光伏发电系统设计软件使用
- 格式:doc
- 大小:724.00 KB
- 文档页数:10
光伏电站仿真软件GREENIUS简介
仿真软件Greenius(图10-4)在市场上出现于2002年7月。
该软件是由德国航空航天中心(German Aerospace Centre, DLR)位于西班牙的前哨基地Plataforma Solar de Almerita开发的,其资金支持由欧盟“Altener计划”提供。
该仿真软件的适用范围主要是大型商用可再生电站项目。
除光伏系统外,该软件还可以对风电场和各种类型的太阳能热发电站进行仿真。
在Greenius中,使用场地数据、技术参数和经济参数来定义电站。
不同场地的数据可以从Greenius的气象数据库中提取,用户也可以选择自己输入自己的气象数据。
技术模拟过程是在一年中的每小时间隔的基础上进行并显示的,例如,发电站每小时的电能输出。
除了技术模拟,还可以进行经济核算。
这使得Greenius成为对可再生电站项目进行设计和规划时的重要工具。
该软件有一个对并网光伏系统大小进行确定的工具。
该软件的目标是项目开发者,它们除了需要详细技术数据外,还需要通过对大量现金流进行分析以关键参数的经济效率。
与其它软件相比,使用该软件计算经济效率是用得最多的。
该软件有众多的接口以输出仿真结果和图表到其它Windows程序中。
使用Greenius可以比较不同可再生能源的技术水平。
这使得它特别适合于那些精力集中在国际市场上的企业的设计师们。
该软件的低价版本可用在培训市场上。
图10-4 Greenius中一个光伏电站的规格说明。
MATLAB光伏模型算例介绍随着能源危机的日益严重,光伏发电作为一种清洁能源技术备受关注。
光伏发电系统的建模和仿真可以帮助工程师和研究人员更好地理解系统运行规律,优化系统设计,提高发电效率。
MATLAB作为一种强大的工程计算软件,提供了丰富的工具箱和功能,可以用于光伏模型的建立和仿真分析。
在本篇文章中,我们将介绍使用MATLAB进行光伏模型建立和仿真的算例。
具体内容包括光伏模型的理论基础、建模步骤、仿真过程和结果分析。
通过本文的学习,读者可以了解如何利用MATLAB进行光伏系统的建模和仿真分析,为光伏发电系统的设计和优化提供参考。
以下是本文的主要内容:一、光伏模型的理论基础1.1 光伏效应原理1.2 光伏组件的电学特性1.3 光伏系统的工作原理二、MATLAB光伏模型的建立2.1 光伏组件模型的建立2.2 光照条件和温度对光伏发电的影响2.3 光伏系统整体模型的建立三、光伏系统的仿真分析3.1 光伏组件的电压-电流特性曲线分析3.2 光照条件和温度变化下的发电情况仿真3.3 光伏系统在不同工况下的输出功率分析四、结果分析与讨论4.1 光伏系统性能指标的计算与分析4.2 光伏系统设计参数的优化方法4.3 结果的工程应用和展望通过以上内容的介绍和分析,读者可以全面了解MATLAB光伏模型的建立与仿真分析方法,以及在工程实践中的应用前景。
希望本篇文章能为光伏系统工程师和研究人员提供参考,并促进光伏发电技术的进步和应用。
五、光伏模型的理论基础1.1 光伏效应原理光伏效应是指当光线照射到半导体材料表面时,光子能量转化为电能的现象。
光伏效应的基本原理是光生载流子的产生和分离,这是光伏发电的基础。
当光子能量大于或等于半导体带隙能量时,光子被吸收并在半导体内部产生电子-空穴对。
由于半导体的内建电场作用,电子和空穴被分离,从而产生电流。
这样就实现了光能到电能的转化。
在光伏效应的研究中,理论模型的建立是非常重要的。
Pvsyst光伏发电系统仿真软件学习实验培训资料一、实验目的熟悉Pvsyst光伏发电系统仿真软件。
二、预习内容阅读教材中的光伏电站的构成和组态。
