酪根表面吸附的天然气的平衡关系来计算吸附气含量的方法,目前很多用法都是以此为基础发展而来的。
它首先要求确定出总有机碳含量(TOC )的值,已经有多种根据测井资料估算TOC 的方法,如声波电阻率曲线重叠法、统计拟合法、BP 神经网络法。
在利用等温吸附曲线计算时,由于它是在特定温度和TOC 下计算的,在定量评价过程中要对温度及TOC 做校正,将其换算成地层温度及TOC 条件下的吸附气含量。
校正公式如下:)*(4310c T c lt V +−=;)*(8710c T c lt P += ;)*(log 34i l T c V c +=;)*(log 78i l T c P c −+=;iso lt lc TOC TOCV V lg*=其中,V lt 为储层温度下兰格缪尔体积,P lt 为储层温度下兰格缪尔压力,c 3取0.0027,c 7取0.005,T 为储层温度,T i 为等温吸附温度,V lc 为TOC 校正的储层温度下兰格缪尔体积,TOC iso 为等温线上总有机质含量,TOC lg 为测井记录中总有机质含量。
②统计拟合法。
它利用吸附气相关的主控地层参数与实验数据建立拟合关系求取吸附气含量。
这些主要因素可能有:总有机碳含量、总烃含量、石英含量、粘土矿物含量、密度、黄铁矿含量[1]。
也可由其它参数直接对TOC 进行拟合,再应用等温吸附法计算。
页岩气藏地质储量优化计算方法何浪;梅海燕;胡欣芮;张茂林;毛恒博【摘要】精确评价地质储量是页岩气藏开发规划的重要一步,虽然理论方法不断完善,但仍存在不足.在页岩气藏中,吸附气不仅包含甲烷,还存在一定比例的乙烷等其他烃类气体,应采用多组分吸附模型计算吸附气储量.同时,天然裂缝中大量存在的天然气也不能忽略.此外,干酪根中也溶解了一定的气体,忽略会导致较大误差.采用多组分吸附模型,考虑了吸附相占据的孔隙度、裂缝游离气及干酪根中的溶解气,建立了一种优化的页岩气藏地质储量计算模型.实例分析发现,裂缝游离气和溶解气占总储量的比例分别为10.41%和7.05%,传统方法计算得到的吸附气储量偏小,基质游离气储量偏大,总储量偏小.为了合理评价页岩气藏地质储量,应采用多组分吸附模型,考虑吸附相孔隙度且不能忽略裂缝游离气及干酪根中的溶解气.【期刊名称】《石油钻采工艺》【年(卷),期】2019(041)002【总页数】6页(P197-202)【关键词】地质储量;页岩气藏;多组分吸附;裂缝游离气;溶解气;吸附相孔隙度【作者】何浪;梅海燕;胡欣芮;张茂林;毛恒博【作者单位】西南石油大学石油与天然气工程学院;西南石油大学石油与天然气工程学院;西南石油大学石油与天然气工程学院;长江大学非常规油气湖北省协同创新中心;中国石油长庆油田公司采油十二厂【正文语种】中文【中图分类】TE155页岩气属于非常规油气资源,主要以游离气、吸附气及少量溶解气的形式储存于泥页岩层系中,吸附气比例一般介于20%~85%之间[1]。
目前,国内的页岩气藏类型主要为干气气藏,其产出气体几乎只含有甲烷;在国外,如美国Bakken、Eagle Ford页岩区,产出气中存在很大比例的乙烷等其他烃类[2]。
通常页岩气储量计算方法有3种:类比法、容积法和物质平衡方程法[3]。
类比法能用于勘探初期粗略评价气藏地质储量,张金华、李宏勋等分别提出了类比法的适用条件[4-5]。
页岩气储量计算标准ICSDB陕西省地方标准DB XX/ XXXXX—XXXX页岩气储量计算标准Shale gas reserves computation standard(征求意见稿)XXXX-XX-XX发布XXXX-XX-XX实施目次前言 (II)1 范围 (1)2 规范性引用文件 (1)3 总则 (1)4 术语和定义 (2)5 页岩气地质储量计算 (2)6 地质储量计算参数确定 (6)7 技术可开采储量计算 (9)8 经济评价和经济可采储量计算 (11)9 储量综合评价 (12)附录A(规范性附录)页岩气储量计算参数名称、符号、单位及取值有效位数的规定 (13)附录B(规范性附录)页岩气探明地质储量计算关于储层的基本井控要求 (14)附录C(规范性附录)页岩气田储量规模和品位等分类 (15)前言本标准按照GB/T 1.1-2009 标准化工作导则给出的规则编写。
本标准的附录A、附录B和附录C是规范性附录。
本标准由陕西延长石油(集团)有限责任公司提出。
本标准由陕西省能源局归口。
本标准起草单位:陕西延长石油(集团)有限责任公司。
本标准主要起草人:王香增、张丽霞、王念喜、耿龙祥、陈宏亮、郭超。
本标准首次发布。
页岩气储量计算标准1 范围本要求规定了页岩气资源/储量分类分级及定义、储量计算方法、储量评价的技术要求。
本要求适用于地面钻井开发时的页岩气资源/储量计算,适用于页岩气的资源勘查、储量计算、开发设计及报告编写;可以作为页岩气矿业权转让、证券交易以及其他公益性和商业性矿业活动中储量评估的依据。
