11变化快慢与导数
- 格式:doc
- 大小:92.00 KB
- 文档页数:2
导数与函数的关系及应用导数是微积分中一个重要的概念,它描述了函数在某一点上的变化率。
导数不仅与函数的性质息息相关,而且在实际问题中有着广泛的应用。
本文将探讨导数与函数的关系,以及导数在各个领域中的应用。
一、导数的定义及性质在微积分中,函数在某一点上的导数表示函数在该点的瞬时变化率。
对于函数f(x),在区间内一点a上的导数可以用极限表示:f'(a) = lim(x→a) (f(x) - f(a))/(x - a)其中lim表示极限,f'(a)表示函数f(x)在点a处的导数。
导数具有一些重要的性质:1. 导数表示了函数的斜率:函数的导数代表了函数曲线在某一点上的斜率,可以帮助我们理解函数曲线的变化趋势。
2. 导数与函数的图像:通过导数的正负性可以推断函数在不同区间的递增和递减性。
3. 导数与函数的极值点:函数在极值点处的导数为零,通过导数可以判断函数的极大值和极小值。
二、导数与函数的关系导数与函数的关系密不可分。
函数的导数可以告诉我们函数在某一点上的变化情况,并且可以帮助我们分析函数的性质。
1. 可导函数与连续函数:对于一个函数而言,如果它在某一点上的导数存在,则称该函数在该点可导。
可导函数一定是连续的,但连续函数不一定可导。
2. 一阶导数与高阶导数:除了一阶导数,也可以计算二阶导数、三阶导数等。
高阶导数描述了函数的变化率随着自变量变化而变化的快慢程度。
3. 反函数与导数:若函数f(x)在区间上可导且在某区间内连续且单调,则存在其反函数f^(-1)(x),且两者的导数满足:(f^(-1))'(x) = 1/f'(f^(-1)(x))三、导数的应用导数在数学中有着广泛的应用,以下为几个常见的应用领域。
1. 最优化问题:导数可用于求解最值问题,例如求解函数的最大值、最小值、极大值、极小值等。
通过导数可以找到函数的可能极值点,并进一步求解最优化问题。
2. 函数图像的研究:导数可以帮助我们研究函数的图像特征,如函数的凹凸性、拐点、拐弯等。
导数的概念和定义公式导数,这可是数学中的一个重要概念呀!一提到它,可能有的同学会觉得头疼,但别怕,咱们今天就来好好聊聊,把它弄个明白。
还记得我读高中的时候,有一次数学老师在课堂上讲导数,当时班上好多同学都是一脸懵的状态。
老师在黑板上写了一堆公式和符号,大家都像在看天书。
我呢,也听得云里雾里的,心里那个着急呀!咱们先来说说导数的概念。
导数简单来说,就是函数的变化率。
比如说,一辆汽车在行驶过程中,速度不是一成不变的,那怎么去衡量它在某一时刻速度变化的快慢呢?这时候导数就派上用场啦!再比如说,你去爬山,山坡的陡峭程度也是在不断变化的。
从山脚下到山顶,有的地方坡缓,有的地方坡陡。
这个山坡的陡峭程度,其实也可以用导数来描述。
那导数的定义公式是啥呢?设函数 y = f(x) 在点 x₀的某个邻域内有定义,当自变量 x 在 x₀处有增量Δx 时,相应地函数取得增量Δy = f(x₀ + Δx) - f(x₀)。
如果Δy 与Δx 之比当Δx→0 时的极限存在,那么这个极限值就叫做函数 y = f(x) 在点 x₀处的导数。
这公式看起来是不是有点复杂?别慌,咱们来举个例子。
假设函数f(x) = x²,我们来求它在 x = 1 处的导数。
先算增量:Δy = f(1 + Δx) - f(1) = (1 + Δx)² - 1² = 2Δx + (Δx)² 。
然后算比值:Δy/Δx = 2 + Δx 。
当Δx→0 时,这个比值的极限就是 2 ,所以函数 f(x) = x²在 x = 1处的导数就是 2 。
在实际生活中,导数的应用可多啦!比如工厂要生产产品,得考虑成本和产量之间的关系。
成本随着产量的变化而变化,通过导数就能知道在哪个产量时成本增加得最快或最慢,从而做出最优的生产决策。
还有,我们在做投资的时候,资产的价值会随着时间变化。
通过导数可以分析出资产增值或减值的速度,帮助我们做出更明智的投资选择。
