高中数学竞赛训练题 (3)
- 格式:doc
- 大小:180.52 KB
- 文档页数:4
模拟试题一 2010年全国高中数学联赛模拟试题一 试一、填空题(每小题8分,共64分)1.方程错误!未找到引用源。
2.如图,在错误!未找到引用源。
错误!未找到引用源。
=错误!未找到引用源。
,则m+2n 的值为错误!未找到引用源。
3.错误!未找到引用源。
4.单位正方体错误!未找到引用源。
错误!未找到引用源。
这八个面截这个单位正方体,则含正方体中心的那一部分的体积为 .5.设数列错误!未找到引用源。
6.已知实数x ,y ,z 满足xyz=32,x+y+z=4,则|x|+|y|+|z|的最小值为错误!未找到引用源。
7.若错误!未找到引用源。
8.空间有100个点,任4点不共面,用若干条线段连结这些点,如果不存在三角形,最多可连错误!未找到引用源。
条线段. 二、解答题(共56分) 9.(16分)设错误!未找到引用源。
错误!未找到引用源。
之和为21,第2项、第3项、第4项之和为33.(1)求数列错误!未找到引用源。
的通项公式; (2)设集合错误!未找到引用源。
错误!未找到引用源。
, 求证:错误!未找到引用源。
. 10.(20分)过抛物线错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
的距离均不为整数.11.(20分)已知二次函数错误!未找到引用源。
有两个非整数实根,且两根不在相邻两整数之间.试求a , b 满足的条件,使得一定存在整数k ,有错误!未找到引用源。
成立.二 试一.(40分)如图,已知错误!未找到引用源。
错误!未找到引用源。
求证:错误!未找到引用源。
N DCAMBPEFA二.(40分)设错误!未找到引用源。
.三. (50分)已知n 个四元集合错误!未找到引用源。
错误!未找到引用源。
,试求n 的最大值.这里错误!未找到引用源。
四.(50分)设错误!未找到引用源。
为正整数错误!未找到引用源。
的二进制表示数的各位数字之和,错误!未找到引用源。
为数列错误!未找到引用源。
的前n 项和. 若存在无穷多个正整数n ,满足错误!未找到引用源。
高中数学竞赛赛题精选(带答案)高中数学竞赛是中学生竞赛中最重要的一部分,它不仅需要智力,还需要充分发挥数学能力和思维能力。
以下是一些高中数学竞赛赛题的精选和解答。
1. 设$a_n=x^n$+5的前n项和为S(n),求S(n+1)-S(n)的值。
解:S(n+1)-S(n)=(x^n+1+5)-(x^n+5)=(x^n+1)-(x^n)=x^n(x-1)。
由于$a_n=x^n+5$,所以S(n)=a_0+a_1+...+a_n=(x^0+5)+(x^1+5)+...+(x^n+5)=(x^0+x^1+...+x^n)+5(n+1),因此S(n+1)-S(n)=x^n(x-1)=(S(n+1)-S(n)-5(n+2))/(x^0+x^1+...+x^n)。
2. 已知函数f(x)=sin(x)+cos(x),0≤x≤π/2,求f(x)在[0,π/4]上的最小值。
解:f(x)=sin(x)+cos(x)=√2sin(x+π/4),当0≤x≤π/4时,x+π/4≤π/2,sin(x+π/4)不小于0,因此f(x)的最小值由sin(x+π/4)的最小值决定。
sin(x+π/4)的最小值为-√2/2,因此f(x)的最小值为-1。
3. 已知正整数n,设P(n)是n的质因数分解中所有质因数加起来的和,Q(n)是n的数字分解中所有数位加起来的和。
给定P(n)+Q(n)=n,求最小的n。
解:P(n)的范围是2到9×log_10n之间,因此可以枚举P(n)和Q(n),判断它们之和是否等于n。
当P(n)取到最小值2时,Q(n)的最大值为9log_10n,因此n的最小值为11。
4. 已知函数f(x)=2cos^2x-3cosx+1,x∈[0,2π],求f(x)的最小值。
解:由于f(x)=2cos^2x-3cosx+1=2(cosx-1/2)^2-1/2,因此f(x)的最小值为-1/2,且取到最小值的x为0或2π。
5. 已知正整数n,求使得3^n的末2位是9的最小正整数n。
2023全国高中数学竞赛试题全文共四篇示例,供读者参考第一篇示例:2023全国高中数学竞赛试题2023年全国高中数学竞赛将于下个月举行,为了更好地帮助同学们备战竞赛,我们特为大家准备了一份模拟试题。
