免费光学零件加工技术
- 格式:doc
- 大小:1.72 MB
- 文档页数:14
第四章光学零件加工工艺设计工艺规程是光学零件加工的主要技术资料,也是组织生产不可缺少的技术依据,合理的加工工艺规程不但能保证加工质量,提高加工效率,而且也能反映出当前的生产情况和工艺水平。
一、工艺设计的基本原则要想编出合理的工艺规程,必须掌握光学零件制造特点,考虑现有生产条件,并尽可能采用新技术、新工艺,。
设计工艺规程的基本原则是:在一定条件下,如何保证以最低的成本和最高的效率来达到零件图上的全部尺寸、形状、位置精度、表面质量和其他技术要求。
目前我司围绕光学透镜玻璃的加工,在厂房建设上、设备选型上、工艺布局上以主要采用高效透镜单片加工作为公司生产组织的工艺定位。
(结合实际情况部分零件又采用多片加工工艺),其主要加工流程如下:(增加工艺流程)二、工艺设计的步骤(一)、全面了解和研究原始资料光学零件图、技术条件、生产纲领、设备性能等是工艺设计必须具备的原始资料,也是工艺设计的基本依据,必须对其进行细致地分析和全面地的研究。
(二)、确定生产类型、毛坯种类和加工方法根据生产纲领的大小,光学零件生产类型分为小量(包括试制)、成批和大量生产3 种,对于大批量生产应尽可能采用压型毛坯和采用粗磨铣削、高速精磨、高速抛光、自动定心磨边等高效的加工方法,对于单件试制,采用块料毛坯并尽量采用公司现有的加工方法。
(三)确定加工顺序根据毛坯种类、零件的尺寸和形状、图面的技术要求等确定加工顺序,进而制定出零件在各工序加工中应达到的尺寸、形状、加工精度、表面质量等技术要求及操作注意事项。
一般情况加工顺序的确定可参考以下原则:1、铣磨:a、先加工区率半径较小的面b、先加工凹面2、精磨、抛光:a平面先于球面b、凹面先于凸面c、曲率半径大的面先于曲率半径小的面d、外观要求低的面先加工3、磨边:一般情况下先铣磨、精磨、抛光后磨边、镀膜,在零件材质化学稳定性较差、边缘较薄而偏心要求又不高的情况下可考虑先铣磨、精磨、磨边后抛光、镀膜。
4、镀膜:一般情况下先磨边后镀膜,在零件材质化学稳定性较差或度膜有效范围要求较高(接近磨边完工直径)时可考虑先镀膜后磨边。
平面光学元件的加工技术浙江大学光电系曹天宁宁波华光精密仪器公司周柳云光学平面零件包括棱镜、平行平面板、平面反光镜、平晶、光楔、光盘片基、滤光片、波片、倍频器等等。
其大小从φ1mm到φ1000mm,材料主要是光学玻璃,有时是光学晶体,为了达到高精度与高效率,采用技术方法很多,有铣磨、精磨、研磨、抛光、分离器抛光、环抛、水中抛光、单点金刚石飞切(SPDFC)、计算机机控制小工具抛修(CCP) 、离子抛光等等。
从机理上考察,可以归纳为三类基本方法一、范成法形成平面特点是依靠机床的精确运动形成平面包络面,对机床精度要求高.如用筒状金刚石磨轮铣磨平面,按正弦公式当α=0时,R=∞范成了片面(生产上为了排屑排冷却液方便, α有一个小量,表面微凹)。
单点金刚石飞切也是依靠高速旋转的轴与飞刀作直线运动的工作台垂直而范成了平面.工具与工件的加工接触为线接触。
二、轮廓复印法或母板复制法这种复制法与光栅复制法不一样,在复制过程有磨削研磨、抛光过程。
采用精磨模、抛光模(固着磨料抛光模与柏油抛光磨)加工的均属于这一类.工具与工件的接触为面接触。