3.3导数在研究函数中的应用3.3.1函数的单调性与导数学习目标核心素养1.理解函数的单调性与导数的关系.(重点) 2.能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间和其他函数的单调区间.(重点)3.能根据函数的单调性求参数.(难点)1.通过学习函数单调性与导数的关系,培养学生数学抽象与直观想象的素养.2.借助导数求函数的单调性,培养逻辑推理和数学运算的素养.(1)在区间(a,b)内函数的导数与单调性有如下关系:导数函数的单调性f′(x)>0单调递增f′(x)<0单调递减f′(x)=0常函数(2)在区间(a,b)函数的单调性导数单调递增f′(x)≥0单调递减f′(x)≤0常函数f′(x)=0思考:在区间(a,b)内,函数f(x)单调递增是f′(x)>0的什么条件?[提示]必要不充分条件.2.函数的变化快慢与导数的关系一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.1.函数y=x3+x的单调递增区间为()A.(0,+∞) B.(-∞,1)C.(1,+∞) D.(-∞,+∞)D[y′=3x2+1>0,故选D.]2.函数f(x)=2x-sin x在(-∞,+∞)上()A.增函数B.减函数C.先增后减D.先减后增A[∵f(x)=2x-sin x,∴f′(x)=2-cos x>0,∴f(x)在R上是增函数.]3.若函数f(x)的导数f′(x)=x(x-2),则f(x)在区间________上单调递减.[0,2][∵f′(x)=x(x-2),由f′(x)≤0得,0≤x≤2,∴f(x)在[0,2]上单调递减.]导数与函数图象的关系y=f(x)的图象可能是()(2)已知函数y=f(x)的图象如图所示,则函数y=f′(x)的图象可能是图中的()(1)D(2)C[(1)由f′(x)>0(f′(x)<0)的分界点判断原函数在此分界点两侧的图象的上升和下降趋势.由已知可得x的取值范围和f′(x)的正、负,f(x)的增减变化情况如下表所示:x (-∞,0)(0,2)(2,+∞)f′(x)+-+f(x)↗↘↗由表可知f(x)在(-∞,0)内递增,在(0,2)内递减,在(2,+∞)内递增,满足条件的只有D,故选D.(2)由函数y=f(x)的图象的增减变化趋势判断函数y=f′(x)的正、负情况如下表:x (-1,b)(b,a)(a,1)f(x)↘↗↘f ′(x )- + -由表可知函数y =f ′(x )的图象,当x ∈(-1,b )时,函数图象在x 轴下方;当x ∈(b ,a )时,函数图象在x 轴上方;当x ∈(a,1)时,函数图象在x 轴下方.故选C .]对于原函数图象,要看其在哪个区间内单调递增,则在此区间内导数值大于零.在哪个区间内单调递减,则在此区间内导数值小于零.根据导数值的正负可判定导函数图象.[跟进训练]1.函数y =f (x )在定义域⎝ ⎛⎭⎪⎫-32,3内可导,其图象如图所示,记y =f (x )的导函数为y =f ′(x ),则不等式f ′(x )<0的解集为__________.⎝ ⎛⎭⎪⎫-13,1∪(2,3)[根据导数和图象单调性的关系知当x ∈⎝ ⎛⎭⎪⎫-13,1∪(2,3)时f ′(x )<0.]利用导数求函数的单调区间(1)f (x )=3x 2-ln x ;(2)f (x )=-13ax 3+x 2+1(a ≤0). [思路点拨]求定义域―→求导数―→ 解不等式f ′(x )<0或f ′(x )>0―→写单调区间 [解](1)函数的定义域为(0,+∞),f ′(x )=6x -1x =6x 2-1x ,令f ′(x )>0,则6x 2-1x >0.又x >0,则6x 2-1>0,解得x >66.所以函数的单调增区间为⎝ ⎛⎭⎪⎫66,+∞.令f ′(x )<0,则6x 2-1x <0,解得0<x <66, 所以函数的单调减区间为⎝ ⎛⎭⎪⎫0,66.(2)因为f ′(x )=-ax 2+2x (a ≤0),当a =0时,f ′(x )=2x ,函数在(-∞,0)上是递减的,在(0,+∞)上是递增的, 当a <0时,令f ′(x )>0,则-ax 2+2x >0,解得x >0或x <2a ,所以函数的单调增区间为⎝ ⎛⎭⎪⎫-∞,2a ,(0,+∞).令f ′(x )<0,则-ax 2+2x <0,解得2a <x <0, 所以函数的单调减区间为⎝ ⎛⎭⎪⎫2a ,0.