三、实验原理PVSYST的一款光伏系统设计辅助软件,用于指导光伏系统设计及对光伏系统进行发电量进行模拟计算。
主要功能如下:1.设定光伏系统种类:并网型、独立型、光伏水泵等;2.设定光伏组件的排布参数:固定方式、光伏方阵倾斜角、行距、方位角等;3.架构建筑物对光伏系统遮阴影响评估、计算遮阴时间及遮阴比例;4,模拟不同类型光伏系统的发电量及系统发电效率;5.研究光伏系统的环境参数。
四、实验仪器与器件1台PC机,Pvsyst软件五、实验内容与步骤(1)Pvsyst的界面介绍左侧三个选项为:1、初步设计2、工程设计3、工具右侧四个选项为:1、并网型光伏系统2、独立性光伏系统3、水泵光伏系统4、直流并网光伏系统(2)并网光伏系统初步设计的使用介绍1 > 先选择Preliminary design f Grid-Connected 然后点击OK。
2、选择地理位置:3、设置光伏系统基本参数左边的三个选项为组件面积、装机容量、年发电量,他们 为三选一,内部存在的转换公式。
一般取装机容量。
方位 角一般取。
度,即北半球朝正南,南半球朝正北。
4、行距设计点击More detail 选择第二个进入地面光伏电站排布设计。
倾角、方位角及对应倾斜面 上辐照度的参数倾角、方位角及对应倾斜面 上辐照度的参数装机容量通过调整行距,使得遮挡情况和遮阴损失到达合理的设计值。
5、光伏系统参数设置组件类型设置影响组件的面积与装机容量的关系;通风类型影响装机容量与发电量的关系;安装类型影响安装的本钱(我们没有采用这个本钱模式)。
组件类型安装类型通风类型6、初步设计结果得出初步设计的结果,主要的参数有各月的地面辐照度、倾斜面上辐照度、发电量。
可以调整不同的参数,比照初步工程的发电量。
六、实验报告要求(1)列表整理实验数据并进行数据分析。
PVSYST软件说明PVSYST太阳能软件说明●preliminary design初步设计点击之后弹出system选项框Grid connected并网型光伏系统点击后弹出对话框Grid system presizing project并网系统设计:三个选项:1.location地理位置选择国家城市,然后open site对地理位置进行具体设计(1)Geographical Coordinates地理坐标的选择Region地区Latitude纬度,longitude经度,Altitude,above sea level超出海平面的高度,Time zone时区,corresponding to an average difference与平均差相一致,Legal time法定时间,Solar time夏令时。
然后点击Sun Paths Diagram太阳路径图,横轴为Azimuth方位角,纵轴为Sun height太阳高度Polar coord.极坐标图,Rect coord.矩形坐标图(2)Monthly Meteo每月的气压表:Global irrad.全球辐照度,Diffuse漫反射度,Wind velocity风速,Clearness Index清晰度Horizon地平线,点击Horizon进入地理位置的太阳运行参数设计2.System系统点击进入光伏系统基本参数设计Active area组件面积Nominal Power装机容量Annual yield年发电量一般选装机容量,然后进行行距设计,点击More details中的Sheds disposition行距设计,弹出对话框,对光伏阵列的高度和行距进行设计。
Sheds光伏阵列的摆放,Pitch前倾,Collector band width频带宽度,T op inactive band,Bottom inactive band光伏板上下距离Show Optimisation,Shading Graph查看排布下的遮挡情况及损失Collector plane orientation指导局平面图,主要是对倾角、方位角及对应倾斜面上辐照度的参数点击nextModul Type模块样式:Standard标准的,Tranalucide Custom 定做的。