三、小工具修磨法计算机控制抛光(CCP)离子束抛光与手修属于这一类,逐点抛修,边检边修,精度可以很高,对局部修正非常方便.工具与工件的接触为点接触。
(一) 、铣磨成型光学平面元件我国QM30、PM500、XM260研磨机直到NVG-750THD型双轴超精密平面磨床等大型平面铣磨机利用范成法原理高效铣磨出平面,而且可以采用适当的金属夹具,将角度修磨变为平行平面的铣磨.机床磨轮轴与工件的平行度、轴向经向跳动影响棱镜的角度精度.铣磨成型是光学平面元件毛胚加工的主要技术方法之一。
图一就是PM500铣磨平面的范成运动,图二就是改进的QM30铣削平面的范成运动。
图三是大型的NVG-750THD型双轴超精密平面磨床。
图三. 大型双轴超精密平面磨床(二) 、光学平面的磨削、研磨与抛光重点在于加工出高精度光学表面面型(N、△N),磨削、研磨与抛光的运动形式很多,但其特点是一样的,光学平面精度的获得不主要依靠机床的精度,而主要依靠母板的精度的传递,应该重点研究与把握三个机理。
光学零件制造工艺
光学零件制造工艺是生产高质量光学元件的关键技术。
以下是一些常见的光学零件制造工艺:
1. 切割和磨削:使用砂轮或金刚石刀具将光学材料切割成所需的形状和尺寸。
2. 抛光:通过逐渐减小表面粗糙度,使光学零件的表面达到高精度的光洁度。
3. 镀膜:在光学零件表面沉积一层或多层薄膜,以改善其光学性能,如反射率、透过率等。
4. 胶合:将两个或多个光学零件用胶粘剂粘合在一起,形成复杂的光学系统。
5. 成型:通过热压、注塑等方法将光学材料加工成所需的形状。
6. 检测:使用干涉仪、分光光度计等仪器对光学零件进行精度和性能检测。
这些工艺需要高度的专业知识和精密的设备。
制造过程中的每一个环节都必须严格控制,以确保光学零件的质量和性能符合要求。
随着科技的不断发展,新的制造工艺和技术也在不断涌现,如激光加工、离子束加工等。
这些新技术可以提高生产效率和产品质量,推动光学零件制造工艺的不断进步。
零件光学超精密加工检测技术摘要:随着数字数控机床和加工平台的产生与发展,机械零件的加工方式也向着大批量、专一化方向发展。
导致对机械零件的需求也逐渐加大,零件的尺寸和表面加工质量是否符合标准使用要求是影响机械零件正常工作的关键,因此,对机械零件的光学超精密检测成为主要研究任务。
机械零件表面的加工质量和尺寸大小虽然对零件的正常使用影响较低,但直接影响零件的可靠性、质量和使用寿命,而机械零件使用时间决定零件经济效益。
随着光学超精密加工技术的不断发展,零件光学超精密加工检测技术已成为超精密加工迫在眉睫的关键难题。
人工智能技术是一种新兴的用于模拟、延伸和扩展的智能理论、方法、技术及应用系统的一门新的技术科学。
人工智能技术中的机械学习法,使机械零件的光学超精密检测过程大大简化,并将操作结果保存在存储器中,便于后续光学超精密检测过程的快速执行。
关键词:光学检测;现状;发展引言单参数精密测量是精密测量中最简单的问题,近年来在复杂探测等问题中有了重要应用。
多参数精密测量复杂得多,参数之间存在精度制衡。
如何减少参数之间的精度制衡以实现多参数最优测量,是多参数精密测量的重要问题之一。
为了消除参数之间的精度制衡,研究人员将单参数测量实验中控制增强的次序测量技术应用到多参数测量中,通过调控测量系统动力学演化,完全解决了正演化算法中参数之间的精度制衡问题,实现了最优测量。
