西安交大计算方法b大作业课件
- 格式:docx
- 大小:708.72 KB
- 文档页数:19
课程设计课程名称:数值计算B设计题目:数值计算B大作业学号:姓名:完成时间:题目一:多项式插值某气象观测站在8:00(AM )开始每隔10分钟对天气作如下观测,用三次多项式插值函数(Newton )逼近如下曲线,插值节点数据如上表,并求出9点30分该地区的温度(x=10)。
二、数学原理假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式:)())(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -⋯⋯-+⋯⋯+-++=αααα (1) 其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =)((i=0,1,2……n )确定。
根据均差的定义,把x 看成[a,b ]上的一点,可得f(x)= f (0x )+f [10x x ,](0x -x )f [x , 0x ]= f[10x x ,]+f [x,10x x ,] (1x -x )……f[x , 0x ,…x 1-n ]= f [x, 0x ,…x n ]+ f [x , 0x ,…x n ](x —x n )综合以上式子,把后一式代入前一式,可得到:f (x )= f [0x ]+f[10x x ,](0x -x )+ f[210x x x ,,](0x -x )(1x -x )+ …+ f[x, 0x ,…x n ](0x -x )…(x —x 1-n )+ f [x , 0x ,…x n ,x ])(x 1n +ω= N n (x )+)(x n R 其中N n (x )= f[0x ]+f [10x x ,](0x -x )+ f [210x x x ,,](0x -x )(1x -x )+…+ f [x , 0x ,…x n ](0x -x )…(x —x 1-n ) (2))(x n R = f (x)— N n (x )= f [x, 0x ,…x n ,x ])(x 1n +ω (3) )(x 1n +ω=(0x -x )…(x —x n )Newton 插值的系数i α(i=0,1,2……n )可以用差商表示。
计算方法B上机报告姓名:学号:班级:学院:任课教师:2017年12月29日题目一:1.1题目内容某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。
在铺设光缆之前需要对沟底的地形进行初步探测,从而估计所需光缆的长度,为工程预算提供依据。
已探测到一组等分点位置的深度数据(单位:米)如下表所示:(1)请用合适的曲线拟合所测数据点;(2)估算所需光缆长度的近似值,并作出铺设河底光缆的曲线图;1.2实现题目的思想及算法依据首先在题目(1)中要实现的是数据的拟合,显然用到的是我们在第三章中数据近似的知识内容。
多项式插值时,这里有21个数据点,则是一个20次的多项式,但是多项式插值随着数据点的增多,会导致误差也会随之增大,插值结果会出现龙格现象,所以不适用于该题目中点数较多的情况。
为了避免结果出现大的误差,同时又希望尽可能多地使用所提供的数据点,提高数据点的有效使用率,这里选择分段插值方法进行数据拟合。
分段插值又可分为分段线性插值、分段二次插值和三次样条插值。
由于题目中所求光缆的现实意义,而前两者在节点处的光滑性较差,因此在这里选择使用三次样条插值。
根据课本SPLINEM算法和TSS算法,采用第三种真正的自然边界条件,在选定边界条件和选定插值点等距分布后,可以先将数据点的二阶差商求出并赋值给右端向量d,再根据TSS解法求解三对角线线性方程组从而解得M值。
求出M后,对区间进行加密,计算200个点以便于绘图以及光缆长度计算。
对于问题(2),使用以下的公式20f (x)2dxf'(x)2dx(x )ds1.3算法结构1. For i 0,1,2, , n12. x kelse i 1 kxx k1〜一〜h; x< x x; x x<13 x xh2h" 〜[M k 1 _ M k (y k 1 M k 1 )x (y k M k —)xVh y6 6 6 61.4 matlab 源程序n=20;x=O:n;y=[9.01 8.96 7.96 7.97 8.02 9.05 10.13 11.18 12.26 13.28 13.32 12.61 11.29 10.229.15 7.90 7.95 8.86 9.81 