第十五章有机化合物的合成
- 格式:doc
- 大小:11.58 MB
- 文档页数:31
大学化学教案:有机化合物的命名和合成1. 引言有机化合物是由碳和氢以及其他元素通过共价键连接而成的化合物。
它们广泛存在于我们周围的自然界和人工制品中,因此了解有机化合物的命名规则和合成方法对于理解化学原理、药物设计等方面都具有重要意义。
2. 有机化合物的命名2.1 系统命名法系统命名法(也称为正式命名法)是一种普遍被接受并使用的命名方法。
它基于碳原子骨架上存在的功能基团和取代基来进行命名,并遵循一定的优先顺序规则。
- 命名主链选择 - 给予各个取代基编号 - 按字母顺序排列相同前缀或后缀2.2 常见基本规则 - 烯烃类化合物的命名:根据双键位置确定主链,以及给予双键所在位置编号; - 醇类、酮类、醛类和酸类化合物的命名:根据分子中所含功能基团,确定主链,并给予取代基和功能基团编号; - 脂肪族和环状醇类的命名:根据羟基位置给予主链编号; - 氨基酸的命名:根据氨基和羧基所在位置给予主链编号,并添加其它取代基。
3. 有机化合物的合成3.1 反应类型 - 加成反应:两个或多个化合物之间发生共价键形成的反应; - 消除反应:一个化合物经失去部分官能团而形成另一种化合物的反应; - 双取代反应:两个官能团在同一分子中发生取代的反应; - 氧化还原反应:通过电子转移产生新的化学键进行的反应等。
3.2 常见有机合成方法 - 反应同型法:将一个含有相似结构片段的化合物与目标产物进行替换、调整,以达到所需目标; - 变位重组法:通过将某些官能团转移到其它碳原子上,来改变单元之间的排列顺序,从而得到目标产物。
4. 应用案例4.1 药物设计药物设计是有机化学研究中一个重要领域。
通过对药理作用目标和与之相互作用的活性分子进行分析,有机化学家可以设计合成新型药物,以改善治疗效果。
4.2 材料科学有机化学在材料科学中也扮演着重要的角色。
通过合成不同结构和性质的有机物,可以得到用于电子器件、光电材料、高分子材料等方面的应用材料。
第十五章含氮有机合物(Nitrogenous Organic Compounds)授课对象:应用化学、制药工程、化学反应工程与工艺、药学学时安排:6h教材:《有机化学》(第四版)高鸿宾主编 2005年5月一、教学目的与要求1、掌握芳香硝基化合物的性质(吸电子硝基对苯酚、苯胺等酸碱性的影响),巩固学习掌握芳环上亲电取代反应机理。
2、掌握重氮化反应。
掌握胺的结构、分类和命名,胺的化学性质。
3、掌握重氮化反应,重氮盐的性质;重氮化合物在有机合成中的应用。
4、初步了解腈命名和性质。
二、教学重点1、芳香硝基化合物中芳环亲核取代反应机理。
2、胺的化学性质。
3、重氮盐在有机合成中的应用。
三、教学难点1、伯、仲、叔胺与亚硝酸的反应。
重氮盐在有机合成上的应用。
四、教学方法讲授法。
总结往届学生的教学反馈情况,拟具体采用如下教学方法,以突出重点,突破难点。
通过对比伯、仲、叔胺与亚硝酸的反应的不同点,帮助学生掌握不同类型的胺与亚硝酸的反应。
多练,多举些例题,帮助学生掌握重氮盐在有机合成上的应用。
五、教具电脑、投影仪、Powerpoint课件、教鞭。
六、教学步骤引言:胺属于有机含氮化合物,是一类很重要的化合物。
它们中有的严重危害人类健康如亚硝胺、海洛因等;有的对维护人类健康或在化学生产中有着重要的作用如胆胺、胆碱、肾上腺素、重氮化合物和偶氮化合物等。
15.1 芳香族硝基化合物一、芳香硝基化合物的表达方式与结构分子表达式:结构示意图:(硝基与苯环共轭)注意:硝基的电子效应:强吸电子基团(吸电子诱导、吸电子共轭)硝基的同分异构体:芳香硝基化合物与亚硝酸(芳基)酯是同分异构体。