1测量系统将四组视觉传感器单元(包括CCD相机和激光器)分别竖直放置于精密零件两侧,垂直于精密零件中轴线,安装在精密零件两侧的立柱上;其中两组视觉传感器单元放置于精密零件一侧立柱上,另外两组视觉传感器单元放置于精密零件另一侧立柱上。
首先利用激光跟踪仪建立基坐标系统,然后对每个视觉传感器单元进行相机参数标定、光平面参数方程标定以及全局标定,最终得到相机的内参矩阵、相机到基坐标系下的全局标定矩阵以及激光平面在基坐标系下的平面方程,完成系统使用以及测量前的预处理。
光学零件加工流程光学零件加工是光学工程领域中非常重要的一环,它涉及到光学元器件的制造与加工。
本文将介绍光学零件加工的流程,并详细阐述每个环节的操作步骤。
一、零件设计与制作在光学零件加工流程中,首先需要进行零件的设计与制作。
设计师根据实际需要,使用CAD或其他相关软件进行光学元器件的三维建模。
在设计过程中,需要考虑到光学元器件的材料、形状、尺寸等因素,并确保其满足光学性能要求。
设计完成后,可以通过3D打印或数控机床等设备进行零件制作。
二、加工前准备在进行光学零件加工之前,需要进行加工前的准备工作。
首先是对加工设备进行检查和维护,确保设备能够正常运行。
其次是准备加工用的原材料,这些原材料通常是具有良好光学性能的材料,如光学玻璃、光学塑料等。
此外,还需要准备好加工过程中所需的工具、夹具等。
三、加工工艺选择光学零件加工有多种不同的工艺可供选择,根据具体的零件要求和加工难度,选择合适的加工工艺。
常见的光学零件加工工艺包括:切削加工、抛光加工、激光加工等。
对于形状复杂的光学零件,通常采用数控机床进行精密加工。
四、加工操作步骤1. 切削加工:首先,将加工原材料固定在夹具上,然后根据设计要求,使用切削工具对原材料进行加工。
切削加工可以通过车削、铣削、钻削等方式进行。
2. 抛光加工:在切削加工完成后,需要进行抛光加工,以提高光学零件的表面质量。
抛光加工可以通过机械抛光、化学抛光等方式进行。
抛光加工的目的是去除表面的瑕疵,使光学零件表面更加光滑。
3. 激光加工:对于一些特殊要求的光学零件,可以采用激光加工技术进行加工。
激光加工具有高精度、非接触等优点,能够实现对光学零件的高精度加工。
五、质量检验与调整在光学零件加工完成后,需要进行质量检验与调整。
质量检验包括对光学零件的尺寸、形状、表面质量等进行检查,以确保其符合设计要求。
如果发现问题,需要进行调整或重新加工,直到达到要求为止。
六、光学零件的组装与测试光学零件加工完成后,还需要进行组装与测试。
光学零件基本加工工艺规程设计一、材料选择在设计光学零件基本加工工艺规程之前,首先需要根据光学零件的要求和使用环境选择合适的材料。
一般情况下,光学零件常用的材料包括玻璃、晶体和塑料等。
不同的材料有不同的特性和加工难度,在选择材料时需要考虑光学性能、物理性能和耐久性等因素,并权衡其加工难度和成本等因素。
二、加工流程规划1.光学零件的加工主要分为粗加工和精加工两个阶段。
粗加工阶段主要是通过切削、研磨和抛光等工艺对原材料进行形状和尺寸的加工,以获得近似尺寸和粗糙度要求的加工零件。
精加工阶段主要是通过抛光、研磨和涂膜等工艺对粗加工后的零件进行微调和处理,以获得最终的光学性能和表面质量。
2.在粗加工阶段,常用的加工工艺包括切削、磨削、抛光和研磨等。
切削是指通过刀具对材料进行切削来获得所需形状和尺寸的工艺,常用的切削工具有铣刀、车刀和钻头等。