综上,当a =0时,函数在(-∞,0)上是递减的,在(0,+∞)上是递增的; 当a <0时,函数在⎝ ⎛⎭⎪⎫-∞,2a 和(0,+∞)上是递增的,在⎝ ⎛⎭⎪⎫2a ,0上是递减的.利用导数求函数f (x )的单调区间的一般步骤 (1)确定函数f (x )的定义域; (2)求导数f ′(x );(3)在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0; (4)根据(3)的结果确定函数f (x )的单调区间.提醒:如果一个函数具有相同单调性的单调区间不止一个,那么这些单调区间不能用“∪”连接,而只能用“逗号”或“和”字隔开.[跟进训练]2.求下列函数的单调区间:(1)f(x)=ln x x;(2)f(x)=xx2+4;(3)f(x)=e x-x.[解](1)函数定义域为(0,+∞),f′(x)=1-ln xx2.令f′(x)>0,即1-ln x>0,解得0<x<e;令f′(x)<0,即1-ln x<0,解得x>e.所以函数的单调递增区间是(0,e),递减区间是(e,+∞).(2)函数定义域为R,f′(x)=(x)′·(x2+4)-x·(x2+4)′(x2+4)2=4-x2(x2+4)2.令f′(x)>0,即4-x2>0,解得-2<x<2;令f′(x)<0,即4-x2<0,解得x<-2或x>2;所以函数的单调递增区间是(-2,2),递减区间是(-∞,-2)和(2,+∞).(3)函数定义域为R,f′(x)=e x-1.令f′(x)>0,即e x-1>0,解得x>0;令f′(x)<0,即e x-1<0,解得x<0;所以函数的单调递增区间是(0,+∞),递减区间是(-∞,0).已知函数的单调性求参数的取值范围1.在区间(a,b)内,若f′(x)>0,则f(x)在此区间上单调递增,反之也成立吗?提示:不一定成立.比如y=x3在R上为增函数,但其在x=0处的导数等于零.也就是说f′(x)>0是y=f(x)在某个区间上递增的充分条件.2.一般地,在区间(a ,b )内函数的单调性与导数有什么关系? 提示:【例3】 (1)若f (x )在区间(1,+∞)内为增函数,求a 的取值范围; (2)若f (x )的递减区间为(-1,1),求a 的取值范围; (3)若f (x )在区间(-1,1)上不单调,求a 的取值范围.[解](1)因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数,所以f ′(x )≥0在(1,+∞)上恒成立,即3x 2-a ≥0在(1,+∞)上恒成立, 所以a ≤3x 2在(1,+∞)上恒成立,即a ≤3. (2)f ′(x )=3x 2-a .①当a ≤0时,f ′(x )≥0,无减区间,不满足条件. ②当a >0时,令3x 2-a =0,得x =±3a3; 当-3a 3<x <3a3时,f ′(x )<0.因此f (x )在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数. 所以3a3=1,即a =3, 综上a 的取值范围为{a |a =3}. (3)f ′(x )=3x 2-a ,当a ≤0时,-a ≥0,f ′(x )≥0恒成立,满足在区间(-1,1)上是递增的,不符合题意,舍去;当a>0时,由f′(x)=0,得x=±3a3(a>0).因为f(x)在区间(-1,1)上不单调,所以0<3a3<1,即0<a<3.综上a的取值范围为(0,3).1.利用导数法解决取值范围问题的两个基本思路(1)将问题转化为不等式在某区间上的恒成立问题,即f′(x)≥0(或f′(x)≤0)恒成立,利用分离参数或函数性质求解参数范围,然后检验参数取“=”时是否满足题意.(2)先令f′(x)>0(或f′(x)<0),求出参数的取值范围后,再验证参数取“=”时f(x)是否满足题意.2.恒成立问题的重要思路(1)m≥f(x)恒成立⇒m≥f(x)max.(2)m≤f(x)恒成立⇒m≤f(x)min.[跟进训练]3.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在区间(-1,1)上是增加的,求t的取值范围.