Ar-NO2,Ar-O-N=O二、芳香硝基化合物的物理性质、光谱性质和用途1 物理性质:一元芳香硝基化合物是高沸点液体,多数是有机物的良好溶剂。
不溶于水,有毒。
二元和多元芳香硝基化合物为无色或黄色固体2 光谱性质:硝基的IR 在1365-1335 cm-1,1550-1510 cm-1 处有吸收峰。
了解有机化合物的合成方法有机化合物是由碳元素与氢元素及其他非金属元素的原子通过共价键相互连接而成的化合物。
在化学合成的过程中,有机化合物的合成方法至关重要。
了解不同的合成方法可以帮助化学家们有效地合成所需的有机化合物。
一、通过碳碳键的形成来合成有机化合物1. 双键加成反应(Addition Reaction)双键加成反应是指在有机化合物的双键上加入其他原子或原团,形成新的单键。
例如,乙烯与氢气发生双键加成反应会得到乙烷。
C2H4 + H2 -> C2H62. 亲电加成反应(Electrophilic Addition Reaction)亲电加成反应是指在有机化合物的双键上加入亲电试剂,形成新的化学键。
例如,苯与溴反应发生亲电加成反应会得到溴代苯。
C6H6 + Br2 -> C6H5Br + HBr3. α,β-不饱和羰基化合物的加成反应(Addition Reaction of α,β-Unsaturated Carbonyl Compounds)α,β-不饱和羰基化合物是指一个羰基官能团与一个烯烃官能团相连的化合物。
它们可以通过加成反应来合成其他有机化合物。
例如,巴耳相合成法(Baylis-Hillman Reaction)可以将α,β-不饱和醛与烯烃反应,生成β-羟基醛。
R2C=CR'COH + R''CH=CH2 -> R2C=CR'COR''CH2OH二、通过碳氢键的取代反应来合成有机化合物1. 氢的取代反应(Substitution Reaction)氢的取代反应是指有机化合物中的氢原子被其他原子或原团取代,形成新的化学键。
例如,甲烷与氯反应发生氢的取代反应会得到氯代甲烷。
CH4 + Cl2 -> CH3Cl + HCl2. 氧的取代反应(Substitution Reaction)氧的取代反应是指有机化合物中的氧原子被其他原子或原团取代,形成新的化学键。
第十五章含硫和含磷有机化合物第一节硫磷原子的成键特征价电子层构型O 2S22p4 S 3S23P43d0N 2S22P3 p 3S23P33d01. 由于价电子层构型类似,所以硫、磷原子可以形成与氧、氢相类似的共价键化合物。
醇胺硫醇膦2. 由于3P轨道比2P轨道比较扩散,它与碳原子的2P轨道的相互重叠不如2P 轨道之间那样有效,以硫、磷原子难以和碳原子形成稳定的P—Pπ键。
如硫醛和硫酮,除了少数芳香硫酮(二苯硫酮)之外,一般不稳定,易于二聚,三聚或多聚成为只含σ键的化合物3. 硫,磷除了利用3S,3P电子成键外,还可以利用能量上相接近的空3d轨道参与成键。
3d轨道参与成键有两种方式,一种是s电子跃迁到3d轨道上,形成由s. p. d电子组合而成的杂化轨道磷原子 sp3d杂化形成五个共价单键 PCl5硫原子 sp3d2杂化形成六个共价单键 SF6另一种方式是利用它的空3d轨道,接受外界提供的未成键电子对形成d—Pπ键,如:亚砜,砜,磷酸酯都是含有这种d-Pπ键。
4 硫,磷原子常取sp3杂化态,与胺类似具有四方体构型叔胺叔膦硫醚季铵盐季膦盐锍盐氧化叔胺氧化叔膦亚砜第二节含硫有机化合物的主要类型和命名一结构类型硫原子可以形成与氧相似的低价含硫化合物硫醇硫酚硫醚二硫化物亚砜砜次磺酸亚磺酸磺酸[][]硫醛硫酮硫代羧酸硫脲异硫氰酸酯黄原酸酯二命名含硫化合物的命名,只需在相应的含氧衍生物类名前加上“硫”字即可。
如:异丙硫醇 2.2-二氯二乙硫醚-SH作取代基命名时,与其他官能团的命名原则相同。
巯基乙酸亚砜、砜、磺酸及其衍生物的命名,也只需在类名前加上相应的烃基就可以了。