10.80 10.93];M=y; %用于存放差商,此时为零阶差商h=zeros(1, n+1);c=zeros(1, n+1);d=zeros(1, n+1);a=zeros(1, n+1);b=2*o nes(1, n+1);h(2)=x(2)-x(1);for i=2:n %书本110 页算法SPLINEMh(i+1)=x(i+1)-x(i);c(i)=h(i+1)/(h(i)+h(i+1));a(i)=1-c(i);enda(n +1)=-2; %计算边界条件c(0),a(n+1),采用的是第三类边界条件c(1)=-2;for k=1:3 %计算k阶差商for i=n+1:-1:k+1M(i)=(M(i)-M(i-1))/(x(i)-x(i-k));endif(k==2) %计算2阶差商d(2:n)=6*M(3:n+1); %给 d 赋值endif(k==3)d(1)=(-12)*h(2)*M(4); %计算边界条件d(0),d(n),采用的是第三类边界条件d( n+1)=12*h( n+1)*M( n+1);endendl=zeros(1, n+1);r=zeros(1, n+1);u=zeros(1, n+1);q=zeros(1, n+1);u(1)=b(1);r(1)=c(1);q(1)=d(1);for k=2:n+1 %利用书本49页算法TSS求解三对角线性方程组r(k)=c(k);l(k)=a(k)/u(k-1);u(k)=b(k)-l(k)*r(k-1);q(k)=d(k)-l(k)*q(k-1);endp( n+1)=q( n+1)/u( n+1);for k=n :-1:1p(k)=(q(k)-r(k)*p(k+1))/u(k);endfprintf('三对角线性方程组的解为:');disp(p);%求拟合曲线x1=0:0.1:20; %首先对区间进行加密,增加插值点n1=10* n;x2=zeros(1, n1+1);x3=zeros(1, n1+1);s=zeros(1, n1+1);for i=1: n1+1for j=1: nif x1(i)>=x(j)&&x1(i)<=x(j+1) %利用书本111 页算法EVASPLINE 求解拟合曲线s(x)h(j+1)=x(j+1)-x(j);x2(i)=x(j+1)-x1(i);x3(i)=x1(i)-x(j);s(i)=(p(j).*(x2(i))A3/6+p( j+1).*(x3(i))A3/6+(y(j)-p(j).*((h(j+1))A2/6)).*x2(i)+…(y(j+1)-p(j+1).*(h(j+1))A2/6).*x3(i))/h(j+1);endendendplot(x,-y,'x') %画出插值点hold onplot(x1,-s) %画出三次样条插值拟合曲线hold ontitle('三次样条插值法拟合电缆曲线');xlabel('河流宽度/m');ylabel('河流深度/m');Len gth=0;for i=1: n1L=sqrt((x1(i+1)-x1(i))A2+(s(i+1)-s(i))A2); % 计算电缆长度Len gth=Le ngth+L;endfprintf('电缆长度(m)=');disp(Le ngth);图1. 1三次样条插值法拟合海底光缆曲线山舅 10 -0.70091,922& 0.8703 -山 24斫 0.3520 -0.9224 -1,8224电缆长 l(n)= 26.6656图1.2海底光缆长度结果铺设海底光缆的曲线如图1.1所示由上图可以看出,所得到的曲线光滑,能够较好得反映实际的河沟底部地势 形貌。
计算方法B上机报告姓名:学号:班级:学院:任课教师:2017年12月29日题目一:1.1题目内容某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。
在铺设光缆之前需要对沟底的地形进行初步探测,从而估计所需光缆的长度,为工程预算提供依据。
已探测到一组等分点位置的深度数据(单位:(1)(2)估算所需光缆长度的近似值,并作出铺设河底光缆的曲线图;1.2 实现题目的思想及算法依据首先在题目(1)中要实现的是数据的拟合,显然用到的是我们在第三章中数据近似的知识内容。
多项式插值时,这里有21个数据点,则是一个20次的多项式,但是多项式插值随着数据点的增多,会导致误差也会随之增大,插值结果会出现龙格现象,所以不适用于该题目中点数较多的情况。
为了避免结果出现大的误差,同时又希望尽可能多地使用所提供的数据点,提高数据点的有效使用率,这里选择分段插值方法进行数据拟合。