[解]由题意得f(x)=x2(1-x)+t(x+1)=-x3+x2+tx+t,∴f′(x)=-3x2+2x+t.若f(x)在(-1,1)上是增加的,则在(-1,1)上f′(x)≥0恒成立.即t≥3x2-2x在区间(-1,1)上恒成立.考虑函数g (x )=3x 2-2x =3⎝ ⎛⎭⎪⎫x -132-13,x ∈(-1,1)显然g (x )<g (-1),故t ≥3x 2-2x 在区间(-1,1)上恒成立⇔t ≥g (-1),即t ≥5.而当t ≥5时,f ′(x )在(-1,1)上满足f ′(x )>0,即f (x )在(-1,1)上是增加的.故t 的取值范围是[5,+∞).1.导数的符号反映了函数在某个区间上的单调性,导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度.2.在利用导数讨论函数的单调性时,首先要确定函数的定义域,在定义域内,通过讨论导数的符号,来判断函数的单调性.3.如果一个函数具有相同单调性的单调区间不止一个,那么这些单调区间中间不能用“∪”连接,可用“,”隔开或用“和”连接.特别提醒:(1)在对函数划分单调区间时,除了注意使导数等于零的点,还要注意在定义域内不连续的点和不可导的点.(2)当不等式f ′(x )>0或f ′(x )<0不易求解时,可通过列表的方法求函数f (x )的单调区间.(3)区间的端点可以属于单调区间,也可以不属于单调区间,对结论没有影响. 1.判断正误(1)“在区间I 上,f ′(x )<0”是“f (x )在I 上单调递减”的充分不必要条件. ( )(2)若函数f (x )在(a ,b )上单调递增,则f (x )在(a ,b )上各点处的切线的倾斜角都是锐角.( )(3)单调递增函数的导函数也是单调递增函数.( ) (4)如果函数f (x )在(a ,b )上变化得越快,其导数就越大. ( )[答案] (1)√ (2)√ (3)× (4)× 2.函数f (x )=x +ln x 在(0,6)上是( ) A .增函数 B .减函数C .在⎝ ⎛⎭⎪⎫0,1e 上是减函数,在⎝ ⎛⎭⎪⎫1e ,6上是增函数D .在⎝ ⎛⎭⎪⎫0,1e 上是增函数,在⎝ ⎛⎭⎪⎫1e ,6上是减函数 A [∵f (x )=x +ln x 的定义域为(0,+∞), 又f ′(x )=1+1x >0,∴f (x )在(0,6)上是增函数.]3.在R 上可导的函数f (x )的图象如图所示,则关于x 的不等式x ·f ′(x )<0的解集为( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-2,-1)∪(1,2)D .(-∞,-2)∪(2,+∞) A [当x >0时,f ′(x )<0,此时0<x <1, 当x <0时,f ′(x )>0,此时x <-1,因此xf ′(x )<0的解集为(-∞,-1)∪(0,1).]4.若函数f (x )=ax 3-x 2+x -5在(-∞,+∞)上是增函数,求实数a 的取值范围.[解]因为f ′(x )=3ax 2-2x +1, 由题意可知f (x )在R 上是增加的, 所以f ′(x )≥0对x ∈R 恒成立, 即3ax 2-2x +1≥0在R 上恒成立. 所以⎩⎪⎨⎪⎧a >0,Δ=4-12a ≤0,解得a ≥13.当a =13时,f ′(x )=x 2-2x +1=0,有且只有f ′(1)=0. 所以实数a 的取值范围为⎣⎢⎡⎭⎪⎫13,+∞.。
变化的快慢与变化率【知识点的知识】1、平均变化率:我们常说的变化的快慢一般指的是平均变化率,拿y=f(x)来说,当自变量x由x1变化到x2时,其函数y=f(x)的函数值由f(x1)变化到f(x2),它的平均变化率为.把(x2﹣x1)叫做自变量的改变量,记做△x;函数值的变化f(x2)﹣f (x1)叫做因变量的改变量,记做△y.函数的平均变化率可以表示为函数值的改变量与自变量的改变量之比,即=.2、瞬时变化率:变化率的概念是变化快慢的特例,我们记△x=x2﹣x1,△y=f(x2)﹣f(x1),则函数的平均变化率为:=.