常用统计量分布表
- 格式:docx
- 大小:713.20 KB
- 文档页数:9
心理统计学一.描述统计(一)统计图表 1、统计图次数分布图——①直方图:用以矩阵的面积表示连续性随即变量次数分布的图形。
②次数多边形图:一种表示连续性随机变量次数分布的线形图,属于次数分布图。
③累加次数分布图:分为累加直方图和累加曲线图;其中累加曲线的形状大约有三种:一种是曲线的上枝长于下枝(正偏态),另一种是下枝长于上枝(负偏态),第三种是上枝,下枝长度相当(正态分布)。
其他统计图:条形图:用于离散型数据资料; 圆形图:用于间断性资料;线形图:更多用于连续性资料,凡预表示两个变量之间的函数关系,或描述某种现象在时间上的发展趋势,或一种现象随另一种现象变化的情况,用这种方法比较好。
散点图: 2、统计表①简单次数分布表 ②分组次数分布表③相对次数分布表:将次数分布表中各组的实际次数转化为相对次数,即用频数比率表示。
④累加次数分布表⑤双列次数分布表:对有联系的两列变量用同一个表来表示其次数分布。
(二)集中量数 1、算术平均数M1nii XX N==∑优点:反应灵敏;计算严密;计算简单;简明易解;适合于进一步用代数方法演算;较少受抽样变动的影响;缺点:受极端数据的影响;若出现模糊不清的数据时,无法计算平均数; 计算和运用平均数的原则: 同质性原则;平均数与个体数值相结合的原则; 平均数与标准差、方差相结合原则; 性质:①在一组数据中每个变量与平均数之差的总和等于零②在一组数据中,每一个数都加上一个常数C ,所得的平均数为原来的平均数加常数C ③在一组数据中,每一个数都乘以一个常数C ,所得的平均数为原来的平均数乘以常数C 2、中数:Md 按顺序排列在一起的一组数据中居于中间位置的数,即这组数据中,一般数据比它大,一般数据比它小。
注意计算方法;3、众数:Mo 是指在次数分布中出现次数最多的那个数值;三者的关系:正偏态分布中,M>Md>Mo 负偏态分布中,M<Md<MoMo=3Md-2M (自己推导一下)(三)差异量数差异量数就是对一组数据的变异性,即离中趋势特点进行度量和描述的统计量,也称为离散量数。
正态分布统计量正态分布统计量(Normal Distribution Statistics)是通过对正态分布(Normal Distribution)的概率密度函数(Probability Density Function,简称PDF)进行统计学分析而得出的一些数学量。
正态分布是一种经典的概率分布,广泛存在于自然界和社会人文领域,包括但不限于生物统计学、金融学、社会科学等领域中的数据分析研究。
正态分布统计量的研究在基础理论和实际应用中都具有极其重要的意义。
一、正态分布概述正态分布,也被称为高斯分布(Gaussian Distribution),是一种连续型概率分布。
它的概率密度函数在数学上被表示为:f(x) = (1 / sqrt(2πσ²)) * e^(-((x-μ)²/2σ²))其中,μ代表正态分布的期望值,即均值;σ²则表示方差,反映了样本数据的离散程度。
e是自然对数的底数,即2.71828...,sqrt是平方根函数。
这个公式的图形呈钟型,中心对称,两边逐渐递降,且两端趋于无穷小。
因为其形状呈现出如此独特的特征,正态分布被广泛使用并且是许多实际问题的基础。
二、正态分布的重要性为什么正态分布是如此重要呢?这是因为它是自然界、社会人文领域和现代科学中随机变量的模型。
正态分布在许多场合中都会自然出现,因此非常适合于描述自然规律。
例如,在统计学中,一个样本的平均值通常服从正态分布。
在金融领域的股票市场分析中,价格波动通常也服从正态分布。
在社会心理学中,人们的智商分布也呈现正态分布。
此外,中心极限定理(Central Limit Theorem)也是正态分布重要性的原因之一。
中心极限定理表明,随着样本容量的增大,样本均值趋向于服从正态分布。
因此,如果我们知道一个样本的样本均值和方差,我们就可以使用正态分布统计量来预测整个总体的分布情况。
三、正态分布统计量正态分布统计量是对正态分布进行分析时引入的一些基本概念和指标。