01pvsyst认识01 PVSYST认识1.1PVSYST软件功能一、pvsyst简介PVsyst软件是一套应用广泛的光伏系统仿真模拟软件,由瑞士Geneva大学环境科学院开发。
PVsyst软件主要用来对光伏发电系统进行建模仿真,分析影响发电量的各种因素,并最终计算得出光伏发电系统的发电量,可应用于并网系统、离网系统、水泵和直流系统等,也可可模拟不同类型的光伏系统,如地面电站、屋顶电站、农光互补、跟踪支架、离网系统等,计算系统发电量、发电效率PR和发电损耗,辅助光伏系统的设计与优化。
软件含有丰富的NASA和Meteonorm 等丰富气象数据库、组件数据库、逆变器数据库及定量分析工具等,深受国内外工程设计、产品研发、设计院和高校等光伏人士的认可。
二、PVSYST功能1. 三维建模和近场阴影仿真(1)具有三维建模功能,可构建建筑物对光伏系统遮挡阴影影响评估,计算阴影时间及遮挡阴影比例;(2)内置三维建模模块,含有丰富的各类建筑物、遮挡模型,尺寸大小可定义;(3)支持SketechUp和山地设计软件Helios3D的光伏组件阵列和建筑物3D模型,比进行遮挡影响评估。
支持SCV格式的三维地形数据,并可自由编辑高度和尺寸;(4)可设置障碍物或光伏组件是否产生阴影遮挡,快速计算阴影遮挡损失;(5)对于任意面积或形状的光伏厂区,可实现光伏组件方阵的批量填充和编辑,可自定义参数,包括方阵尺寸、倾斜角、前后左右间距和离地高度等。
2. 阵列布局分析(1)支持固定倾斜角阵列、跟踪系统阵列、多方位角阵列的功能不同的阵列运行方式;(2)可用于平台地面或坡地的方阵最佳倾斜角、阵列前后和左右最佳间距的优化设计;(3)可用于辅助光伏电缆经济界面选取分析、直流汇集和交流汇集方式的选取分析。
3. 精细化模拟分析可根据系统设计设计情况对各编号的的组串内部组件进行电气连接,可模拟更加准确的电性能。
4. 数据库管理(1)支持导入Nasa、Metemrorm、Solargis、Retscreen以及现场实测气象数据等,可导入的参数包括水平辐射、方阵斜面辐射、环境温度、组件温度、风速等;(2)拥有丰富的组件数据库,通过组件PANfile模型,可分析在不同温度或辐照度下的I-v 曲线和P-V曲线、开路电压、短路电流、弱光性能和光谱响应等特性;(3)拥有丰富的逆变器数据库,可通过逆变器模型分析逆变器的效率曲线。
基于PVsyst软件的屋顶光伏发电系统发电量的研究基于PVsyst软件的屋顶光伏发电系统发电量的研究随着能源需求的不断增长和环境问题的日益突出,光伏发电作为一种清洁、可再生的能源形式,正在得到越来越多的关注和应用。
屋顶光伏发电系统作为一种灵活性较高、可利用空间广泛的技术,受到了广大消费者和企业的青睐。
而衡量光伏发电系统性能好坏的一个重要指标就是发电量。
本文将以PVsyst软件为工具,对屋顶光伏发电系统的发电量进行研究。
首先,本文将详细介绍PVsyst软件的特点及其在光伏发电系统设计中的应用。
PVsyst软件是一款功能强大的光伏系统模拟工具,它能够模拟屋顶光伏发电系统在不同条件下的发电量,并提供详细的数据分析和可视化展示。
该软件可以考虑诸如太阳辐照度、气温、阴影遮挡等多个因素对光伏发电系统性能的影响,从而得出更加准确的发电量预测结果。
接着,本文将针对某个具体的屋顶光伏发电系统进行实例研究。
首先,我们将收集有关该系统的基本信息,包括光伏模块的类型和参数、逆变器的型号和性能、支架的材料和安装角度等。
然后,我们将在PVsyst软件中建立该系统的模型,并输入上述基本信息以及所处地区的气象数据。