当△x趋于0时,平均变化率就趋于函数在x1点的瞬时变化率,瞬时变化率刻画的是函数在某一点的变化率.3、导数的概念:函数f(x)在x=x0处时的瞬时变化率是函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=【典例例题分析】典例1:一质点的运动方程是s=5﹣3t2,则在一段时间[1,1+△t]内相应的平均速度为()A.3△t+6 B.﹣3△t+6 C.3△t﹣6 D.﹣3△t﹣6分析:分别求出经过1秒种的位移与经过1+△t秒种的位移,根据平均速度的求解公式平均速度=位移÷时间,建立等式关系即可.解:,故选D.点评:本题考查函数的平均变化率公式:.注意平均速度与瞬时速度的区别.典例2:一质点运动的方程为s=8﹣3t2.(1)求质点在[1,1+△t]这段时间内的平均速度;(2)求质点在t=1时的瞬时速度(用定义及求导两种方法).分析:本题考查的是变化率及变化快慢问题.在解答时:(1)首先结合条件求的△s,然后利用平均速度为进行计算即可获得问题的解答;(2)定义法:即对平均速度为当△t趋向于0时求极限即可获得解答;求导法:t=1时的瞬时速度即s=8﹣3t2在t=1处的导数值,故只需求t=1时函数s=8﹣3t2的导函数值即可获得问题的解答.解答:由题意可知:(1)∵s=8﹣3t2∴△s=8﹣3(1+△t)2﹣(8﹣3×12)=﹣6△t﹣3(△t)2,∴质点在[1,1+△t]这段时间内的平均速度为:.(2)定义法:质点在t=1时的瞬时速度为.求导法:质点在t时刻的瞬时速度v=s′(t)=(8﹣3t2)′=﹣6t,∴当t=1时,v=﹣6×1=﹣6.点评:导数的物理意义建立了导数与物体运动的瞬时速度之间的关系.对位移s与时间t的关系式求导可得瞬时速度与时间t的关系.根据导数的定义求导数是求导数的基本方法,诮按照“一差、二比、三极限”的求导步骤来求.值得同学们体会和反思.【解题方法点拨】瞬时速度特别提醒:①瞬时速度实质是平均速度当△t→0时的极限值.②瞬时速度的计算必须先求出平均速度,再对平均速度取极限,函数y=f(x)在x=x0处的导数特别提醒:①当△x→0时,比值的极限存在,则f(x)在点x0处可导;若的极限不存在,则f(x)在点x0处不可导或无导数.②自变量的增量△x=x﹣x0可以为正,也可以为负,还可以时正时负,但△x≠0.而函数的增量△y可正可负,也可以为0.③在点x=x0处的导数的定义可变形为:f′(x0)=或f′(x0)=导函数的特点:①导数的定义可变形为:f′(x)=;②可导的偶函数其导函数是奇函数,而可导的奇函数的导函数是偶函数;③可导的周期函数其导函数仍为周期函数;④并不是所有函数都有导函数.⑤导函数f′(x)与原来的函数f(x)有相同的定义域(a,b),且导函数f′(x)在x0处的函数值即为函数f(x)在点x0处的导数值.⑥区间一般指开区间,因为在其端点处不一定有增量(右端点无增量,左端点无减量).。
备战高考数学复习考点知识与题型讲解第20讲导数与函数的单调性考向预测核心素养考查函数的单调性,利用函数单调性解不等式,求参数范围,题型以解答题为主,中高档难度.逻辑推理、数学运算一、知识梳理1.函数单调性与导数符号的关系在某个区间(a,b)上,如果f′(x)>0,那么函数y=f(x)在区间(a,b)上单调递增;如果f′(x)<0,那么函数y=f(x)在区间(a,b)上单调递减.2.函数值的变化快慢与导数的关系一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得较快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数在这个范围内变化得较慢,函数的图象就比较“平缓”.3.判断函数y=f(x)的单调性的步骤第1步:确定函数的定义域.第2步:求出导数f′(x)的零点.第3步:用f′(x)的零点将函数的定义域分为若干个区间,列表给出f′(x)在各区间上的正负,由此得出函数y=f(x)在定义域内的单调性.常用结论1.“在某区间内f′(x)>0(f′(x)<0)”是“函数f(x)在此区间上单调递增(减)”的充分不必要条件.2.可导函数f(x)在(a,b)上单调递增(减)的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)任意子区间内都不恒为零.