磨削是指通过磨轮对材料进行磨削来获得粗加工目标,常用的磨削工具有砂轮、磨粒和金刚石等。
抛光和研磨则是通过对材料表面进行机械处理来获得较好的表面质量,常用的工具有抛光布、研磨液和涂膜等。
3.在精加工阶段,主要采用的工艺有抛光、研磨和涂膜等。
抛光是通过抛光布和涂膏等工具对零件表面进行抛光处理,以提高表面质量和光学性能。
研磨是通过研磨片和涂膏等工具对零件进行平面研磨和修整,以达到更高的尺寸精度和表面光洁度。
涂膜是在零件表面涂覆一层光学膜以改善其光学性能和耐磨性,常用的涂膜有反射膜、透明膜和滤光膜等。
三、加工参数确定在光学零件基本加工工艺规程设计中,还需要确定加工参数,以保证加工精度和表面质量。
加工参数包括切削力、磨削速度、抛光布压力和涂膜厚度等。
这些参数的选择和调整需要根据加工材料的硬度、光学要求和设备性能等因素进行综合考虑。
一般情况下,需要通过试验和实践来不断调整和优化加工参数,以获得最佳的加工效果。
综上所述,光学零件基本加工工艺规程设计是基于光学要求和加工难度等因素来选择合适的材料、规划加工流程和确定加工参数等,以获得满足光学性能和表面质量的最终加工零件。
光学元件的完整加工过程
首先是设计与制造准备阶段,根据光学元件的功能需求和使用环境等
要求,进行设计和制造准备工作。
这包括确定元件的形状、尺寸和表面质
量要求,选择适合的光学材料和加工工艺等。
接下来是光学材料选择与加工阶段。
根据元件的性能要求和制造工艺
的要求,选择合适的光学材料,常见的光学材料有玻璃、晶体、塑料等。
然后根据元件的形状和尺寸要求,采用各种加工工艺对光学材料进行加工,包括切割、磨削、抛光等。
接下来是光学元件加工与研磨阶段。
根据元件的设计和加工要求,使
用专门的光学加工设备和工具对光学材料进行加工和研磨。
这包括使用盘
形磨片或砂轮进行研削和抛光,使得元件的表面平整、光洁,以满足光学
性能的要求。
然后是表面处理与涂层阶段,根据元件的使用环境和光学性能要求,
对元件的表面进行处理和涂层。
常见的表面处理方法包括清洗、去污、酸
洗等;常见的涂层方法包括反射镀膜、抗反射镀膜等。
这些处理和涂层可
以提高元件的光学性能,如增加反射率、抑制光损耗等。
最后是质量检验与装配阶段,对加工好的光学元件进行质量检验和装配。
质量检验包括测量元件的尺寸、形状、表面质量和光学性能等,并比
对设计要求进行评估;装配包括将元件与其他光学元件或机械结构进行组装,以完成最终的光学系统或仪器设备。
整个光学元件的加工过程需要严格的工艺控制和质量管理,以保证元
件的性能和可靠性。
同时,加工过程需要使用专门的设备和工具,并需要
经验丰富的技术人员进行操作。
免费光学零件加工技术目录一、统研磨抛光与高速研磨抛光特点二、准球心法和传统法比较三、切削工序的要求四、粗磨工序的要求五、如何保持粗磨皿表曲率半径的精度六、修磨皿的技巧七、影响抛光的因素八、抛光剂(研磨粉)的影响九、研磨皮及选择十、传统加工要求十一、计算公式十二、光圈识别与修整措施十三、机床的选择十四、机床的调整十五、超声清洗原理十六、品质异常分析步骤十七、工艺规程的设计序言光学零件的加工,分为热加工、冷加工和特种加工,热加工目前多采用于光学零件的坯料备制;冷加工是以散粒磨料或固着磨料进行锯切、粗磨、精磨、抛光和定心磨边。
特种加工仅改变抛光表面的性能,而不改变光学零件的形状和尺寸,它包括镀膜、刻度、照相和胶合等。