在模拟过程中,我们将针对不同季节、不同日照条件进行模拟,并记录系统的实际发电量。
随后,本文将进行数据分析和结果展示。
我们将通过PVsyst软件提供的数据分析功能,对模拟结果进行详细的统计和比较。
通常,我们会比较实际发电量与理论发电量之间的差异,并分析造成差异的因素。
同时,我们还可以通过PVsyst软件提供的可视化功能,绘制出系统在不同时间段的发电曲线和发电效率曲线,以便更直观地观察系统的性能表现。
最后,本文将对屋顶光伏发电系统的发电量进行讨论和总结。
我们将分析模拟结果中的有效性和可靠性,并进一步提出系统性能的改进方案和优化建议。
同时,我们也将探讨光伏发电系统在不同条件下的发电量变化规律,并讨论其与气象因素、光伏组件和系统参数的关系。
光伏发电系统的建模与仿真随着节能减排的要求越来越高,光伏发电系统的应用越来越广泛。
然而,在建造光伏发电站前,需要进行大量的建模与仿真工作,以保证系统的稳定性和可靠性。
本文将介绍光伏发电系统的建模与仿真过程。
一、建模建模是光伏发电系统仿真的第一步。
建模的目的就是将光伏发电系统从实际中抽象出来,使之成为一套数学模型,以便在计算机中进行仿真。
光伏发电系统包括发电机组、直流充电器、储能器、逆变器、变压器等基本部件。
对于这些部件,需要进行建模和参数设定。
建模的方法主要有等效模型、电路模型和物理模型等。
1. 等效模型等效模型的思路是将光伏发电系统转换成等效电路,从而进行仿真计算。
例如,将光伏电池板简化成一个电流源加一个二阶低通滤波器。
2. 电路模型电路模型则是基于光伏发电系统的电路特性进行建模。
例如,可以将光伏电池板建模成参数为光强、温度等的电路模型。
3. 物理模型物理模型基于光伏发电系统的物理特性进行建模,涉及光学、热学等多个方面。
例如,可以将光伏电池板建模成空间点的热辐射传递方程。
根据仿真需要,建模时需要进行精度把握和建模方法选择。
在建模完成后,需要进行模型验证,以确保建模工作的准确性。
二、仿真在建模完成后,就可以进行仿真计算了。
仿真是指在计算机中模拟光伏发电系统的工作状态,获得系统的电气参数、性能指标等。
仿真需要使用仿真软件,常见的有PSIM、Matlab/Simulink等。
根据建模的具体方法,仿真算法也存在差异。
1. 辅助设计仿真计算可以对光伏发电系统的组成部分进行电气参数分析,例如组件的最大输出功率、充电器的电流等。
这有助于系统生成流程中的产品选型和设备配套工作。
2. 故障分析仿真计算可对光伏发电系统的故障进行分析。
例如,可能会对电路短路、系统离线等进行典型故障模拟,并从故障指标的角度来改进优化系统。
3. 性能分析仿真计算可以对光伏发电系统的电能转换效率进行性能分析。
例如,可以对系统每个环节的能量损失进行计算,以掌握发电系统的总体能源利用与性能表现。
光伏cad基础知识随着能源危机的日益严重,人们对可再生能源的需求越来越高。
光伏能源作为一种清洁、可再生的能源形式,受到了广泛关注。
而光伏CAD作为光伏能源系统设计的重要工具,也成为了光伏行业中不可或缺的一部分。
本文将介绍光伏CAD的基础知识,帮助读者更好地了解和应用光伏CAD。
首先,我们需要了解什么是光伏CAD。
光伏CAD是指利用计算机辅助设计软件进行光伏系统设计的过程。
它可以帮助工程师在设计光伏系统时进行模拟、优化和分析,提高设计效率和准确性。
光伏CAD软件通常包括光伏组件模型、光伏阵列布局、光伏系统性能分析等功能。
其次,我们需要了解光伏CAD的基本原理。
光伏CAD的设计原理主要基于光伏效应和电路分析。
光伏效应是指当光照射到光伏组件上时,光能被转化为电能的现象。
光伏CAD通过模拟光照条件和光伏组件特性,计算出光伏系统的发电量和性能。
电路分析是指通过电路模型和电路参数,分析光伏系统的电流、电压和功率等电学特性。