二甲亚砜对甲苯磺酸环丁砜对甲苯磺酰氯对氨基苯磺酰胺第三节有机硫化合物的性质及在有机合成上的应用1 硫醇和硫酚① 制备硫脲法② 反应醇的氧化反应在与羟基相连的碳原子上,硫醇的氧化反应发生在硫原子上.乙磺酸1.3-二噻烷2 硫醚,亚砜和砜① 制备②反应碘化三甲锍98%可控制在生成亚砜阶段。
第十五章 有机化合物的合成【竞赛要求】有机合成的一般原则。
引进各种官能团(包括复合官能团)的方法。
有机合成中的基团保护。
导向基。
碳链增长与缩短的基本反应。
有机合成中的选择性。
【知识梳理】一、有机合成的一般原则有机合成是有机化学的重要组成部分,是建立有机化学工业的基础,有机合成一般都应遵循下列原则:1、反应步骤较少,总产率高。
一个每步产率为80%的十步合成的全过程产率仅为10.7%,而每步产率为40%的二步合成的全过程产率可达16%。
因此要尽可能压缩反应步骤,以免合成周期过长和产率过低。
2、每步的主要产物易于分离提纯。
要力求采用只生成一种或主要生成一种的可靠反应,避免生成各种产物的混合物。
3、原料易得价格便宜。
通常选择含四个或少于四个碳原子的单官能团化合物以及单取代苯等作为原料。
在实际合成中,若欲合成芳香族化合物时,一般不需要合成芳香环,尽量采用芳香族化合物作为起始物,再引入官能团;若欲合成脂肪族化合物时,关键的步骤是合成碳骨架并同时考虑官能团的引入,引入的官能团可能并非为所需产物中的官能团,但可以通过官能团的转变,形成所需产物中的官能团。
二、有机物的合成方法(包括碳架的建立、各种官能团引进等) (一)芳香族化合物的合成1、合成苯环上仅连有一个基团的化合物一般以苯为原料,通过芳香烃的亲电取代反应引入基团,如表 17-1;通过芳香重氮盐的亲核取代反应引入基团,如表17-2;也可以通过活化的芳香卤烃的亲核取代引入基团,如表17-3。
2、合成苯环上仅连有两个基团的化合物如果所需合成的化合物两个基团相互处于邻位或对位,则其中至少有一个基团属于邻、对位定位基;如果所需合成的化合物两个基团相互处于间位,则其中至少有一个基团属于间位定位基。
例如:合成苯环上含有两个基团的化合物时,如果两个两个基团相互处于邻位或对位,而两个基NO 2ArArH团都不是邻、对位定位基或两个基团相互处于间位,但都不是间位定位基,在这两种情况下,一般不能依靠其中一个基团的定位作用将另一个基团引入所需的位置上,而需要通过中间转化过程来实现。
具体办法有:(1)对于亲电取代反应,在合成顺序中,若会形成邻、对位定位基中间体,则进行亲电取代反应,例如由苯合成对硝基苯甲酮。
(2)引入一种基团,这种基团具有一定的定位作用,待第二基团引入后,再除去这种基团,例如由苯合成间二溴苯。
3、当用取代苯作为起始物时,可通过改变起始物取代基转化的先后顺序来决定最终产物分子中基团的相对位置,例如由甲苯合成硝基苯甲酸。
在将两个基团引入到苯环上时,应考虑以下两个问题:(1)在由选择余地时,首先引入最强的致活基团或最弱的致钝基团进入苯环。
(2)要特别注意某些反应条件的要求。
例如合成时,有下述两种合成途径:显然第一条途径较好,在引入致活基团—C2H5后有利于第二步反应;而第二条途径引入的Br是致钝基团,下一步付–克反应不能进行。
(二)脂肪族化合物的合成在合成脂肪族化合物时,首先要考虑的问题是如何建立碳架;其次若还有官能团存在,则在建立碳架的同时,还需要考虑官能团的建立。
一般是将两个或三个预先形成的碎片按一定的方式连接,使形成的官能团恰好在所需的位置,这一步是整个合成步骤中最关键的一步。
通过亲核加成反应形成碳–碳键和通过亲核取代反应形成碳–碳键的典型反应如下。