第二节常用的数据描述统计本节拟讲述如何通过SPSS菜单或命令获得常用的统计量、频数分布表等。
1.数据这部分所用数据为第一章例1中学生成绩的数据,这里我们加入描述学生性别的变量“sex”和班级的变量“class”,前几个数据显示如下(图2-2),将数据保存到名为“2—6—1.sav”的文件中。
图2-2:数据输入格式示例1.Frequencies语句(1)操作打开数据文件“2—6—1。
sav",单击主菜单Analyze /Descriptive Statistics / F requencies…,出现频数分布表对话框如图2-3所示。
图2-3:Frequencies定义窗口把score变量从左边变量表列中选到右边,并请注意选中下方的Display frequency table复选框(要求显示频数分布表)。
如果您只要求得到一个频数分布表,那么就可以点OK按钮了。
如果您想同时获得一些统计量,及统计图表,还需要进一步设置。
①Statistics选项单击Statistics按钮,打开对话框,请按图2—4自行设置。
有关说明如下:(ⅰ)在定义百分位值(percentile value)的矩形框中,选择想要输出的各种分位数,SPSS提供的选项有:●Quartiles四分位数,即显示25%、50%、75%的百分位数。
●Cut points equal 把数据平均分为几份。
如本例中要求平均分为3份.●Percentile显示用户指定的百分位数,可重复多次操作。
本例中要求15%、50%、85%的百分位数。
(ⅱ)在定义输出集中趋势(Central Tendency)的矩形框中,选择想要输出的集中统计量,常用的选项有: ●Mean 算术平均数●Median 中数●Mode 众数●Sum 算术和(ⅲ)在定义输出离散统计量(Dispersion)的矩形框中,选择想要输出的离散统计量,常用的选项有:●Std。
Deviation 标准差●Variance 方差●Range 全距●Minimum 最小值●Maximum 最大值●S。
χ2分布查表举例χ2分布是概率统计学中常用的一种分布,它是根据正态分布的平方和而得到的。
在实际应用中,我们经常需要查找χ2分布表来计算一些与χ2分布相关的概率或统计量。
本文将以一个具体的例子来详细介绍如何使用χ2分布表进行查表。
1. 问题描述假设有一批产品,我们想要检验其质量是否符合标准。
我们从这批产品中随机抽取了100个样本,并对每个样本进行了质量检测。
现在我们想要判断这批产品的整体质量是否符合标准,即判断总体质量是否服从某个特定的分布。
2. 假设检验为了判断总体质量是否符合某个特定的分布,我们需要进行假设检验。
假设我们已经知道总体质量服从一个特定的理论分布(比如正态分布),那么我们可以通过观察样本数据来判断这个假设是否成立。
3. 计算χ2统计量在进行假设检验时,我们需要计算一个统计量来衡量观察值与理论值之间的差异程度。
对于χ2检验而言,该统计量就是χ2统计量。
4. 计算自由度在计算χ2统计量之前,我们需要先确定自由度。
自由度是指可以独立取值的变量的个数。
对于χ2检验而言,自由度的计算方法是样本个数减去1。
5. 查找临界值根据假设检验的要求,我们需要设定一个显著性水平(一般为0.05),来判断观察值与理论值之间的差异是否显著。
为了确定是否拒绝原假设,我们需要查找χ2分布表来找到与给定显著性水平相对应的临界值。
6. 比较统计量与临界值将计算得到的χ2统计量与查找得到的临界值进行比较。
如果统计量大于临界值,则拒绝原假设;如果统计量小于等于临界值,则接受原假设。
7. 例子假设我们观察到样本数据中有60个产品符合标准,40个产品不符合标准。
我们想要判断这批产品整体质量是否符合标准。
根据样本数据,我们可以计算出χ2统计量。
根据公式:χ2 = Σ((O-E)^2 / E)其中,O表示观察到的频数,E表示期望的频数。
假设这批产品整体质量符合标准,那么我们可以根据标准来计算期望频数。
假设有100个样本,60%符合标准,40%不符合标准。