钢材的疲劳
- 格式:pptx
- 大小:2.22 MB
- 文档页数:13
钢材的疲劳概念钢材的疲劳是指在交变荷载作用下,经过多次应力循环后引发的破裂现象。
疲劳破坏是材料科学和工程领域的重要问题之一,对于钢材在工程设计和结构使用中的安全性具有重要意义。
钢材的疲劳概念源自于实际工程实践中的应力循环现象。
在很多机械设备、航空航天、桥梁、建筑等结构中,常常会受到交变或重复应力的作用。
虽然这些应力的幅值可能远远低于钢材的屈服应力,但当循环应力的幅值和次数达到一定数值时,钢材内部就会逐渐发展裂纹,最终出现破裂。
因此,钢材的疲劳问题对于健康、经济和安全的结构设计和使用是至关重要的。
疲劳问题主要由两个方面组成:疲劳寿命和疲劳破坏。
疲劳寿命是指材料在特定应力水平下能够承受多少应力循环而不发生破裂的能力,通常以循环载荷的次数表示。
而疲劳破坏则是指经过一定次数的应力循环后,材料内部裂纹在扩展和联结的作用下,最终导致破裂失效。
疲劳破坏的机理主要包括裂纹萌生、裂纹扩展和最终破裂三个阶段。
首先,裂纹萌生是在应力循环中产生微裂纹,这些微小裂纹往往位于表面、缺陷处或应力集中区域。
接着,在后续的应力循环中,这些微裂纹由于剪切、拉伸和扭转等作用逐渐扩展。
最终,在裂纹扩展到一定尺寸后,应力集中区域就不能继续承受应力,导致破裂失效。
钢材的疲劳问题受到多种因素的影响。
首先,应力幅值是影响疲劳寿命的重要因素。
通常情况下,应力幅值越大,材料的疲劳寿命越短。
材料的强度水平也是疲劳寿命的重要参量。
强度越高,疲劳寿命越长。
此外,材料的表面处理和加工状态、工作温度、湿度、腐蚀等环境因素也会对钢材的疲劳性能产生重要影响。
为了解决钢材的疲劳问题,研究人员和工程师们提出了多种改善疲劳寿命的方法。
其中包括选择高强度、高韧性和高硬度的材料,提高材料的表面质量,进行表面处理(如刷齿、轧纹、喷砂等)以消除应力集中问题,采用适当的应力控制或变形控制方法,改善工艺和设计等。
这些方法在不同领域和工程实践中都取得了显著的效果。
总的来说,钢材的疲劳破坏是一种重要的材料失效机制,对于工程设计和结构使用的安全性具有重要意义。
钢结构脆性断裂与疲劳破坏浅析一、脆性断裂钢材或钢结构的脆性断裂是指应力低于钢材抗拉强度或屈服强度情况下发生突然断裂的破坏。
钢结构尤其是焊接结构,由于钢材、加工制造、焊接等质量和构造上的原因,往往存在类似于裂纹性的缺陷。
脆性断裂大多是因这些缺陷发展以致裂纹失稳扩展而发生的,当裂纹缓慢扩展到一定程度后,断裂即以极高速度扩展,脆断前无任何预兆而突然发生破坏。
钢结构脆性断裂破坏事故往往是多种不利因素综合影响的结果,主要是以下几方面:(1)钢材质量差、厚度大:钢材的碳、硫、磷、氧、氮等元素含量过高,晶粒较粗,夹杂物等冶金缺陷严重,韧性差等;较厚的钢材辊轧次数较少,材质差、韧性低,可能存在较多的冶金缺陷。
(2)结构或构件构造不合理:孔洞、缺口或截面改变急剧或布置不当等使应力集中严重。
(3)制造安装质量差:焊接、安装工艺不合理,焊缝交错,焊接缺陷大,残余应力严重;冷加工引起的应变硬化和随后出现的应变时效使钢材变脆。
(4)结构受有较大动力荷载或反复荷载作用:但荷载在结构上作用速度很快时(如吊车行进时由于轨缝处高差而造成对吊车梁的冲击作用和地震作用等),材料的应力-应变特性就要发生很大的改变。
随着加荷速度增大,屈服点将提高而韧性降低。
特别是和缺陷、应力集中、低温等因素同时作用时,材料的脆性将显著增加。
(5)在较低环境温度下工作:当温度从常温开始下降肘,材料的缺口韧性将随之降低,材料逐渐变脆。
这种性质称为低温冷脆。
不同的钢种,向脆性转化的温度并不相同。
同一种材料,也会由于缺口形状的尖锐程度不同,而在不同温度下发生脆性断裂。
所以,这里所说的"低温"并没有困定的界限。
为了确定缺口韧性随温度变化的关系,目前都采用冲击韧性试验。
显而易见,随着温度的降低,Cv能量值迅下降,材料将由塑性破坏转变为脆性破坏。
同时可见,钢材由塑性破坏到脆性破坏的转变是在一个温度区间内完成的,此温度区T1-T2称为转变温度区。
在转变温度区内,曲线的转折点〈最陡点〉所对应的温度T0称为转变温度。
钢材的疲劳破坏的概念
钢结构构件和其连接在很多次重复加载和卸载作用下,在其强度还低于钢材抗拉强度甚至低于钢材屈服点的情况下突然断裂,称为疲劳破坏。
破环时的最大应力称为疲劳强度。
由于疲劳破坏是突然产生的,属脆性破坏。
疲劳破坏的发生,其内因是构件及连接在其生产过程中产生的内部或表面的微细裂痕或其他缺陷;结构在焊接过程中在焊缝及其热影响区产生的微观裂纹以及夹渣、孔洞等缺陷;构件在气割、剪切、矫直和冲孔等加工过程中使构件表面损伤而形成局部缺陷。