1、通过亲核加成反应形成碳–碳键的反应2、通过亲核取代反应形成碳–碳键的反应3、形成双官能团化合物的反应(1)1,1 –双官能团化合物(2)1,2 –双官能团化合物(3)1,3 –双官能团化合物(4)1,4 –双官能团化合物三、有机合成中的基团保护、导向基(一)基团保护在有机合成中,些不希望起反应的官能团,在反应试剂或反应条件的影响下而产生副反应,这样就不能达到预计的合成目标,因此,必须采取对这些基团进行保护,完成合成后再除去保护基,使其复原。
对保护措施一定要符合下列要求:①只对要保护的基团发生反应,而对其他基团不反应;②反应较容易进行,精制容易;③保护基易脱除,在除去保护基时,不影响其他基团。
下面只简略介绍要保护的基团的方法。
1、羟基的保护在进行氧化反应或某些在碱性条件进行的反应,往往要对羟基进行保护。
如防止羟基受碱的影响,可用成醚反应。
防止羟基氧化可用酯化反应。
2、对氨基的保护氨基是个很活泼的基团,在进行氧化、烷基化、磺化、硝化、卤化等反应时往往要对氨基进行保护。
(1)乙酰化(2)对NR 2可以加H + 质子化形成季铵盐,– NH 2也可加H + 成 – NH3而保护。
3、对羰基的保护羰基,特别是醛基,在进行氧化反应或遇碱时,往往要进行保护。
对羰基的保护一般采用缩醛或缩酮反应。
4、对羧基的保护羧基在高温或遇碱性试剂时,有时也需要保护,对羧基的保护最常用的是酯化反应。
5、对不饱和碳碳键的保护碳碳重键易被氧化,对它们的保护主要要加成使之达到饱和。
– OH –OR– NH 2CH 3COCl–NH 2--CH 3O–COOH + R –OH – COORH +–CHO + 2ROH – CH(OR)2H +-O --RO– OH(二)导向基在有机合成中,往往要“借”某个基团的作用使其达到预定的目的,预定目的达到后,再把借来的基团去掉,恢复本来面貌,这个“借”用基团 我们叫“导向基”。
当然这样的基团,要符合易“借”和易去掉的原则,如由苯合成1,3,5 – 三溴苯,在苯的亲电取代反应中,溴是邻、对位取代基,而1,3,5 – 三溴苯互居间位,显然不是由溴的定位效应能引起的。
但如苯上有一个强的邻、对位定位基存在,它的定位效应比溴的定位效应强,使溴进入它的邻、对位,这样溴就会呈间位,而苯环上原来并无此类基团,显然要在合成时首先引入,完成任务后,再把它去掉,恰好氨基能完成这样的任务,因为它是一个强的邻、对位定位基,它可如下引入:– H → – NO 2 → – NH 2 ,同时氨基也容易去掉:– NH 2 → – N +2 → – H 因此,它的合成路线是:根据导向基团的目的不同,可分为下列几种情况: 1、致活导向假如要合成 可以用 但这种方法产率低,因为丙酮两个甲基活性一样,会有副反应发生: 但在丙酮的一个甲基上导入一个致活基团,使两个甲基上的氢的活性有显著差别,这可用一个乙酯基(–COOC 2H 5)导入丙酮的一个甲基上,则这个甲基的氢有较大的活性,使这个碳成为苄基溴进攻的部位,因此,利用乙酰乙酸乙酯而不用丙酮,完成任务后,把乙酯基水解成羧基,利用β– 酮酸易于脱羧的特性将导向基去掉,于是得出合成路线为:2、致钝导向活化可以导向,有时致钝也能导向,如合成 氨基是很强的邻、对位定位基,进行取代反应时容易生成多元取代物:H 2N BrNH 2+ Br 2NH 2BrBr OC 6H 5 O + C 6H 5 Br OC 6H 5 C 6H 5 Br O COOC 2H 5 C 2H 5ONa O 2H 5 C 6H 5OCOOC 2H 5 1)H 3O2)△C 6H 5OOC 6H 5C 6H 5 Br 碱C 6H 5Br碱O C 6H 5C 6H 5O如只在苯胺环上的氨基的对位引入一个溴,必须将氨基的活性降低,这可通过乙酰化反应来达到,同时乙酰氨基是一个邻、对位定位基,而此情况下对位产物是主要产物:3、利用封闭特定位置来导向例如合成,用苯胺为起始原料,用混酸硝化,一方面苯胺易被硝酸氧化,另一方面,苯胺与硫酸还会生成硫酸盐,而是一个间位定位基,硝化时得到,所以苯胺硝化时,要把苯胺乙酰化后,再硝化。
