第5章 固-气界面的物理吸附
- 格式:pdf
- 大小:1.29 MB
- 文档页数:62
1.这种吸附包括对电解质吸附和非电解质吸附:对电解质吸附将使固体表面带电或电双层中组分发生变化,也可能是溶液中的某些离子被吸附到固体表面,而固体表面的离子则进入溶液之中,产生离子交换作用。
对非电解质吸附,一般表现为单分子层吸附,吸附层以外就是本体相溶液。
2.溶液有溶质和溶剂,都可能被固体吸附,但被吸附的程度不同。
正吸附:吸附层内溶质的浓度比本体相大。
负吸附:吸附层内溶质的浓度比本体相小。
显然,溶质被正吸附时,溶剂必被负吸附,反之亦然。
在稀溶液中,可以将溶剂的吸附影响忽略不计,可以简单的如气体吸附一样处理溶质的吸附,但在浓度较大时,则必须同时考虑二者的吸附.3.固体表面的粗糙度及污染程度对吸附有很大的影响,液体表面张力的影响也很重要。
图2-4给出了表面张力和接触角的关系(点击放大),图中:θ为接触角,图2-4 表面张力与接触角的关系当θ<90o时,为润湿。
θ越小,润湿性越大,液体在表面的展开能力越强。
当θ=0o时,为完全润湿。
液体在表面完全铺展开来当θ>90o时,为不润湿。
θ越大,润湿性越小,液体越不易铺展开,易收缩为球状。
当θ=180o时,完全不润湿,为球状。
θ角的大小。
与界面张力有关:γs=γL cosθ+γsL 其中:γs为固体表面张力;γL为液体表面张力;γsL为固体和液体界面张力。
该方程叫做Yong方程式。
它表明接触角的大小与三相界面之间的定量关系。
因此,凡是能引起任一界面张力变化的因素都能影响固体表面的润湿性。
从上式可以看到:当γs>γsL时,则cosθ>0为正值,θ<90°,此时为润湿;而且γs与γsL相差越大,θ角越小,润湿性越好。
当γs<γsL时,则cosθ<0为负值,θ>90°,此时不润湿;而且γs越大和γsL越小时,θ角越大,不润湿程度越严重。
应当指出的是,上面的平衡式仅适用于固、液、气三相的稳定接触的情况。
第五章固-液界面要求:掌握You ng方程和接触角;了解粘附功和内聚能,You ng-Dupre公式,接触角的测定方法,接触角的滞后现象,以及固体表面的润湿过程;理解固液界面的电性质,即扩散双电层理论,包括:Gouy-Chapman理论,Debye-Hukel 对Gouy-Chapman 公式的近似处理,Stern 对Gouy-Chapman 和Debye-Hukel 理论的发展;理解动电现象,平面双电层之间的相互作用,球状颗粒之间的相互作用;掌握新相形成,即成核理论,以及促进成核的方法。
§5.1 Young方程和接触角1、固体表面的润湿固体被某种液体润湿或不能润湿,叫亲某种液体或疏(憎)某种液体,例如:亲水性(疏油性,疏气性);亲油性(亲气性,疏水性)。
根据水对固体表面的亲、疏性大小,水滴在固体表面,会出现如图5-1所示三种情况。
图5-1水在固体表面的润湿情况2、润湿性的度量一一润湿接触角 9三相接触周边:液滴在固体表面,会存在固液气三相接触线,将液滴在固体表面铺展平衡时的固液气三相接触线叫三相平衡接触周边。
平衡接触角或接触角9:三相平衡周边任意一点上的液气界面张力「g和液固界面张力Gs之间的夹角,叫润湿接触角9,如图5-2所示亲水性固体表面中等亲水性固体表面疏水性固体表面讨论:标出下列图中的润湿接触角液气接触角B可定量描述固体被液体润湿的大小,接触角越小,润湿性越好, 接触角越大,润湿性越差。
一般分下面三种情况:(1)9 < 90°时:被润湿,润湿过程对外做功,有放热现象;(2)9 = 90°时:中等,无现象;(3)9 > 90°时:不被润湿,外界对系统做功,有吸热现象。
3、You ng 方程如图5-2所示,润湿周边任意一点上,当润湿达平衡时,其在水平方向上的受力合力应为零,则应有:二ls Gg COS T _;「sg = 0(5-1)上述方程即为You ng方程,它是研究固液润湿作用的基础方程。
气体吸附原理气体吸附是指气体分子在固体表面上附着的现象,它是一种重要的物理化学过程,广泛应用于化工、环保、能源等领域。
气体吸附原理是指气体分子在与固体表面相互作用时,通过吸附作用在固体表面上形成一层吸附层的过程。
气体吸附过程是一个复杂的物理化学过程,它受到多种因素的影响。
其中,最重要的是吸附剂的性质和气体分子的性质。
吸附剂的性质包括孔径大小、孔隙结构、化学成分等,而气体分子的性质则包括分子大小、极性、化学活性等。
这些因素共同作用,决定了气体在固体表面上的吸附行为。
气体吸附过程可以分为物理吸附和化学吸附两种类型。
物理吸附是指气体分子与吸附剂表面之间的范德华力作用,它是一种弱相互作用力,通常发生在低温下。
而化学吸附则是指气体分子与吸附剂表面发生化学键结合的过程,它是一种强相互作用力,通常发生在高温下。
在气体吸附过程中,吸附剂的孔隙结构对吸附性能起着至关重要的作用。
孔隙结构可以影响吸附剂的比表面积、孔体积和孔径分布等参数,从而影响气体分子在吸附剂表面上的扩散和吸附速率。
通常情况下,孔径越小,吸附剂的比表面积和孔体积越大,气体分子在其表面上的吸附性能也越好。
此外,气体分子的性质也对气体吸附过程产生重要影响。
一般来说,分子大小越小、极性越大、化学活性越高的气体分子,其在固体表面上的吸附性能也越好。
这是因为这些气体分子更容易与吸附剂表面发生相互作用,从而形成稳定的吸附层。
在工业应用中,气体吸附技术被广泛应用于气体分离、气体储存、气体检测等领域。
例如,在天然气净化过程中,气体吸附技术可以有效去除天然气中的杂质气体,提高天然气的纯度。
在气体储存领域,气体吸附技术可以将气体分子吸附到多孔吸附剂中,实现气体的高效储存和释放。
总之,气体吸附原理是一个复杂而重要的物理化学过程,它受到多种因素的影响。
通过深入研究气体吸附原理,可以更好地理解气体分子在固体表面上的吸附行为,为气体吸附技术的应用和发展提供理论基础和技术支持。