分段插值又可分为分段线性插值、分段二次插值和三次样条插值。
由于题目中所求光缆的现实意义,而前两者在节点处的光滑性较差,因此在这里选择使用三次样条插值。
根据课本SPLINEM 算法和TSS 算法,采用第三种真正的自然边界条件,在选定边界条件和选定插值点等距分布后,可以先将数据点的二阶差商求出并赋值给右端向量d ,再根据TSS 解法求解三对角线线性方程组从而解得M 值。
求出M 后,对区间进行加密,计算200个点以便于绘图以及光缆长度计算。
对于问题(2),使用以下的公式:20=()L f x ds ⎰20(f x =⎰191(k kk f x +==∑⎰1.3 算法结构1. For n i ,,2,1,0⋅⋅⋅=1.1 i i M y ⇒2. For 2,1=k2.1 For k n n i ,,1, -=2.1.1 i k i i i i M x x M M ⇒----)/()(13. 101h x x ⇒-4. For 1-,,2,1n i =4.1 11++⇒-i i i h x x4.2 b a c c h h h i i i i i i ⇒⇒-⇒+++2;1;)/(11 4.3 i i d M ⇒+165. 0000;;c M d M d n n ⇒⇒⇒λn n n b a b ⇒⇒⇒2;;20μ6. 1111,γμ⇒⇒d b7. For m k ,,3,2 = ! 获取M 的矩阵元素个数,存入m7.1 k k k l a ⇒-1/μ 7.2 k k k k c l b μ⇒⋅-1- 7.3 k k k k l d γγ⇒⋅-1- 8. m m m M ⇒μγ/9. For 1,,2,1 --=m m k9.1 k k k k k M M c ⇒⋅-+μγ/)(110. k ⇒1 ! 获取x 的元素个数存入s 11. For 1,,2,1-=s i11.1 if i x x ≤~then k i ⇒;break else k i ⇒+112. xx x x x x h x x k k k k ˆ~;~;11⇒-⇒-⇒--- y h x h M y x h M y x M x M k k k k k k ~/]ˆ)6()6(6ˆ6[2211331⇒-+-++---1.4 matlab 源程序n=20; x=0:n;y=[9.01 8.96 7.96 7.97 8.02 9.05 10.13 11.18 12.26 13.28 13.32 12.61 11.29 10.22 9.15 7.90 7.95 8.86 9.81 10.80 10.93];M=y; %用于存放差商,此时为零阶差商 h=zeros(1,n+1); c=zeros(1,n+1); d=zeros(1,n+1); a=zeros(1,n+1); b=2*ones(1,n+1); h(2)=x(2)-x(1);for i=2:n %书本110页算法SPLINEM h(i+1)=x(i+1)-x(i);c(i)=h(i+1)/(h(i)+h(i+1)); a(i)=1-c(i); enda(n+1)=-2; %计算边界条件c(0),a(n+1),采用的是第三类边界条件 c(1)=-2;for k=1:3 %计算k 阶差商 for i=n+1:-1:k+1M(i)=(M(i)-M(i-1))/(x(i)-x(i-k)); endif(k==2) %计算2阶差商 d(2:n)=6*M(3:n+1); %给d 赋值 endif(k==3)d(1)=(-12)*h(2)*M(4); %计算边界条件d(0),d(n),采用的是第三类边界条件 d(n+1)=12*h(n+1)*M(n+1); end endl=zeros(1,n+1); r=zeros(1,n+1); u=zeros(1,n+1); q=zeros(1,n+1); u(1)=b(1); r(1)=c(1); q(1)=d(1);for k=2:n+1 %利用书本49页算法TSS求解三对角线性方程组r(k)=c(k);l(k)=a(k)/u(k-1);u(k)=b(k)-l(k)*r(k-1);q(k)=d(k)-l(k)*q(k-1);endp(n+1)=q(n+1)/u(n+1);for k=n:-1:1p(k)=(q(k)-r(k)*p(k+1))/u(k);endfprintf('三对角线性方程组的解为:');disp(p);%求拟合曲线x1=0:0.1:20; %首先对区间进行加密,增加插值点n1=10*n;x2=zeros(1,n1+1);x3=zeros(1,n1+1);s=zeros(1,n1+1);for i=1:n1+1for j=1:nif x1(i)>=x(j)&&x1(i)<=x(j+1) %利用书本111页算法EVASPLINE求解拟合曲线s(x)h(j+1)=x(j+1)-x(j);x2(i)=x(j+1)-x1(i);x3(i)=x1(i)-x(j);s(i)=(p(j).