13板形控制
- 格式:docx
- 大小:18.46 KB
- 文档页数:3
板形控制的详细解析文章来源:钢铁E站通/dict/detail.php?id=388板形控制是冷轧板带加工的核心控制技术之一,近年来随着科学技术的不断进步,先进的板形控制技术不断涌现,并日臻完善,板形控制技术的发展,促进了冷轧板带工业的装备进步和产业升级,生产效率和效益大幅提升。
板形的概念:板形的基本概念板形直观来说是指板带材的翘曲度,其实质是板带材内部残余应力的分布。
只要板带材内部存在残余应力,即为板形不良。
如残余应力不足以引起板带翘曲,称为“潜在”的板形不良;如残余应力引起板带失稳,产生翘曲,则称为“表观”的板形不良。
板形的表示方法板形的表示方法有相对长度差表示法、波形表示法、张力差表示法和厚度相对变化量表示法等多种方式。
其中前两种方法在生产控制过程中较为常用。
常见的板形缺陷及分析常见的板形缺陷有边部波浪、中间波浪、单边波浪、二肋波浪和复合波浪等多种形式,主要是由于轧制过程中带材各部分延伸不均,产生了内部的应力所引起的。
为了得到高质量的轧制带材,必须随时调整轧辊的辊缝去适合来料的板凸度,并补偿各种因素对辊缝的影响。
对于不同宽度、厚度、合金的带材只有一种最佳的凸度,轧辊才能产生理想的目标板形。
因此,板形控制的实质就是对承载辊缝的控制,与厚度控制只需控制辊缝中点处的开口精度不同,板形控制必须对轧件宽度跨距内的全辊缝形状进行控制。
影响板形的主要因素:影响板形的主要因素有以下几个方面∶(1)轧制力的变化;(2)来料板凸度的变化;(3)原始轧辊的凸度;(4)板宽度;(5)张力;(6)轧辊接触状态;(7)轧辊热凸度的变化。
板形控制先进技术:改善和提高板形控制水平,需要从两个方面入手,一是从设备配置方面,如采用先进的板形控制手段,增加轧机刚度等;二是从工艺配置方面,包括轧辊原始凸度的给定、变形量与道次分配等。
常规的板形控制手段主要有弯辊控制技术、倾辊控制技术和分段冷却控制技术等。
近年来,一些特殊的控制技术,如抽辊技术(HC轧机和UC系列轧机)、涨辊技术(VC轧机和IC轧机)、轧制力分布控制技术(DSR动态板形辊)和轧辊边部热喷淋技术等先进的板形控制技术,得到日益广泛的应用。
热轧带钢生产中的板形控制范本热轧带钢生产中的板形控制是一个关键的工艺环节, 对于产品的质量和成本都有着重要的影响。
本文将从板形控制的目标、过程、方法以及优化等方面进行详细的介绍。
一、板形控制的目标热轧带钢的板形控制的主要目标是使得钢带的板形达到设计要求, 即保持带钢在轧机出口处的平直度和边部的整齐度, 同时减小带钢在轧机出口处的侧弯、扭曲和波浪板形等缺陷。
对于一些对称性较好的带钢产品, 还需保持带钢两端表面与轧机的同心度。
二、板形控制的过程热轧带钢板形控制的过程主要包括前段控制、中段控制和后段控制三个阶段。
1.前段控制: 前段主要包括热轧连铸过程和热轧过程中的预弯矫直机、厚度控制等过程。
这一阶段的目标是减小带钢的不均匀厚度分布, 控制带钢的凸度和波浪度, 为后续的板形控制打下基础。
2.中段控制: 中段主要包括轧制机组控制和冷却控制等过程。
通过控制轧机的速度、压下力以及冷却速度等参数, 调整带钢的板形。
在轧制机组控制上, 采用辊形调整、辊系控制等技术手段来改变带钢板形。
在冷却控制上, 通过改变冷却方式、喷水的位置和喷水量等参数来调整带钢的板形。
3.后段控制:后段主要包括带钢的拉直和切割等过程。
通过采用拉直机进行带钢的拉直,使得带钢在轧机出口处达到平直度的要求。
同时,通过切割机对带钢进行切割,保证带钢的两端表面与轧机的同心度。