接下来,我们需要了解光伏CAD的应用领域。
光伏CAD广泛应用于光伏系统的设计、优化和评估。
在光伏系统设计中,光伏CAD可以帮助工程师选择合适的光伏组件、确定光伏阵列布局和设计电路连接。
在光伏系统优化中,光伏CAD可以通过模拟不同的光照条件和组件参数,找到最佳的系统配置和工作条件。
在光伏系统评估中,光伏CAD可以分析系统的发电量、效率和可靠性,评估系统的经济性和环境效益。
最后,我们需要了解光伏CAD的发展趋势。
随着光伏技术的不断发展和应用,光伏CAD也在不断创新和完善。
一方面,光伏CAD软件的功能越来越强大,可以模拟更复杂的光照条件和组件特性,提供更准确的系统设计和分析。
另一方面,光伏CAD软件的使用也越来越简便,不需要专业的电气工程师或计算机专家,普通用户也可以进行光伏系统设计和分析。
综上所述,光伏CAD是光伏能源系统设计中不可或缺的工具。
通过光伏CAD,工程师可以进行光伏系统的模拟、优化和分析,提高设计效率和准确性。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
光伏cad基础知识1光伏CAD(Computer-Aided Design)是一种利用计算机软件来辅助设计、绘图和分析光伏系统的技术。
在光伏行业中,CAD技术被广泛应用于光伏组件的设计、电池片的布局以及系统的建模和优化。
本文将介绍光伏CAD的基础知识,包括其原理、应用场景和常用软件。
一、光伏CAD的原理光伏CAD基于计算机图像处理技术和电气工程原理,通过数字化的方式对光伏系统进行建模和分析。
它可以模拟光伏组件的光电转换过程、系统的电路连接以及电池片的发电效率等关键参数。
通过光伏CAD,工程师可以更加直观地了解光伏系统的性能和效果,并进行优化设计。
光伏CAD的工作过程可以简单概括为以下几个步骤:1. 数据收集:收集光伏系统的相关参数,包括光照强度、组件的特性、电池片的光电转换效率等。
2. 建模:在CAD软件中创建光伏系统的三维模型,并设定组件的尺寸、布局和材料等参数。
3. 分析:利用CAD软件进行光伏系统的光学、电学和热学分析,计算系统的发电量、功率损耗和温度等关键指标。
4. 优化:根据分析结果,对光伏系统进行参数调整和优化设计,以提高系统的整体性能和效率。
二、光伏CAD的应用场景光伏CAD在光伏行业中具有广泛的应用场景,下面列举几个常见的例子:1. 光伏组件设计:利用CAD软件对光伏组件的外形、材料和布局进行设计,以最大程度地提高组件的光电转换效率和稳定性。
2. 光伏系统规划:通过CAD软件对光伏系统的阵列布局、电路连接和功率分配等进行规划和优化,以实现最佳的发电效果。
3. 光伏系统仿真:利用CAD软件对光伏系统的发电量、功率损耗和温度等进行仿真和分析,以评估系统的性能和可靠性。
同时,可以通过仿真结果对系统进行优化改进。
4. 光伏系统监测:基于CAD技术,可以设计出监测光伏系统性能的软件和设备,实时监测系统的发电量、电池片的工作状态等,为系统运维和维修提供便利。
三、常用的光伏CAD软件目前市场上有很多专业的光伏CAD软件可供选择,下面介绍几种常见的:1. PVSyst:这是一款功能强大的光伏系统模拟软件,可以进行光学、电学和热学等多方面的仿真分析,是光伏领域最为常用的设计工具之一。
分布式:将有相同朝向,倾角和无暗影的组件串成一串,由一串或许几串构成一个子阵列,装置一台较小的逆变器。
通常是单相逆变器。
其首要长处是:削减了组件的彼此串并联的线缆长度,特别是直流主电缆的长度,可下降本钱;逆变器能够装置在光伏组件的周围,有利于合理布线;在有些状况下能够省掉汇线盒,下降本钱;能够对光伏体系进行分
带逆变器组件:一个组件对应一个逆变器。
实践上是组件和逆变器作为。
其优缺陷是:逆变器关于单个组件
上得到了运用;。