二、教材衍化1.(人A 选择性必修第二册P 86例2改编)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下面判断正确的是( )A .在区间(-2,1)上,f (x )单调递增B .在区间(1,3)上,f (x )单调递减C .在区间(4,5)上,f (x )单调递增D .在区间(3,5)上,f (x )单调递增解析:选C.在区间(4,5)上,f ′(x )>0恒成立, 所以f (x )在区间(4,5)上单调递增.2.(人A 选择性必修第二册P 97习题5.3 T 1(2)改编)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则函数f (x )的单调递增区间是________.解析:f ′(x )=sin x +x cos x -sin x =x cos x ,令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即函数f (x )的单调递增区间为⎝⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2.答案:⎝⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)如果函数f (x )在某个区间内恒有f ′(x )≥0,则f (x )在此区间内单调递增.( )(2)在(a ,b )内f ′(x )≤0且f ′(x )=0的根有有限个,则f (x )在(a ,b )内是减函数.( )(3)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内不具有单调性.( )答案:(1)×(2)√(3)√二、易错纠偏1.(求单调区间忽视定义域致误)函数f(x)=x-ln x的单调递减区间为( ) A.(0,1) B.(0,+∞)C.(1,+∞) D.(-∞,0),(1,+∞)解析:选A.函数的定义域是(0,+∞),且f′(x)=1-1x=x-1x,令f′(x)<0,得0<x<1,故f(x)的单调递减区间为(0,1).2.(求参数范围忽视等号成立致误)若y=x+a2x(a>0)在[2,+∞)上单调递增,则a的取值范围是________.解析:由y′=1-a2x2≥0,得x≤-a或x≥a.所以y=x+a2x的单调递增区间为(-∞,-a],[a,+∞).因为函数在[2,+∞)上单调递增,所以[2,+∞)⊆[a,+∞),所以a≤2.又a>0,所以0<a≤2.答案:(0,2]考点一不含参数的函数的单调性(自主练透) 复习指导:直接利用导函数的符号求函数的单调区间.1.当x>0时,f(x)=x+4x的单调递减区间是( )A.(2,+∞) B.(0,2) C.(2,+∞) D.(0,2)解析:选 B.令f ′(x )=1-4x 2=(x -2)(x +2)x2<0,则-2<x <2,且x ≠0.因为x >0,所以x ∈(0,2),故选B.2.函数f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B.(0,3) C .(1,4)D.(2,+∞)解析:选 D.f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x ,令f ′(x )>0,解得x >2,故选D.3.函数f (x )=x +21-x 的单调递增区间是________;单调递减区间是________.解析:f (x )的定义域为{x |x ≤1},f ′(x )=1-11-x. 令f ′(x )=0,得x =0. 当0<x <1时,f ′(x )<0. 当x <0时,f ′(x )>0.所以函数f (x )的单调递增区间是(-∞,0),单调递减区间是(0,1). 答案:(-∞,0) (0,1)4.已知函数f (x )=x 2-5x +2ln 2x ,则f (x )的单调递增区间为________. 解析:f ′(x )=2x -5+2x =(2x -1)(x -2)x(x >0).