以下是一部分试题,希望大家认真思考,尽力做出最好的成绩。
题一:已知a、b、c、d为正整数且a+b+c+d=20,求a、b、c、d的可能取值组合数。
题二:已知正整数m,n,且m/n为一个最简分式,满足m+n=2023,求m和n的取值。
题三:已知函数f(x)=x^3+ax^2+bx+c,且f(1)=9,f(2)=21,求a、b、c的值。
题四:在平面直角坐标系内,已知直线l1与直线l2分别过点A(2,4)、B(3,5),且l1:l2=1:2,求l1、l2的方程。
题五:已知数列{an}满足an=3n^2+5n+7,求数列{an}的前10项和。
题七:已知圆心为O的圆C1方程为x^2+y^2=25,点A(3,4)在圆C1上,求点A与圆心O之间的距离。
题九:已知集合A={x|0<x<2π},集合B={y|y=2sinx+cosx},求B的最大值和最小值。
题十:已知三角形ABC中,角A=60°,角B=45°,AB=3,BC=4,求AC的长度。
以上是部分模拟试题,希望同学们认真对待每一道题目,并在竞赛中取得优异的成绩。
祝愿大家取得理想的成绩,加油!第二篇示例:2023全国高中数学竞赛试题第一部分:选择题1. 若直线5x+12y=23 在x 轴上的截距为a,在y 轴上的截距为b,则a+b=A. 23/5B. 23/12C. 5/23D. 12/232. 若集合A=\{x | -3<x<5\}, 集合B=\{y | 2\leq y\leq7\},则A \cap B =A. \{2,3,4\}B. \{2,3,4,5\}C. \{3,4\}D. \{4\}3. 若函数f(x)=x^3-3x^2+2x-5 上任意两点x_1,x_2 处的切线斜率之差为9,则f(x) 在x=1 处的导数为A. -3B. -5C. 1D. 34. 若\triangle ABC 中,\angle A=60^{\circ},\angleB=45^{\circ},AB=2,则\sin C =A. 1/\sqrt{2}B. \sqrt{3}/2C. 1/2D. 2/\sqrt{3}5. 若函数f(x)=ax^2+bx+c,且f(0)=5,f(1)=1,f(2)=7,则a+b+c=A. 3B. -3C. 4D. -46. 若a,b,c 是等比数列,且a=2,c=32,则b=\underline{\hskip 2cm}.7. 设A,B 为两线性无关的2\times2 矩阵,则cA + dB = I的条件是c= \underline{\hskip 2cm},d= \underline{\hskip 2cm}.9. 已知函数f(x)=x^3+2x^2-3x+1,求f(x) 的增减性和极值点.10. 设P 是椭圆\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 上一点,F_1(-c,0),F_2(c,0) 是椭圆的两个焦点,PF_1+PF_2 的最小值为多少?第三篇示例:2023全国高中数学竞赛试题在数学领域,竞赛是提高学生数学能力的一种重要方式。
全国高中数学联赛选择填空训练题(3)一、选择题:(每小题6分,共36分)1.与函数y=f(x-a)+b的图像关于直线y=x对称的图像所对应的函数是( )A.y=f-1(x-a)+bB. y=f-1(x+a)-bC. y=f-1(x-b)+aD. y=f-1(x-b)-a2.半径为1的圆的内接十边形的最短边的最大值是( )A.12(5-1) B.123 C.14(5+1) D.13.小于50000且含有奇数个数字"5"的五位数共有( )A.2952个B.11808个C.16160个D.26568个4.三角形的三条边长均为正整数,其中有一条边长为4,但它不是最短的边,这样不同的三角形共有( )A.6个B.7个C.8个D.9个5.已知a∈(0,1)的常数,|x|+|y|≤1,函数f(x,y)=ax+y的最大值为( )A.aB.1C.a+1D.12(a+1)6.对于每一对实数x,y,函数f满足f(x)+f(y)=f(x+y)-xy-1,若f(1)=1,那么使f(n)=n(n ≠1)的整数n共有( )A.0个 B.1 个 C.2个 D.3个二、填空题:(每小题9分,共54分)7.