这些都易促使受力后产生应力集中,出现应力高峰,加上焊接和加工过程中形成的残余应力的影响等,在应力集中处常存在二向或三向同号应力。
其外因是在多次重复荷载作用下,使微细裂痕缓慢扩展,最后发展到削弱了原有截面,使构件或连接因净截面强度不足而突然破坏。
在疲劳破坏的断口截面上,可以发现存在以某点为中心、向外扩展呈半椭圆状的光滑区和余下的粗糙区,如图2-11所示,光滑区的中心即裂纹源。
在多次重复荷载作用下,裂痕的一张一闭使裂纹逐渐扩展而形成断口的光滑区,因所余截面净面积不足而被突然拉断的断口为粗糙区。
铁路轨道钢弯曲疲劳性能评估随着铁路交通的快速发展,铁路轨道钢作为重要的基础设施材料扮演着重要的角色。
然而,由于列车经过轨道产生的重复负荷作用,轨道钢容易出现弯曲疲劳现象。
因此,对铁路轨道钢的弯曲疲劳性能进行评估和监测变得至关重要。
本文将就铁路轨道钢弯曲疲劳性能评估的方法、过程和相关研究进行探讨。
铁路轨道钢弯曲疲劳性能评估是一项复杂而重要的任务。
首先,钢材的疲劳性能是一个关键因素。
一般来说,弯曲疲劳性能可以通过应力-应变曲线来评估。
在实验室条件下,可以通过载荷-位移曲线来模拟钢材的应力-应变过程,并根据曲线的形状和特征来评估其疲劳性能。
此外,还可以通过拉应力-拉应变试验和剪应力-剪应变试验等方法来获得更具体的弯曲疲劳性能参数。
其次,评估铁路轨道钢弯曲疲劳性能的方法也有多种。
目前,常用的评估方法包括疲劳寿命试验、应力比试验和压缩试验等。
疲劳寿命试验是一种通过施加不同的载荷和不同的应力水平来评估材料疲劳寿命的方法。
应力比试验则是通过改变弯曲应力的幅值和频率来评估材料的疲劳强度。
压缩试验则是通过施加压力来评估材料的强度和稳定性。
这些方法都可以为评估铁路轨道钢的弯曲疲劳性能提供可靠的数据和依据。
此外,还有一些其他因素也需要考虑进来。
例如,环境因素对钢材的疲劳性能也有一定的影响。
温度、湿度、紫外线辐射等环境因素都可能导致钢材的疲劳性能发生变化。
因此,在评估铁路轨道钢的弯曲疲劳性能时,还需考虑这些环境因素所带来的影响。
近年来,一些研究机构和企业也积极开展了铁路轨道钢弯曲疲劳性能评估方面的研究。
他们利用现代技术手段,如有限元模拟、疲劳试验、冶金分析等,对铁路轨道钢的弯曲疲劳性能进行了大量研究。
这些研究为铁路轨道钢的设计、制造和使用提供了重要的参考依据。
同时,这些研究也为铁路交通的安全运营提供了有力支持。
总而言之,铁路轨道钢弯曲疲劳性能评估是一项重要而复杂的任务。
钢材的疲劳性能、评估方法以及环境因素都需要考虑在内。
金属材料的疲劳性能金属材料是工程中应用最广泛的一类材料,因其优良的力学性能、良好的加工性和广泛的适用性而受到青睐。
然而,在实际应用中,金属材料往往需要承受周期性的载荷,这种条件下的失效主要表现为疲劳破坏。
因此,了解金属材料的疲劳性能,对提高产品的可靠性与安全性具有至关重要的意义。
疲劳的基本概念疲劳是指材料在反复或交变载荷作用下,经过一定的循环次数后,出现的逐渐积累损伤并导致破坏的现象。
疲劳破坏通常是由微小的裂纹开始,在多次循环加载下逐步扩展,最终导致材料的断裂。
疲劳破坏与静态强度无直接关系,且其发生往往是在较低于材料屈服强度和抗拉强度的荷载下进行,表明这是一种特殊的破坏模式。
疲劳寿命疲劳寿命一般用于描述材料在特定载荷和环境条件下能承受多少次循环而不发生破坏。
通常我们用以下两个指标来表征疲劳寿命:循环次数(Nf):这是指在出现疲劳破坏之前材料所能承受的加载循环次数。
疲劳极限(σf):对于大多数金属材料,存在一个应力水平(称为疲劳极限),低于这个水平时材料即使经过无限次循环也不会发生疲劳破坏。
值得注意的是,并非所有金属都具有明显的疲劳极限,如铝合金等常见金属,其 fatigue limit 不易确定。
疲劳性能影响因素影响金属材料疲劳性能的因素包括但不限于以下几个方面:材料成分金属材料中的化学成分对其疲劳性能有明显影响。
例如,合金元素如镍、钼、铬等可以显著提高钢材的抗疲劳性能。
适当增加合金元素的比例,使得金属晶体结构更加稳定,从而提高了其疲劳强度。
此外,非金属杂质(如硫、磷等)的存在,则会降低材料的疲劳性能。
材料组织材料的微观组织结构直接决定了其机械性能。
在热处理过程中,通过控制冷却速度和温度,可以改变金属材料的相组成与晶粒尺寸,从而优化组织,提高疲劳性能。
例如,细化晶粒可以显著提高金属件的抗疲劳能力。
调质处理后的钢材,相较于退火状态下,会表现出更高的抗疲劳能力。
应力集中在实际使用中,构件往往因为几何形状的不均匀性(如凹坑、切口、焊缝等)而产生应力集中现象。