由于乙酰基此时主要是对位产物,所以仍不能达到目的。
如果导向一个磺酸基,先把氨基的对位封闭,再硝化,可以得到满意结果:四、碳链增长与缩短的基本反应1、碳链增长的反应起始原料反应及产物烯类NH2NHCOCH3Br2H2ONHCOCH3 NH2NH2NO2– NH3SO4HNH2NHCOCH3NO2(90%)NHCOCH3+NO2NHCOCH3微量NH22(主要)+NH2NO2微量NH2NHCOCH33HNHCOCH3 NH2NO2NO2NHCOCH33H57%H2SO4 煮沸NH2NO2炔类卤代烃环氧乙烷羰基化合物丙二酸二乙酯乙酰乙酸乙酯有机金属化合物2、碳链缩短的反应(1)不饱和化合物的氧化(2)卤仿反应(3)霍夫曼降级反应(4)羧酸反应(5)芳香族化合物氧化五、有机合成中的选择性在有机合成中,还需要考虑选择性,这些选择大致有下列几类。
1、化学选择分子中的几个基团,有时不需要加以保护和特殊的活化,某一基团本身就有选择性的反应,相同基团当处于分子中的不同部位时,就可能产生反应的差异性,这在有机合成中可以利用,例如可以通过对反应条件的控制来控制反应进行的程序:第三个酯基要在更强烈的条件下,如在NaOH 和高沸点溶剂乙二醇中回流才能水解。
不同的官能团对同一试剂的反应是不同的,有的能够与之作用,有的却不能,即使能够作用的,也有反应性强弱的差异,表现在反应有快慢和难易的区别,这些差别,在有机合成中也是有用的。
例如,烯烃和炔烃虽然都能与卤素加成,但炔烃的反应却远弱于烯烃,以致可以同时含有烯键和炔键的化合物中实现选择加成,如:选择性试剂在合成中也经常用到。
例如OH COOCH 3 HO CH 2COOCH 3 3 KOH ,CH 3OH ,回流三分钟 脂肪族酯易水解 OH COOCH 3 HOCH 2COOCH3(84%)1) 40% NaOH ,95℃ 2) H 3O两个酯基先水解 空阻小的OH COOCH 3 HO CH 2COOH 3CH 2==CH -CH 2-C CH Br 2/CCl 4,20℃CH 2—CH -CH 2C CHBr Br (90%)C 6H 5 CH CH C C 6HO1,4加成 1)C 6H 5Li 2H O1)C 6H 5MgBr2)H 2O (C 6H 5)2CH CH 2 C C 6H 5 O(96%)C 6H 5CH== CH C(C 6H 5)21,2加成有机锂倾向于1,2—加成。
2、方位选择性苯乙烯和溴化氢加成时,全部生成 –溴乙苯,这是一个方位选择性很强的反应。
在双烯合成中,方位选择性也很强。
芳香族化合物的二元取代反应,实际上也是一种方位选择性反应。
3、立体化学选择性当反应产物可能是一种以上的立体异构体时,就有必要设计一种只产生所要的产物的合成法,即必须采用立体有择反应或立体专一反应,所有的立体专一的反应,一定是立体有择反应。
而立体有择反应不一定是立体专一性反应。
受立体化学控制的反应常见的有以下几类: (1)卤化烃的S N 2反应,产生构型翻转产物。
(2)炔烃的加成:(3)烯烃的氧化C 6H 5CH = CH 2 + HBr → C 6H 5CH —CH 3BrR —C C —R ’ Na+NH 3R —C C —R ’+Br 2R —C C —R ’+H 2Pd –CaCO 3/Pd 或Ni – B1)OsO 42)H 2O 2KMnO 4(稀冷)H H OHOH HH(4)卤素与烯烃加成(5)硼氢化——氧化反应(6)卤代烷的E 2反应(7)羰基加成当羰基两边的空间条件不同时,其中一种加成产物可能占优势,如【典型例题】例1、设计 的合成路线。