对于已知的x,y,把2-x,2x-y,2y-1的最小值记作F(x,y),当0<x,y<1时,F(x,y)的最大值等于___________.8.用E(n)表示可使5k是乘积112233…n n的约数为最大的整数k,则E(150)= ___________9.设函数f(x)=E(x)-2E(x2),其中E(x)表示实数x的整数部分,则f(x)为周期函数,其最小正周期T为___________10.函数f(x)在R上有定义,且满足(1)f(x)是偶函数,且f(0)=2005,(2)g(x)=f(x-1)是奇函数,则f(2005)的值为_______.11.在平面上有一定点P,考虑所有可能的正三角形ABC,其中AP=3,BP=2,则CP的最大长度为__________.12.已知a,b,cd∈N,且满足342(abcd+ab+ad+cd+1)=379(bcd+b+d),设M=a×103+b×102+c×10+d,则M的值为_________.答案:1.C.2.A.3.B.4.C.5.B.6.B.7.2-1/3.8.2975.9.2.10.0.11.5.12.1949.。
高中数学竞赛模拟试题一一 试(考试时间:80分钟 满分100分)一、填空题(共8小题,5678=⨯分)1、已知,点(,)x y 在直线23x y += 上移动,当24x y +取最小值时,点(,)x y 与原点的距离是。
2、设()f n 为正整数n (十进制)的各数位上的数字的平方之和,比如()22212312314f =++=。
记1()()f n f n =,1()(())k k f n f f n +=,1,2,3...k =,则=)2010(2010f。
3、如图,正方体1111D C B A ABCD -中,二面角11A BD A --的度数是 。
4、在2010,,2,1 中随机选取三个数,能构成递增等差数列的概率是 。
5、若正数cb a ,,满足ba cc a b c b a +-+=+,则ca b +的最大值是 。
6、在平面直角坐标系xoy 中,给定两点(1,2)M -和(1,4)N ,点P 在X 轴上移动,当MPN ∠取最大值时,点P 的横坐标是 。
7、已知数列...,,...,,,210n a a a a 满足关系式18)6)(3(1=+-+n n a a 且30=a ,则∑=ni ia 01的值是 。
8、函数sin cos tan cot sin cos tan cot ()sin tan cos tan cos cot sin cot x x x x x x x x f x x xx xx xx x++++=+++++++在(,)2x o π∈时的最小值为 。
二、解答题(共3题,分44151514=++)9、设数列}{n a 满足条件:2,121==a a ,且 ,3,2,1(12=+=++n a a a n n n )求证:对于任何正整数n ,都有:n nn n a a 111+≥+10、已知曲线m y x M =-22:,0>x ,m 为正常数.直线l 与曲线M 的实轴不垂直,且依次交直线x y =、曲线M 、直线x y -=于A 、B 、C 、D 4个点,O 为坐标原点。
全国高中数学联赛模拟试题(三)第一试一、选择题(共36分)1. 化简cos 2π7+cos 4π7+cos 6π7的值为 ( )A.-1B.1C.-12D.122. S n 和T n 分别是等差数列{a n }和{b n }的前n 项和,且对任意的自然数n 都满足S n T n =7n +44n +27,那么a 11b 11= ( )A.43B.74C.32D.7871 3. 直线xcos θ+y +m =0(式中θ是△ABC 的最大角),则此直线的倾斜角变化范围是( )A.(-arctan 12,π4)B.[0,π4)∪(2π3,π)C.[0,π4]D.[0,π4]∪[π-arctan 12,π]4. 设实数m ,n ,x ,y 满足m 2+n 2=a ,x 2+y 2=b ,其中a ,b 为正常数且a ≠b ,那么mx+ny 的最大值为 ( )A.a +b 2B.abC.2ab a +bD.a 2+b 225. 如图,平面α中有△ABC 和△A 1B 1C 1分别在直线m 的两侧,它们与m 无公共点,并且关于m 成轴对称,现将α沿m 折成一个直二面角,则A ,B ,C ,A 1,B 1,C 1六个点可以确定的平面个数为 ( ) A.14 B.11 C.17 D.