冷加工各工序的主要任务是:粗磨(切削)工序:是使零件具有基本准确的几何形状和尺寸。
精磨(粗磨)工序:是使零件加工到规定的尺寸和要求,作好抛光准备。
抛光(精磨)工序:是使零件表面光亮并达到要求的光学精度。
定心工序:是相对于光轴加工透镜的外圆。
胶合工序:是将不同的光学零件胶合在一起,使其达到光轴重合或按一定方向转折。
球面光学零件现行加工技术三大基本工序为:1、范成法原理的铣磨(切削)2、压力转移原理的高速粗磨3、压力转移原理的高速抛光。
范成法原理的铣磨(切削),虽然加工效率较高,但其影响误差的因素较多,达到较高精度和较粗糙度较困难。
压力转移原理的准球心高速粗磨和高速抛光,零件受力较均匀,加工效率也较高,但必须预先准确修整磨(模)具的面形,才能保证零件的面形精度。
准确修整面形精度需要操作者的经验和技巧,而且需反复修整。
一、传统研磨与高速研磨特点1.传统研磨传统研磨也叫古典研磨,它是一种历史悠久的加工方法其主要特点是:(1)采用普通研磨机床或手工操作;(2)要求人员技术水平较高;(3)研磨材料多采用散砂(研磨砂)抛光沥青(4)抛光剂是用氧化铈或氧化铁;(5)压力用加荷重方法实现虽然这种方法效率低, 但加工精度较高所以,目前仍被采用。
2.高速研磨抛光一般是指准球心法(或称弧线摆动法)。
其主要特点是:(1)采用高速、高压和更有效的利用抛光模,大大提高了抛光效率(2)压力头围绕球心做弧线摆动,工作压力始终指向球心,也是靠球模成型的。
3.范成法准球心法对机床的精度要求较低,加工方法和传统法相近,易于实现,用的较广;范成法对机床精度及调整要求较高,目前很少采用。
二、准球心法和传统法较1.准球心法抛光模(或镜盘)绕镜盘(或抛光模)的曲率中心作弧线摆动,而压力方向始终对准球心,因此镜盘所承受的是恒压,给均匀抛光创造了条件。
2.传统法是平面摆动,重压块垂直加压,其压力随摆角而变化,因而容易造成不均匀抛光。
加压采用弹簧或气压方式,力比较恒定.平稳。
而传统研磨抛光法用重压块加压,体积大,振动大。
三、球面研磨对镜盘的考虑1.镜盘张角不宜过大,以便于光圈稳定,在多行的镜盘中,张角不宜大于140°;对于三块镜片一盘,若超过140°影响也不大。
2.弹性上盘能承受高速研磨中的高速高压,但镜盘必须装得正。
刚性上盘1.胶球模轴向定位基准要符合,切削、粗磨厚度控制的基准面以及高速研磨中准球心所需要的基准面(假如镜盘装在主轴上)2.承座(定位孔)轴线与球面法线重合、深度一致;3.曲率半径与被粘结面曲率半径要合理4.承座(定位孔)与胶球模轴向基准面间的相对尺寸一致,并有消气孔。
5.粘结胶程度足够;粘结面积足够;粘结温度合适。
三、对切削工序的要求一是切削出的球面面形要规则,曲率半径要达到工艺规定的公差范围;二是表面粗糙度要符合粗磨的要求;三是要去除一定的余量,保证将毛坯杂质层去除干净。
如果镜片抛光后合格率降低,检查切削面的面形精度也许会找出问题的症结。
1.切削设备精度工件轴全跳动: 3um磨轮轴全跳动: 3um工件轴母线精度: 1um工件轴移动精度: 3um工件、磨轮轴面等轴度:1um对球面来讲,既不产生非球面度,同表面又不会产生超菊花纹和过深碎裂层。
四、粗磨工序的要求获得合理的粗磨表面结构对精磨过是极其重要的,它直接影响着精磨效率及其加工质量。