三、板形控制的方法热轧带钢板形控制的方法主要包括参数调整法、辊形调整法和辊系控制法。
1.参数调整法: 通过调整轧机的速度、压下力、冷却速度等参数来控制带钢的板形。
这种方法操作简单, 但对于复杂的板形控制要求, 效果较差。
2.辊形调整法: 通过调整辊系的形状来改变带钢板形。
辊形调整主要包括辊筒调整和辊系调整两种方法, 通过改变辊系的形状, 调整辊系的凸度、侧弯等参数来控制带钢板形。
3.辊系控制法:辊系控制主要是通过辊系控制技术来改变辊系间的关系,从而改变带钢的板形。
辊系控制主要包括辊系窜凸控制、动力控制和形态控制等方法,这些方法可以实现对辊系间的力学和几何关系进行控制,进而控制带钢的板形。
热轧带钢生产中的板形控制是保证产品质量的关键环节之一。
板形控制主要包括轧制工艺参数的调整和辊系结构的优化两方面。
本文将从这两个方面进行详细的介绍。
一、轧制工艺参数的调整1. 温度控制:热轧带钢的温度对板形控制有着重要影响。
过高的温度会导致带钢热膨胀,从而产生较大的板凸度;过低的温度则会导致带钢冷却过快,使得带钢变形不均匀。
因此,必须对热轧带钢的温度进行精确控制,确保其在适宜的温度范围内进行轧制。
在实际生产中,可以通过控制热轧带钢的加热温度、热轧温度和冷却方式等来实现温度控制。
可以采用先控制热轧带钢的加热温度,确保钢坯达到适宜的温度范围,然后通过控制热轧带钢的入口温度和轧制温度来进一步调整温度进行控制。
同时,还可以优化冷却方式,如采用水冷、风冷等方法进行冷却,以达到更好的板形控制效果。
2. 速度控制:热轧带钢的速度对板形控制同样具有重要影响。
速度过快会导致拉伸应力过大,从而使板形产生波状或弓形变形;速度过慢则会导致带钢在轧制过程中受到过多的应力作用,导致板形不稳定。
因此,在热轧带钢的生产过程中,需要对轧制速度进行合理的控制。
可以通过调整轧机的传动装置、辊道的排列方式、模块的配比等来实现速度控制。
同时,还可以通过控制轧机的压下量、变形度等工艺参数来进一步调整速度进行控制。
3. 张力控制:热轧带钢的张力对板形控制同样具有重要影响。
张力过大会导致带钢产生不均匀的塑性变形,从而使板形产生波状或弓形变形;张力过小则会导致带钢发生塑性回弹,导致板形不稳定。
因此,在热轧带钢的生产过程中,需要对张力进行精确的控制。
可以通过调整轧机的辊道间隙、调整轧机的压下量、调整轧机的传动装置等来实现张力控制。
同时,还可以采用张力控制系统进行实时的张力监测和调整,以确保带钢在轧制过程中保持适宜的张力。
二、辊系结构的优化1. 辊系选择:辊系的选择对板形控制具有重要影响。
辊系的结构参数、辊型和辊材质等都会对板形产生影响。
合适的辊系选择可以实现板形的稳定控制,提高产品的表面质量和机械性能。
板形控制性能指标轧钢设备板形控制是大型宽带薄板热、冷连轧机的关键技术和高难度技术。
近年来,随着工业用户自身自动化水平和节能要求不断提高,板形精度难以满足市场日趋严苛的质量要求,如严格控制带钢轧制中的边降ie象,实现带钢横截面形状的“矩形化”,是近年来板带产品中最具代表性的电工钢、造币钢、DI材等高端产品的质量要求,冶金备件也是板形研究和实践的方向、前沿及难点之一。
板形质量的挑战主要表现为三方面:轧钢设备高速轧制条件下的平坦度质量要求日趋严格;板形控制综合指标逐步提出并日趋严苛,如原来只要求平坦度,目前则还有边降、凸度、同板差、局部高点和楔形等指标,并要求实现节能降耗的低成本但综合功能强大的板形控制技术与轧机机型等;对极限规格、电工钢和高强钢等专有品种,冶金备件自由轧制条件下的板形控制综合能力和边部板形、高次或局部板形质最要求逐步提高。