凸n边形的各边为直径作圆,使这个凸n 边形必能被这n个圆面所覆盖,则n 的最大值为( ) A.3 B.4 C.5 D.6二、填空题(共54分)6. 已知0<x <π2,log sinx cosx 与log cosx tanx 的首数均为零,尾数和为1,则x =_________.7. 设=n 21a a a 222+++ ,其中a 1,a 2,……,a n 是两两不等的非负整数,则a 1+a 2+…+a n =___________.8. 已知不等式a ≤34x 2-3x +4≤6的解集为{x|a ≤x ≤b},其中0<a <b,则b =___________.9.已知f(x)=x2+(lga+2)x+lgb,且f(-1)=-2,f(x)≥2x对一切x∈R都成立,则a+b=_____________.10.正四棱台ABCD-A1B1C1D1的高为25,AB=8,A1B1=4,则异面直线A1B与B1C的距离为____.11.方程(x2-x-1)x+2=1的解集为_________________.三、解答题(共计60分)12.(设f(x)=(1+x+x2)n=c0+c1x+c2x2+……+c2n x2n,则c0+c3+c6+……=c1+c4+c7+……=c2+c5+c8+……=3n-1.13.(已知满足不等式lg(x2)>lg(a-x)+1的整数x只有一个,试求常数a的取值范围.14.(设y=f(x)是定义在R上的实函数,而且满足条件:对任意的a,b∈R,有f[af(b)]=ab,试求|f()|.第二试一、(50分)如图,D ,E ,F 分别为△ABC 的边BC ,CA ,AB 上的点,且∠FDE =∠A ,∠DEF =∠B ,又设△AFE ,△BDF 和△DEF 均为锐角三角形,他们的垂心分别为H 1,H 2,H 3.求证:(1)∠H 2DH 3=∠FH 1E ;(2)△H 1H 2H 3≌△DEF.二、(50分)设C 0,C 1,C 2,……是坐标平面上的一族圆(周),其定义如下:(1)C 0是单位圆x 2+y 2=1;(2)任取n ∈Z 且n ≥0,圆C n +1位于上半平面y ≥0内及C n 的上方,与C n 外切并且与双曲线x 2-y 2=1相切于两点,C n 的半径记为r n (n ∈Z 且n ≥0) (1)证明:r n ∈Z ; (2)求r n .三、(50分)称自然数为“完全数”,如果它等于自己的所有(不包括自己)的正约数的和,例如,6=1+2+3,如果大于6的“完全数”可以被3整除,证明,它一定可以被9整除.C全国高中数学联赛模拟试题(三)参考答案 第一试一、选择题 1. Ccos 2π7+cos 4π7+cos 6π7=∑∑==π+π=π61k e 61k )]7k 2sin i 7k 2(cos [R 217k 2cos 21令z =cos 2π7+isin 2π7,于是z 7=1则上式=12(z +z 2+z 3+z 4+z 5+z 6)=……=-122. Aa 11b 11=21a 1121b 11=S 21T 21=7×21+44×21+27=43 3. Dθ∈[π3,π),cos θ∈(-1,12],则斜率k ∈[-12,1)4. B由柯西不等式ab =(m 2+n 2)(x 2+y 2)≥(mx +ny)2,当mx =ny 时取等号,所以mx +ny ≤ab5. B三点确定一个平面,但需除去三组四点共面重复的个数,共确定平面个数为3436C 3C -+3=11个6. B注意到:当且仅当∠C ≥90°时,△ABC 能被以AB 为直径的圆覆盖.从而易证n ≤4,当n =4时,正方形满足条件. 二、填空题 7.arcsin5-12; log sinx cosx +log cosx tanx =1 ⇒ log sinx cosx =12∴ sinx =cos 2x ∴ sin 2+sinx -1=0 ∴ sinx =5-12(负值舍去) 8.44;=210+29+28+27+26+249.4;分情况讨论得:a =43,b =410.110;f(-1)=1+lgb -(2+lga)=-2∴ lga =lgb +1,而(lga)2-4lgb ≤0∴ (lgb -1)2≤0 ∴ lgb =1 ∴ b =10,a =100 11.4105;过B 1作A 1B 的平行线交AB 于E ,转化为求B 点到平面B 1CE 的距离. 12.