2 规范性引用文件下列标准中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用标准,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否使用这些文件的最新版本。
凡是不注日期的引用标准,其最新版本适用于本标准。
GB/T 13610—2003 《气体组分分析方法》GB/T 19492—2004 石油天然气资源/储量分类GB/T 19559—2008 煤层气含量测定方法DZ/T 0216—2002 煤层气资源/储量规范DZ/T 0217—2005 石油天然气储量计算规范SY/T 5386-2010 石油探明储量计算细则(裂缝性油气藏部分)SY/T 5895-93 石油工业常用量和单位(勘探开发部分)SY/T 6098-2000 天然气可采储量计算方法3 总则3.1 页岩气资源/储量分类体系采用GB/T 19492—2004 《石油天然气资源/储量分类》分类体系。
2021年第5期2021年5月页岩气通常以吸附态和游离态赋存于暗色泥页岩中,为非常规天然气,具有自生自储、大面积积聚的特点[1-2]。
吸附气主要吸附在有机质和黏土矿物的表面,游离气主要以游离态赋存于有机孔、脆性矿物孔和微裂缝中。
页岩气藏既具有常规砂岩气藏的游离气特征,又具有煤层气藏的吸附气特征,因此,针对页岩气的地质储量需要分别计算吸附气和游离气的地质储量[3]。
前人主要根据体积法和容积法分别计算吸附气和游离气的储量[4-7],储量参数总体上可分为两类,分别为吸附气地质储量相关参数和游离气地质储量相关参数。
吸附气地质储量相关参数包括含气面积、有效厚度、页岩质量密度和吸附气含量;游离气地质储量相关参数包括含气面积、有效厚度、孔隙度、游离气饱和度和原始页岩气体积系数。
2014年国土资源部发布了DZ/T 0254—2014《页岩气资源/储量计算与评价技术规范》[8],介绍了页岩气藏储量计算参数的确定原则,但是在一些关键参数的计算上,仍存在一些不足和缺陷。
比如在利用兰氏方程计算吸附气含量时,只研究了干燥条件下页岩的吸附能力,未考虑束缚水的影响;同时在利用容积法计算游离气含量时,未考虑页岩导电规律复杂的事实,仍沿用电阻率法进行饱和度评价,造成页岩气藏游离气饱和度评价精度较低。
由于上述问题的存在,页岩气藏储量的计算结果存在较大误差,给实际生产实践带来了较大的困扰。
因此在页岩气藏储量计算中,需要对目前还存在不足的参数进行深入研究,提高储量计算的精度。
1页岩气藏储量计算方法一般情况下,地层中的溶解气含量比较少,可忽略不计,只需要分别计算吸附气地质储量和游离气地质储量,计算公式如式(1)~(3)所示[9]:G ti =G ai +G fi ,(1)G ai =0.01A h ρb V gi ,(2)G fi =0.01A h ϕS gi /B gi ,(3)式(1)~(3)中,G ti 为页岩气藏原始地质储量,108m 3;G ai 为吸附气地质储量,108m 3;G fi 为游离气地质储量,108m 3;A 为页岩气藏的面积,km 2;h 为页岩气藏的有效厚度,m ;ρb 为页岩质量密度,g/cm 3;V gi 为页岩吸附气含量,为地面标准条件下单位质量页岩的吸附量,m 3/t ;ϕ为覆压校正后孔隙度;S gi 为游离气饱和度;B gi 为原始页岩气体积系数,m 3/m 3。
页岩气藏动用储量计算方法评价——以涪陵页岩气区块为例葛兰;沈金才;鞠斌;张娴【期刊名称】《当代化工》【年(卷),期】2022(51)8【摘要】页岩气作为一种重要的非常规资源,可以缓解能源短缺,其高效开发保证了油气的可持续发展。
由于页岩气主要以游离或吸附状态存储于页岩层或泥岩层中的特殊性,导致常规的储量计算方法已经无法计算,然而储量的准确计算是制定页岩气藏开发方案必不可少的一步。
因此,考虑页岩气储集条件的特殊性,分析几种考虑吸附气的储量计算方法,如流动物质平衡法、Palacio法、Ibrahim法及Anderson法,并将其应用到涪陵页岩气田中。
结果表明:68井组7口生产井单井动用储量在(6.0428~12.1747)×10^(8) m^(3)之间,平均为9.211 6×10^(8) m^(3);吸附气占比39.9%,游离气占比60.1%;吸附气采出程度为11.87%,游离气采出程度为17.85%,并且流动物质平衡法、Ibrahim法更加适用于页岩气藏储量计算。
【总页数】5页(P1965-1969)【作者】葛兰;沈金才;鞠斌;张娴【作者单位】中国石化重庆涪陵页岩气勘探开发有限公司;西南石油大学石油工程学院;长江大学石油工程学院【正文语种】中文【中图分类】TE155【相关文献】1.页岩气藏可开采性评价及生产动态预测——以川西某页岩区块为例2.低渗气藏单井控制储量简易计算方法\r——以FL页岩气田PQ区块气井为例3.复杂构造区深层页岩气藏射孔参数优化及应用——以涪陵页岩气田白马区块为例4.复杂构造区深层页岩气藏射孔参数优化及应用——以涪陵页岩气田白马区块为例5.低阻页岩气储层含气饱和度计算方法——以涪陵地区焦石坝区块为例因版权原因,仅展示原文概要,查看原文内容请购买。