*(x2(i)).^3/6+p(j+1).*(x3(i)).^3/6+(y(j)-p(j).*((h(j+1)).^2/6)).*x2( i)+...(y(j+1)-p(j+1).*(h(j+1)).^2/6).*x3(i))/h(j+1);endendendplot(x,-y,'x') %画出插值点hold onplot(x1,-s) %画出三次样条插值拟合曲线hold ontitle('三次样条插值法拟合电缆曲线');xlabel('河流宽度/m');ylabel('河流深度/m');Length=0;for i=1:n1L=sqrt((x1(i+1)-x1(i))^2+(s(i+1)-s(i))^2); %计算电缆长度Length=Length+L;endfprintf('电缆长度(m)=');disp(Length);1.5 结果与说明铺设海底光缆的曲线如图1.1所示图1. 1三次样条插值法拟合海底光缆曲线由上图可以看出,所得到的曲线光滑,能够较好得反映实际的河沟底部地势形貌。
第一章绪论1.1数值计算现代科学的发展,已导致科学与技术的研究从定性前进到定量,尤其是现代数字计算机的出现及迅速发展,为复杂数学问题的定量研究与解决,提供了强有力的基础。
通常我们面对的理论与技术问题,绝大多数都可以从其物理模型中抽象出数学模型,因此,求解这些数学模型已成为我们面临的重要任务。
一、本课程的任务:寻求解决各种数学问题的数值方法——如何将高等数学的问题回归到初等数学(算术)的方法求解——了解计算的基础方法,基本结构(否则只须知道数值软件)——并研究其性质。
立足点:面向数学——解决数学问题面向计算机——利用计算机作为工具充分发挥计算机的功能,设计算法,解决数学问题例如:迭代法、并行算法二、问题的类型1、离散问题:例如,求解线性方程组bAx=——从离散数据:矩阵A和向量b,求解离散数据x;2、连续问题的离散化处理:例如,数值积分、数值微分、微分方程数值解;3、离散问题的连续化处理:例如,数据近似,统计分析计算;1.2数值方法的分析在本章中我们不具体讨论算法,首先讨论算法分析的基础——误差。
一般来讲,误差主要有两类、三种(对科学计算):1)公式误差——“截断误差”,数学↔计算,算法形成——主观(人为):数学问题-数值方法的转换,用离散公式近似连续的数学函数进行计算时,一般都会发生误差,通常称之为“截断误差”;——以后讨论2)舍入误差及输出入误差——计算机,算法执行——客观(机器):由于计算机的存储器、运算器的字长有限,在运算和存储中必然会发生最末若干位数字的舍入,形成舍入误差;在人机数据交换过程中,十进制数和二进制数的转换也会导致误差发生,这就是输入误差。
这两种误差主要是由于计算机的字长有限,采用浮点数系所致。
首先介绍浮点数系一、计算机上的运算——浮点运算面向计算机设计的算法,则先要讨论在计算机上数的表示。
科学记数法——浮点数:约定尾数中小数点之前的数全为零,小数点后第一个数不能为零。
目前,一般计算机都采用浮点数系,一个存储单元分成首数和尾数:首数l 尾数(位)其中首数存放数的指数(或“阶”)部分,尾数存放有效数字。
《计算方法B》上机实验报告学院:机械工程学院班级:姓名:学号:2015年12月22日1 1.计算以下和式: S = ∑ 8n + 1 - 8n + 4 - 8n + 5 - 8n + 6 ⎪ ,要求: 42 1 1∞ n =0 16n ⎛ ⎫ ⎝ ⎭(1)若保留 11 个有效数字,给出计算结果,并评价计算的算法;(2)若要保留 30 个有效数字,则又将如何进行计算。
实现思想:以上问题出现了近似数相减的问题,为了减小误差,可分别求得减数之和 以及被减数之和,最后将两者相减。
另外,减数与被减数求和均为同号计算, 按照绝对值递增顺序相加可减小舍入误差。
此题中对有效数字有要求,因而计 算时首先需要根据有效数字位数计算得出迭代次数,以保证计算值的精度。