{-2,-1,0,2}若x 2-x -1=1,则x =2,-1若x 2-x -1=-1且x +2为偶数,得x =0若x +2=0且x 2-x -1≠0得x =-2 三、13.令ω=-12+32i ,则有f ⑴=c 0+c 1+c 2+c 4+c 5+……+c 2n =3n…………………①f(ω)=c 0+ωc 1+ω2c 2+c 3+ωc 4+ω2c 5+……+ω2nc 2n =0…………………②f(ω2)=c 0+ω2c 1+ωc 2+c 3+ω2c 4+ωc 5+……+ω4nc 2n =0…………………③①+②+③得3(c 0+c 3+c 6+……)=3n,∴ c 0+c 3+c 6+……=3n -1.②-①得c 1+c 4+c 7+……=c 2+c 5+c 8+……于是c 1+c 4+c 7+......=c 2+c 5+c 8+......=c 0+c 3+c 6+ (3),14.∵ x 2>0,∴ |x|≤1,∴ x =-1或0或1x =-1时,lg15>lg(a +1)+1,∴ -1<a <12x =0时,lgga +1 ∴ 0<a <2x =1时,lg15>lg(a -1)+l ∴ 0<a <52又因为满足条件的整数x 只有一个,∴ a 的取值范围是(-1,0]∪[12,1]∪[2,52)15.令a =1,则f(f(b))=b ,∴ f(f(x))=x∴ f(f(f 2(x)))=f 2(x)∴ f(f(f 2(a)))=f 2(a)再令a =f(b),则f(f 2(b)=bf(b)∴ f(f(f 2(b)))=f(bf(b))=b 2.∴ f(f(f 2(a)))=a 2.∴ f 2(a)=a 2, ∴ |f(a)|=|a| ∴ f()=第二试一、⑴∵ H 1为△AEF 的垂心,∴ ∠EH 1F =180°-∠A =∠B +∠C∠H 2DH 3=180°-∠H 2DB -∠H 3DC =180°-(90°-∠B)-(90°-∠C)=∠B +∠C ∴ ∠EH 1F =∠H 2DH 3⑵连结FH 2,EH 3,则FH 2⊥BD ,EH 3⊥BC∴ FH 2∥EH 3 由⑴中所证∠EH 1F +∠EOF =180° ⇒ E ,D ,F ,H 1四点共圆.同理,E ,D ,H 1,H 2四点共圆,H 1,D ,F ,H 3四点共圆,E ,D ,F ,H 1,H 2,H 3六点共圆. 二圆内接四边形EH 2H 3F 中,EH 2∥FH 3, ∴ EF =H 2H 3,同理,DE =H 1H 3,DF =H 1H 2, ∴ △H 1H 2H 3≌△DEF.二、⑴由对称性可知r n 的圆心在y 轴上,设r n 的方程为x 2+(y -s n )2=r n 2,其中s n =r 0+2(r 1+r 2+……+r n -1)+r n .将x 2=y 2+1代入其中得 y 2+1+y 2+s n 2-2ys n -r n 2=0△=4s n 28S n 2+8r n 2-8=0 ⇒ 2r n 2=S n 2+2 从而易得r n =6r n -1-r n -2,∵ r 0=1,r 1=3,∴ 对任意n ∈N ,有r n ∈N (2)由特征根方程可得r n =A(3+22)n+B(3-22)n,将r 0=1,r 1=3代入其中,得r n =12[(3+22)n +(3-22)n]三、设“完全数”等于3n ,其中n 不是3的倍数,于是3n 的所有正约数(包括它自己)可以分为若干个形如d 和3d 的“数对”,其中d 不可被3整除,从而3n 的所有正约数的和(它等于6n)是4的倍数,因此是2的倍数.我们注意到,此时32n ,n ,12n 和1是3n的互不相同的正约数,但它们的和等于3n +1>3n ,从而3n 不可能是“完全数”,得到矛盾.。
高中数学竞赛试题汇总高中数学竞赛模拟试题一一试一、填空题(共8小题,8×7=56分)1、已知点(x,y)在直线x+2y=3上移动,当2x+4y取最小值时,点(x,y)与原点的距离是。
2、设f(n)为正整数n(十进制)的各数位上的数字的平方之和,比如记f1(n)=f(n),fk+1(n)=f(fk(n)),f(123)=12+22+32=14.k=1,2,3.则f2010(2010)=。