粗磨表面的性质可由宏观的和微观的表面不规则性来表示。
宏观不规则性是由磨削过程中磨具的偏差引起的,在精磨中通过选择合适的抛光模材料能大大减少这种宏观不规则性。
微观不规则性是由玻璃磨削的本质决定的。
1.表面结构对精磨过程的影响玻璃磨削后留下凹凸层和裂纹层,抛光工序的效率就取决于这两层的性质。
一般的错误概念是认为抛光时粗磨表面的凹凸层越小越好,这是忽略了粗磨表面的微观结构对抛光过程的作用。
抛光模,特别是热固性塑料模,在抛光过程中易于钝化而失去抛光能力。
而凹凸层有利于减少或消除这种钝化现象。
抛光过程基本上可分成两个阶段,第一阶段去除凹凸层,第二阶段去除裂纹层。
第一阶段开始时,抛光模和玻璃的凹凸层顶峰接触,压强很大,而凹谷为抛光液进入整个表面又提供了良好的条件,因此抛光十分迅速。
随着抛光过程的继续,接触面积增大,压强减小,抛光液的附着能力降低,使抛光过程减慢。
当抛光面达到裂纹层时,玻璃表面同抛光模表面全部接触,抛光过程趋于稳定缓慢,而抛光模开始钝化,抛光继续,钝化加剧,抛光效率进一步下降。
钝化程度随过程的持续时间而定,而持续时间直接决定于裂纹层的深度。
这个凹凸层厚度的最佳值主要由抛光模材料的性质,以及与这个材料配合使用的抛光剂而定,其他因素还有主轴转速、压力和抛光液的进入能力等。
采用不同的粗磨方法,或者在同一方法中随磨具的钝化程度、冷却的润滑状态不同,所得的裂纹层也不同。
实践证明,用钝化了的金刚石磨具加工的工件,虽然凹凸层较小,但裂纹层却很深。
因此,不光要考虑凹凸层对抛光的影响,同时也要把裂纹层的深度作为粗磨工序的重要指标来考虑。
五、如何保持粗磨皿表面曲率半径的精度?粗磨是用磨皿与镜片面接触的方式进行。
虽然,磨皿表面的曲率半径在开始使用时是修改得很好的,但是随着镜片的磨削,磨皿也在不断磨损,逐渐地就不一定能保证镜片的加工精度。
保持粗磨皿曲率半径不变或少变,就应采取:1.合理选择工治具凡是位于上面的治具总要比下面治具的尺寸小,这是因为上面治具要摆动的关系。
假如上面治具尺寸与下面治具的尺寸相同,上面治具的边缘磨削机会太少,上面治具有翘边的趋势。
假如上面治具尺寸比下面治具的尺寸小得太多,超过了规定的数据,上面治具在摆动过程中,其边缘不露出来,上面治具的边缘会磨损过甚,上面治具有塌边的趋势。
假如上面治具尺寸比下面治具的尺寸大,则在摆动时,下面治具的边缘露出的机会又会太少,下面治具的边缘磨损过甚,下面治具有塌边的趋势。
六、修磨皿的技巧在修凹的磨皿时,镜片光圈细(偏负),则应多磨削凹磨皿的中心部分。
若凸凹对修,应将凸在下,凹在上,摆幅要大,约为凹磨的1/2。
镜片光圈粗(偏正),则应多磨削凹的磨皿边缘部分。
若凸凹对修,应将凹在下,凸在上,摆幅要大,约为凸磨的1/3。
在修凸的磨皿时,镜片光圈细(偏负),则应多磨削凹的磨皿边缘部分。
若凸凹对修,应将凸在下,凹在上,摆幅要大,约为凹磨的1/2。
镜片光圈粗(偏正),则应多磨削凸磨皿的中心部分。
若凸凹对修,应将凹在下,凸在上,摆幅要大,约为凸磨的1/3。
10°,右摆40°。
七、影响抛光的因素抛光的结果好坏受许多因素影响:工件的粗糙度空气的温度及相对湿度空气含尘量玻璃种类零件大小1.零件与治具大小比列2.抛光剂的性质3.工作轴转速4.摆动的频率、摆幅及摆幅中心位置5.抛光面的温度、压力6.抛光剂的输入量及温度八、抛光剂(研磨粉)的影响研磨粉对不同类型的光学材料,或光学材料相同但表面质量要求不同的光学零件有着不同的影响。