源程序:m=input('输入有效数字个数m='); s0=1;s1=0;s2=0;n=0; %判断迭代次数while s0>=0.5*10^-(m-1)s0=4/(16^n*(8*n+1))-2/(16^n*(8*n+4))-1/(16^n*(8*n+5))- 1/(16^n*(8*n+6)); n=n+1;end%分别求解各项并求和 for k=n-1:-1:0a1=4/(16^k*(8*k+1)); a2=2/(16^k*(8*k+4)); a3=1/(16^k*(8*k+5)); a4=1/(16^k*(8*k+6)); s1=a1+s1; s2=a4+a3+a2+s2; endS=vpa(s1-s2,m)实验结果:11位有效数字计算结果如图1所示;30为有效数字计算结果如图2所示。
图1.11位有效数字计算结果图2.30为有效数字计算结果所示: (1)请用合适的曲线拟合所测数据点;k +1 =0k1. 某通信公司在一次施工中,需要在水面宽度为 20 米的河沟底部沿直线走向铺设一条沟底光缆。
在铺设光缆之前需要对沟底的 地形进行初步探测,从而估计所需光缆的长度,为工程预算提 供依据。
已探测到一组等分点位置的深度数据(单位:米)如下表(2)估算所需光缆长度的近似值,并作出铺设河底光缆的曲线图;算法思想:由于题中所给点数为 20,若采用高次多项式插值将产生很大的误差, 所以拉格朗日或牛顿并不适用。
题中光缆为柔性,可光滑铺设于水底,鉴于此 特性,采用三次样条插值插值法较为合适。
算法结构:三次样条算法结构见《计算方法教程》P110;光缆长度计算公式:l = 20⎰= 19 20∑ ⎰k⎰0源程序:clear; clc; x=0:20;y=[9.01 8.96 7.96 7.97 8.02 9.05 10.13 11.18 12.26 13.28 13.32 12.61 11.29 10.22 9.15 7.90 7.95 8.86 9.81 10.80 10.93]; d=y;plot(x,y,'k.','markersize',15) hold on %%%计算差商 for k=1:2for i=21:-1:(k+1)d(i)=(d(i)-d(i-1))/(x(i)-x(i-k)); endend%%%设定d 的边界条件for i=2:20d(i)=6*d(i+1);endd(1)=0;d(21)=0;%%%带状矩阵求解(追赶法)a=0.5*ones(1,21);b=2*ones(1,21);c=0.5*ones(1,21);a(1)=0;c(21)=0;u=ones(1,21);u(1)=b(1);r=c;yy(1)=d(1);%%%追for k=2:21l(k)=a(k)/u(k-1);u(k)=b(k)-l(k)*r(k-1);yy(k)=d(k)-l(k)*yy(k-1);end%%%赶m(21)=yy(21)/u(21);for k=20:-1:1m(k)=(yy(k)-r(k)*m(k+1))/u(k);end%%%绘制曲线k=1;nn=100;xx=linspace(0,20,nn);l=0;for j=1:nnfor i=2:20if xx(j)<=x(i)k=i;break;elsek=i+1;endendh=1;xbar=x(k)-xx(j);xmao=xx(j)-x(k-1);s(j)=(m(k-1)*xbar^3/6+m(k)*xmao^3/6+(y(k-1)-m(k-1)*h^2/6)*xbar+(y(k)-m(k)*h^2/6)*xmao)/h;sp(j)=-m(k-1)*(x(k)-xx(j))^2/(2*h)+m(k)*(xx(j)-x(k-1))^2/(2*h)+(y(k)-y(k-1))/h-(m(k)-m(k-1))*h/6;l(j+1)=(1+sp(j)^2)^0.5*(20/nn)+l(j);%求解光缆长度end%%%绘图plot(xx,s,'r-','linewidth',1.5)disp(['¹光缆长度为ª',num2str(l(nn+1)),'Ã×'])曲线图如图2-1所示,计算光缆长度如图2-2所示。
图2-1光缆插值曲线图图2-1光缆计算长度显示3.假定某天的气温变化记录如下表所示,试用数据拟合的方法找出这一天的气温变化的规律;试计算这一天的平均气温,并试估计误差。
实现思想:此题中所给数据点数目较多,采用拉格朗日插值法或者牛顿插值法需要很高次的多项式,计算困难,误差大;采用样条插值计算量虽然不大,但是存放参数Mi的量很大,且没有一个统一的数学公式来表示,也不是很方便。
所以可考虑用最小二乘法进行拟合。
计算过程中,分别使用二次函数、三次函数以及四次函数,计算其相应的系数,估算误差并作图比较各个函数之间的区别。