3、如图,正方体ABCD-A1B1C1D1的二面角度数是。
4、在1,2.2010中随机选取三个数,能构成递增等差数列的概率是。
5、若正数a,b,c满足abc=-(b+ca+ca+b),则ba+c的最大值是。
6、在平面直角坐标系xoy中,给定两点M(-1,2)和N(1,4),点P在X轴上移动,当∠MPN取最大值时,点P的横坐标是。
7、已知数列a,a1,a2.an。
满足关系式(3-an+1)(6+an)=18且a=3,则∑(i=1 to n)ai的值是。
8、函数f(x)=sinx+tanxcosx+tanxcosx+cotxsinx+cotx的最小值为。
二、解答题(共3题,14+15+15=44分)9、设数列{an}满足条件:a1=1,a2=2,且an+2=an+1+an (n=1,2,3.),求证:对于任何正整数n,都有:na(n+1)≥1+(n/2)(an)2,3.10、已知曲线M:x2-y2=m,x>0,m为正常数.直线l与曲线M的实轴不垂直,且依次交直线y=x、曲线M、直线y=-x于A、B、C、D4个点,O为坐标原点。
1)若|AB|=|BC|=|CD|,求证:△AOD的面积为定值;2)若△BOC的面积等于△AOD面积的1/3,求证:|AB|=|BC|=|CD|。
11、已知α、β是方程4x2-4tx-1=0(t∈R)的两个不等实根,函数f(x)=2x-t的定义域为[α,β]。
求证:2α+1<2β+1.Ⅰ)求函数g(t)=max{f(x)}-min{f(x)};Ⅱ)证明:对于u1,u2,u3∈(0,π),若sinu1+sinu2+sinu3=1/2,则1113+g(tanu1)g(tanu2)g(tanu3)<6.二试考试时间:150分钟总分:200分)一、(本题50分)如图,O1和O2与△ABC的三边所在的三条直线都相切,E,F,G,H为切点,并且EG、FH的延长线交于P点。
高中数学竞赛训练题三姓名:________________ (训练时间80分钟) 得分:___________________ 一. 填空题(每小题8分,共64分)1..a ,b 为实数,集合{,1},{,0},:b M P a f x x a==→表示把集合M 中的元素x 映射到集合P 中仍为x ,则a +b 的值等于____________________________;2. 若函数()f x 满足22()log ||||f x x x x =+则()f x 的解析式是____________________;3. 如图1,设P 为△ABC 内一点,且2155AP AB AC =+u u u r u u u r u u u r,则△ABP 的面积与△ABC 的面积之比为_____________________________;4.已知θ为锐角,且cos31cos 3θθ=,则sin 3sin θθ= ______;5.用6根等长的细铁棒焊接成一个正四面体形框架,铁棒的粗细和焊接误差不计设此框架能容纳得下的最大球的半径为1R ,能包容此框架的最小球的半径为2R ,则12R R 等于 __; 6.设()f x 是以2为周期的奇函数,且2()35f -=,若5sin 5α=则(4cos 2)f α的值 ________________;7.若a ,b ,c 成等差数列,则直线ax +by +c = 0被椭圆22128x y +=截得线段的中点的轨迹方程为 ;8.设)}8(log ,log ,2min{log ,1,122x y s y x y x =>>则S 的最大值为 _____________.二.解答题(共三题,第9题16分,第10题、第11题每题20分,满分共计56分) 9.(16分)设123(,)(,)(2,)P x a y Q x y r a y ++、、是函数()2xf x a =+的反函数图象上三个不同点,且满足1322y y y +=的实数x 有且只有一个,试求实数a 的取值范围.10.(20分)已知x 、y 、z 均为正数 (1)求证:111;x y z yz zx xy x y z++≥++ (2)若x y z xyz ++≥,求x y zu yz zx xy=++的最小值11.(20分)已知sin(2)3sin αββ+=,设tan ,tan x y αβ==,记()y f x = (1)求()f x 的表达式; (2)定义正数数列2*111{};,2()()2n n n n a a a a f a n N +==⋅∈。