研磨粉的不同制法和不同的工艺处理,以及它的物理性能,对研磨效率有很大的影响,不同制法的氧化铁其结晶结构不同,其研磨能力不同;不同制法的氧化铈,其研磨效率不同, 相同制法而得的研磨粉,经过烧制工艺处理后,其研磨能力比未经过烧制工艺处理的高。
研磨粉颗粒的硬度应与玻璃的硬度、研磨皮的硬度、研磨压力等相适应。
硬度太大会在玻璃表面产生擦痕,硬度太低会将低研磨效率。
(1)研磨液的浓度对于氧化铁(红粉)研磨液,采用氧化铁与水的重量之比为1:3 ~ 1:4。
对于氧化铈(黄粉、白粉)研磨液,采用氧化铈与水的重量之比为1:5或稍稀。
研磨液的浓度与理想值不符,将导致研磨效率的降低。
当浓度过高时,研磨效率反而降低,因为水量不足,导致热量难以散发。
过多的研磨粉堆积在玻璃表面上,研磨压力不能有效地挥作用。
当浓度过低时,则表面温度下降,同时减少微小切削作用。
(2)研磨液的供给量在一定工艺条件下,使研磨效率最高所需的研磨液用量,为研磨液的适中量。
研磨时保持适中的研磨液供给量。
抛光液参数液温低易起划痕,过高易使抛光层变形,一般控制在30~38℃之间,流量为900~1000L/min ,PH值为3~9。
研磨液供给量太小,不利于机械磨削和散热;研磨液供给量过大时,则表面温度下降,不利与化学作用,同时使吻合度变差。
(3)研磨液的PH值不同类型的光学玻璃对研磨液的PH值要求不同的。
一般情况下氧化铁研磨液为中性(PH=7);化铈研磨液略偏酸(PH=6~6.5)为好用。
光学研磨中,添加在研磨液中能够改变研磨工艺性能的物质,称为添加剂。
使玻璃稳定,减少对腐蚀的敏感,从而进一步改善光学表面质量的,称为稳定剂。
添加剂对氧化铁研磨液,能提高研磨效率和改善光学表面质量的添加剂:硝酸锌[Zn(NO3)2]、硫酸锌[ZNSO4]、氯化镍[NICL3]、氯化铁[FECL3]等。
对于氧化铈研磨液,能提高研磨率和改善光学表面质量的添加剂:硝酸铈铵[(NH4)2CE(NO3)6]、硫酸锌[ZNSO4]。
添加剂的加入量不是任意的,每一种添加剂对于不同品位的抛光粉,不同类型的光学玻璃都有其理想的加入量。
影响表面光洁度的因素镜片边缘有砂眼一种是因为细磨后光圈高(正),当中间已抛亮时,边缘尚有砂眼,另外,当镜片发生“走动”时,也会引起边缘有砂眼。
镜片中间有砂眼另一种是因为细磨后光圈低得太多,边缘已抛亮中间尚未抛到,镜片“走动”也会有可能造成镜片中间有砂眼。
镜片表面有粗砂眼则往往是细磨不充分所造成。
抛光过程中有时会在镜片表面产生油斑似的东西,这与玻璃的化学稳定性、抛光粉的性能、抛光模得到吻合情况有关,可以在抛光粉悬浮液中加少量硫酸锌加以消除(约每升6克)。
在用原器(样板)检验镜片表面光圈时,如果没有仔细地将原器(样板)和镜片表面擦干净,也容易使镜片表面受到损伤。
九、研磨皮及选择抛光模:聚氨酯(聚氨基甲酸乙酯),按使用的原料不同,分为聚醚型和聚酯型。
但当配料和制模工艺稍有偏差时,性能差异则很大。
研磨皮(抛光模)由于不同的聚氨酯抛光材料吸水性不同,达到吸水平衡的时间差别很大,所以,在修模前应把抛光模放在抛光液中浸泡,达到吸水平衡后再修模否则,会引起抛光模的面形变化;使用后应浸泡在抛光液中,否则,由于水份蒸发,造成面形变化,再次使用时会降低抛光模镜片的吻合性。