算法结构:(参考课本P123)1.1[形成矩阵Qk]1.2[变换Gk-1到Gk]2.[求解三角方程]3.[计算误差]源代码:clear;clc;x=0:24;y=[15141414141516182020232528313431292725242220181716];m=length(x);n=input('请输入函数的次数');plot(x,y,'k.',x,y,'-')grid;hold on;n=n+1;G=zeros(m,n+1);G(:,n+1)=y';c=zeros(1,n);%建立c来存放σq=0;f=0;b=zeros(1,m);%建立b用来存放β%%%形成矩阵G for j=1:nfor i=1:mG(i,j)=x(1,i)^(j-1);endend%%%建立矩阵Qkfor k=1:nfor i=k:mc(k)=G(i,k)^2+c(k);endc(k)=-sign(G(k,k))*(c(k)^0.5);w(k)=G(k,k)-c(k);%建立w来存放ωfor j=k+1:mw(j)=G(j,k);endb(k)=c(k)*w(k);%%%变换矩阵Gk-1到G kG(k,k)=c(k);for j=k+1:n+1q=0;for i=k:mq=w(i)*G(i,j)+q;ends=q/b(k);for i=k:mG(i,j)=s*w(i)+G(i,j);endendend%%%求解三角方程Rx=h1a(n)=G(n,n+1)/G(n,n);for i=n-1:(-1):1for j=i+1:nf=G(i,j)*a(j)+f;enda(i)=(G(i,n+1)-f)/G(i,i);%a(i)存放各级系数f=0;enda%%%回代过程p=zeros(1,m);for j=1:mfor i=1:np(j)=p(j)+a(i)*x(j)^(i-1);endendplot(x,p,'r*',x,p,'-');E2=0;%用E2来存放误差%%%误差求解for i=n+1:mE2=G(i,n+1)^2+E2;endE2=E2^0.5;disp('误差为');disp(E2);t=0;for i=1:mt=t+p(i);endt=t/m;%%%平均温度disp(['平均温度为',num2str(t),'℃'])实验结果:二次函数拟合,结果如下图所示图3-1二次函数拟合结果三次函数拟合,结果如下图所示图3-2三次函数拟合结果四次函数拟合,结果如下图所示图3-3四次函数拟合结果结果对比:将二次函数、三次函数和四次函数拟合结果绘制在同一个坐标内,如图3-4所示。
其计算误差结果见表3-1所示。
图3-4拟合结果对比分析4.设计算法,求出非线性方程6x5-45x2+20=0的所有实根,并使误差不超过10-4。
算法思想:本题可采用牛顿法迭代求解,令f(x)=6x5-45x2+20,得带格式为x k+1=xk-f ( xk)f'(xk)根据函数图像可以找出根的大致分布区间,带入不同的初值即可解出不同的根.源代码:function y=f2(x)y=6*x.^5-45*x.^2+20;%定义原函数function y=f3(x)y=30*x^4-90*x;%定义原函数倒数i=-5:0.1:5;y=f2(i);plot(i,y)hold onplot(i,0,'-')%画出原函数图像%%Newton法求根x1=input('输入初值');e=10^(-4);%误差设定Nmax=1000;%迭代最大次数限定for n=1:Nmaxf0=f2(x1);if abs(f2(x1))<efprintf('输出的f(x)已经足够小');x=x1;breakelseF0=f3(x1);x=x1-f0/F0;if abs(x-x1)<ebreakelsex1=x;endendendfprintf('输出方程的根x=%2f',x)计算结果:函数图像如图4-1所示。
计算结果分别见图4-2所示。
图4-1函数图像图4-2计算结果根据带入不同的初值,可以求出不同的根,有图4-2可以看出,原函数的根大约有三个,分别是-0.654542、0.681174、1.870799。
5.线性方程组求解。
(1)编写程序实现大规模方程组的高斯消去法程序,并对所附的方程组进行求解。
所附方程组的类型为对角占优的带状方程组。
(2)针对本专业中所碰到的实际问题,提炼一个使用方程组进行求解的例子,并对求解过程进行分析、求解。
算法思想:高斯消去法是利用现行方程组初等变换中的一种变换,将一个不为零的数乘到一个方程后加到另一个方程,使方程组变成同解的上三角方程组,然后再自下而上对上三角方程组求解。