2020年全国高中数学联赛试题及详细解析一、选择题(本题满分36分,每小题6分)1. 已知△ABC ,若对任意R t ∈,AC BC t BA ≥-,则△ABC 一定为A .锐角三角形 B. 钝角三角形 C. 直角三角形 D. 答案不确定 【答案】 ( )2. 设2log (21)log 2 1x x x x +->-,则x 的取值范围为A .112x <<B .1, 12x x >≠且 C . 1x > D . 01x << 【答案】( )5. 设()322()log 1f x x x x =+++,则对任意实数,a b ,0a b +≥是()()0f a f b +≥的A. 充分必要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件 【答案】 ( ) 6. 数码1232006,,,,a a a a L 中有奇数个9的2020位十进制数12320062a a a a L 的个数为 A .200620061(108)2+ B .200620061(108)2- C .20062006108+ D .20062006108- 【答案】( )二、填空题(本题满分54分,每小题9分)7. 设x x x x x f 44cos cos sin sin )(+-=,则)(x f 的值域是 。
8. 若对一切θ∈R ,复数(cos )(2sin )i z a a θθ=++-的模不超过2,则实数a 的取值范围为 .9. 已知椭圆221164x y +=的左右焦点分别为1F 与2F ,点P 在直线l :3830x -++=上. 当12F PF ∠取最大值时,比12PF PF 的值为 .10. 底面半径为1cm 的圆柱形容器里放有四个半径为21cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm 3. 11. 方程20062420042005(1)(1)2006xx x x x +++++=L 的实数解的个数为 .12. 袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为 . 三、解答题(本题满分60分,每小题20分)15. 设2()f x x a =+. 记1()()f x f x =,1()(())n n f x f f x -=2,3,n =L ,,{}R (0)2n M a n f =∈≤对所有正整数 ,. 证明:⎥⎦⎤⎢⎣⎡-=41 ,2M .2020年全国高中数学联合竞赛加试试卷 (考试时间:上午10:00—12:00)一、以B 0和B 1为焦点的椭圆与△AB 0B 1的边AB i 交于C i (i =0,1)。
高中数学竞赛训练题
一、选择题(仅有一个选择支正确)
1.已知全集}{}{N n n x x B N n n x x A N U ∈==∈===,4,,2,,则( )
(A ) B A U = (B) )(B A C U U = (C) B C A U U = (D) B C A C U U U =
2.已知b a ,是正实数,则不等式组⎩⎨⎧>+>+ab xy b a y x 是不等式组⎩
⎨⎧>>b y a x 成立的( ) (A )充分不必要条件 (B) 必要不充分条件
(C) 充分且必要条件 (D)既不充分又不必要条件
3.等差数列{}n a 中,,336),9(30,1849=>==-n n S n a S 则n 的值是( )
(A )8 (B) 9 (C) 16 (D) 21
4.已知复数2
121
-+
=z z w 为纯虚数,则z 的值为( ) (A ) 1 (B) 21 (C) 31 (D) 不能确定 5.边长为5的菱形,若它的一条对角线的长不大于6,则这个菱形对角线长度之和的最大值是( )
(A ) 16 (B) 210 (C) 14 (D) 65
6.平面上的整点(横、纵坐标都是整数)到直线5
435+=x y 的距离中的最小值是( )(A ) 17034 (B) 8534 (C) 170343 (D) 30
1 7.若232,2,2++x y x x 成等比数列,则点),(y x 在平面直角坐标系内的轨迹是( )