总之,随着轧制速度和对板带材质量要求的日趋严苛,板形控制并没有从根本上得到解决,板形质量的挑战和生产顺行的需要推动着板形控制和轧机机型的不断发展和完善,持续成为国际轧钢领域研究的热点和难点。
宽带钢热、轧钢设备冷连轧机作为大型宽带薄板生产的关键设备,具有大型化、连续化、自动化和高速化等特点,如现代化大型宽带钢热连轧机精轧机组末架最高轧制速度接近20量/s,最大的年生产能力超过500万吨;冶金备件现代化冷连轧机末架最大轧制速度超过20量/s甚至高达46量/s,最大的年生产能力超过200万吨。
这样的重型装备的板形控制精度要求非常高,如冷轧薄板的厚度范围在0.32〜6.0量量左右,宽度通常为1000〜2030量量,冶金备件在宽厚比达到1000以上的条件下,高速轧制的冷轧薄板的板形平坦度精度控制在儿个IU,边降和凸度精度控制在几个微米以内。
冶金备件大型热、轧钢设备冷连轧机的高速轧制过程是一种超大规模制造精品的流程工业生产过程。
一、填空题
13.1板形是指成品带钢断面形状和平直度两项指标。
13.1带钢断面形状对于不同用途的成品有着不同要求,作为冷轧原料的热带卷,要求有一定凸度,而成品热带卷则希望断面接近矩形。
13.3影响轧辊磨损的主要因素是工作期内实际磨耗量以及磨损的分布特点。
13.3影响辊缝形状的因素有:热辊型、轧制力使辊系弯曲和剪切变形、磨损辊型、原始辊型、CVC或PC辊对辊型的调节、弯辊装置对辊型的调节。
二、判断题
13.1理论上残余压应力将使带钢产生翘曲(浪形),实际上,由于带钢自身的刚性,只有当内部残余应力大于某一临界值后,才会失去稳定性,使带钢产生翘曲(浪形)。
此临界值与带钢厚度、宽度有关。
(√)
13.2在来料平直度良好时,入口和出口相对凸度相等,这是轧出平直度良好的带钢的基本条件。
(√)
13.2为了保证操作稳定,轧制过程中的辊缝必须是凸形的。
(√)
13.2违背了“板凸度一定”原则,一定会出现浪形或瓢曲。
(×)
13.2板带愈薄,保持良好板形的困难也就愈大。
(√)
13.2 12rnm以上厚度时相对凸度的改变受到限制较小,即不会因为适量的相对凸度改变而破坏平直度。
因此将会允许各小条有一定的不均匀延伸而不会产生翘曲。
(√)
13.2厚度6~12mm时不存在横向流动,因此应严格遵守相对凸度恒定条件以保持良好平直度。
(×)
13.3支承辊的弹性弯曲以及支承辊与工作辊间的相互弹性压扁的不均匀性决定了工作辊的弯曲挠度。
(√)
三、单选题
13.1作为冷轧原料的热带卷要求带钢断面形状呈()。
A、接近矩形;
B、矩形;
C、凸形;
D、凹形
答案:C
13.1作为成品热带卷要求带钢断面形状呈()。
A、接近矩形;
B、矩形;
C、凸形;
D、凹形
答案:A
13.1 带钢边部厚度测量时一般取()。
A、离实际带边10mm处;
B、离实际带边20mm处;
C、离实际带边30mm处;
D、离实际带边40mm处
答案:D
13.1带钢边部减薄形成的原因是()。
A、弯曲挠度;
B、磨损;
C、弹性压扁;
D、热凸度
答案:C
13.1一个I单位相当于相对长度差为()。
A、10-6;
B、10-5;
C、105;
D、106
答案:B
13.1以I为单位表示的板形数量值为相对长度差的倍数为()。
A、10-6;
B、10-5;
C、105;
D、106
答案:C
13.2应严格遵守相对凸度恒定条件以保持良好平直度的厚度条件是()。
A、小于6mm;
B、6~12mm;
C、12~18mm;
D、大于18mm
答案:A
四、多选题
五、名词解释题
13.1平直度:平直度一般是指浪形、瓢曲或旁弯的有无及存在程度。