(A ) 一段圆弧 (B) 一段椭圆弧 (C) 双曲线的一部分 (D) 抛物线的一部分
8.若ABC ∆的三边c b a ,,满足:,0322,0222
=+-+=---c b a c b a a 则它的最大内角的度数是( )
(A ) 0150 (B) 0120 (C) 090 (D) 060
9.已知点)2
3,1(),21
,(+++a a B a a A ,动点P 到点)0,1(M 比到y 轴距离大1,其轨迹为曲线C ,且线段AB 与曲线C 存在公共点,则a 得取值范围是( )
(A ) ()+∞∞-, (B) ⎥⎦⎤⎢⎣⎡+-223,22
3 (C)⎥⎦
⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡--223,221223,221
(D) ⎥⎦
⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡--223,221223,23 10.空间有9个点,其中任四点不共面,在这9个点间连接若干条线段,构成三角形m 个。
若图中不存在四面体,则m 的最大值是( )
(A ) 7 (B) 9 (C) 20 (D) 不少于27
二、填空题
11.若函数)(x f 与x x g -=2)(互为反函数,则)3(2x x f -的单调递增区间是_________。
12.设),4,3,2( =n a n 是n x )3(-的展开式中含x 项的系数,则1818
3322333a a a +++ 的值是_________。
13.已知c b a ,,是实数且满足1,13
33222=++=++c b a c b a ,则c b a ,,三数的和等于_________。
14.由红、黄、蓝三套卡片,每套五张,分别标有一个字母A 、B 、C 、D 、E,若从这15张卡片中,抽取5张,要求字母各不相同且三色齐全,则不同的取法有_________种。
15.某地的汽车牌照全都是由七位数字所组成,每面车牌的最左边的数字不可以是0,且任两面车牌上的数都不相同。
现只能用0、1、2、3、5、7、9等七个不同的钢模来轧制车牌,制造一个车牌时同一个钢模只能使用一次,可以把数字9的钢模旋转后当成数字6来用,但6和9不能同时出现。
现将符合上述要求的全部车牌依照其数值由小至大排序,因此他们依序是:1023567、1023576、1023579、…、9753210。
那么第7000面车牌的号码是_________。
16.正方体1111D C B A ABCD -的棱长为1,在正方体的表面上与点A 相距
332的点集为一条曲线,该曲线的长度是_________。
17.若z y x ,,都是正实数,且1222=++z y x ,则
z
xy y xz x yz ++的最小值是_________。
18.设正数列{}n a 的前n 项之和是n b ,数列{}n b 的前n 项之积是n c ,若n b +n c =1,则数列⎭
⎬⎫⎩⎨⎧n a 1中最接近2004的数是_________。
19.若3233sin 34sin ),(,23arcsin ,6,sin 30a a a f a -+=⎥⎦
⎤⎢⎣⎡∈<<θθθπθθ,则),(θa f 的最小值是_________。
20.一个m 项的正整数数列(m x x x ,,,21 ),如果满足以下两个条件:
(i )对于任意的正整数1,11+≤-≤≤i i x x m i ;
(ii )数列中的所有奇数项 ,,31x x 全是奇数,并且数列中的所有偶数项 ,,42x x 全是偶数,则称此数列为一个OE 数列。
假如:最大项不大于4的OE 数列只有(1),(3), (1,2),(1,4),(3,4),(1,2,3),(1,2,3,4)等七个,那么最大项不超过20的OE 数列共有_________个。
答案:
一、选择题:
1,C 2, B 3, D 4, B 5, C 6, B 7, C 8, B 9, D 10, D
二、填空题: (11) ⎪⎭
⎫
⎢⎣⎡31,61 (12), 17 (13) 1 (14) 150 (15) 7206351 (16) π63
5
(17) 3 (18) 1980 (19) 24137 (20) 17710。