13.3轧辊的挠度:在轧制压力的作用下,轧辊要发生弹性变形,自轧辊水平轴线中点至辊身边缘L/2处轴线的弹性位移,称为轧辊的挠度。
13.3轧辊的实际凸度:轧制过程中轧辊的实际凸度,系指轧辊的原始(磨削)凸度,热凸度及磨损量的代数和。
上下工作辊与上下支承辊的实际凸度,共同构成了轧辊的实际总凸度。
13.3轧辊凸度的磨损率:轧辊凸度的磨损率即轧制每张或每吨钢板轧辊凸度的磨损量。
13.3原始凸度:轧辊磨削加工时所预留的凸度为磨削凸度,又称原始凸度。
六、简答题
13.1列举带钢断面形状的表示方法。
答:1)断面形状可用一多项式加以逼近。
2)为了简单,往往以其特征量——凸度为控制对象。
3)还可以采用相对凸度CR=δ/h作为特征量。
13.1断面形状用一多项式表示为h(x)=he+ax+bx2+cx3+dx4,解释各参数的含义。
答:he为带钢边部厚度,一次项实际为楔形的反映,二次项(抛物线)为对称断面形状,对于宽而薄的热带亦可能存在三次和四次项,边部减薄一般可用正弦或余弦函数表示。
13.1列举带钢平直度的表示方法。
答:(1)波形表示法(翘曲度、板形单位I、不平度)
(2)残余应力表示法
13.1热带生产时,冷轧原料和成品热带卷对厚度和板形有那些不同要求。
答:(1)带钢断面形状对于不同用途的成品有着不同要求,作为冷轧原料的热带卷,要求有一定凸度,而成品热带卷则希望断面接近矩形。
(2)对厚度要求,冷轧原料采用相对AGC,成品热带卷采用绝对AGC。
13.2为什么说断面形状和平直度是两项独立指标,但相互存在着密切关系。
答:断面形状是指带钢横断面的厚度分布情况,常用凸度(Δ或δ)或相对凸度(δ/h或Δ/h)表示。
平直度一般是指浪形、瓢曲或旁弯的有无及存在程度。
从理论上讲带钢只有沿宽度上各点的压不率相等,从而使各小条的延伸率相等时,才能获得良好的平直度。
根据上述条件和体积不变定律,可以推得在来料板形良好的情况下,保证带钢轧后平直的条件为:,即遵循板相对凸度一定原则。
13.3影响辊缝形状的因素有哪些?
答:影响辊缝形状的因素有:
(1)热辊型;
(2)轧制力使辊系弯曲和剪切变形;
(3)磨损辊型;
(4)原始辊型;
(5)CVC或PC辊对辊型的调节;
(6)弯辊装置对辊型的调节。
13.4热带轧制时粗轧、精轧机组板形控制有什么不同。
根据板形良好判断条件,粗轧一般不用考虑板形。
对精轧,后三架保证板相对凸度一定,即用来控制平直度;前几架用来控制相对凸度,保证
在F3得到成品相对凸度。
13.4如何同时保证成品要求凸度及带钢平直度?
答:相对凸度恒定,是获得平直带钢的理想条件,实际上,允许有一定的偏差。
为此,板形设定模型应充分利用头两个机架限制条件较宽的条件来设定F1、F2机架,使F2机架出口凸度达到要求凸度,然后后面各机架设定成保持相对凸度恒定而达到要求,从而同时达到了成品凸度和平直度。
由此可见,在设计轧机时,应使F2机架具有较强的改变辊缝形状的能力13.4热连轧薄规格带钢时,平直度良好,成品凸度大,如何调整?
答:应充分利用头两个机架限制条件较宽的条件来设定F1、F2机架,使F2机架出口凸度达到成品要求的凸度,然后后面各机架设定时保持相对凸度恒定(即成品要求的凸度),从而同时达到了成品凸度和平直度要求。
13.4普通轧机和特殊轧机靠什么完成板形设定,靠什么完成板形控制?
答:对设置有HCW、CVC或PC机构的现代轧机,板形设定(或称为断面凸度设定)主要靠这些装置,而对老的轧机,则只能靠合理负荷分配(轧制力分配)来保证带钢头部板形(凸度和平直度)。
对热轧来说,在轧制状态下能够调整有载辊缝形状,主要是靠弯辊装置(轧制时轧制力对板形来说已成为扰动量),因此希望设定时不过多利用弯辊。