由f ′(x )>0可得(2x -1)(x -2)>0, 所以x >2或0<x <12,即f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12,(2,+∞).答案:⎝ ⎛⎭⎪⎫0,12,(2,+∞)利用导函数求函数单调区间的注意点(1)当f ′(x )=0无解时,可根据f ′(x )的结构特征确定f ′(x )的符号. (2)所求函数的单调区间不止一个时,这些区间之间不能用“∪”及“或”连接,只能用“,”及“和”隔开.考点二 含参数的函数的单调性(综合研析)复习指导:含参数的函数,要根据f ′(x )的形式讨论f ′(x )的符号,确定函数的单调性.已知函数f (x )=e x (ax 2-2x +2)(a >0).试讨论f (x )的单调性. 【解】 由题意得f ′(x )=e x[ax 2+(2a -2)x ](a >0), 令f ′(x )=0, 解得x 1=0,x 2=2-2aa.①当0<a <1时,令f ′(x )>0,得x <0或x >2-2aa ,令f ′(x )<0,得0<x <2-2aa;②当a =1时,f ′(x )≥0在R 上恒成立; ③当a >1时,令f ′(x )>0, 得x >0或x <2-2aa,令f ′(x )<0,得2-2aa<x <0.综上所述,当0<a <1时,f (x )在(-∞,0)和⎝ ⎛⎭⎪⎫2-2a a ,+∞上单调递增,在⎝⎛⎭⎪⎫0,2-2a a 上单调递减;当a =1时,f (x )在(-∞,+∞)上单调递增;当a >1时,f (x )在⎝ ⎛⎭⎪⎫-∞,2-2a a 和(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫2-2a a ,0上单调递减.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论;划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点.(2)对参数的分类讨论要明确标准,不重不漏,体现了逻辑推理的核心素养.|跟踪训练|(2022·辽宁省辽西联合校测试)讨论函数f (x )=x 3-a ln x (a ∈R )的单调性. 解:函数f (x )的定义域为(0,+∞),f ′(x )=3x 2-a x =3x 3-ax(x >0),①若a ≤0时,f ′(x )>0,此时函数在(0,+∞)上单调递增;②若a >0时,令f ′(x )>0,可得x >3a 3,f ′(x )<0,可得0<x <3a 3,所以函数在⎝⎛⎭⎪⎪⎫0,3a 3上单调递减,在⎝⎛⎭⎪⎪⎫3a3,+∞上单调递增. 考点三 函数单调性的应用(多维探究)复习指导:利用导数与函数的单调性可以比较大小、求参数的范围等,其关键是明确函数的单调性.角度1 比较大小或解不等式(1)(2021·新高考八省联考模考)已知a <5且a e 5=5e a ,b <4且b e 4=4e b ,c <3且c e 3=3e c ,则( )A .c <b <a B.b <c <a C .a <c <bD.a <b <c(2)(2022·南昌摸底调研)已知函数f (x )是定义在R 上的偶函数,设函数f (x )的导函数为f ′(x ),若对任意x >0都有2f (x )+xf ′(x )>0成立,则( )A.4f(-2)<9f(3) B.4f(-2)>9f(3)C.2f(3)>3f(-2) D.3f(-3)<2f(-2)(3)(2022·沈阳一模)函数f(x)是定义在区间(0,+∞)上的可导函数,其导函数为f′(x),且满足f′(x)+2xf(x)>0,则不等式(x+2 023)f(x+2 023)3<3f(3)x+2 023的解集为( )A.{x|x>-2 020} B.{x|x<-2 020}C.{x|-2 023<x<0} D.{x|-2 023<x<-2 020} 【解析】(1)由题意得0<a<5,0<b<4,0<c<3.令f(x)=e xx(x>0),则f′(x)=e x(x-1)x2,当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,故f(x)在(0,1)上为减函数,在(1,+∞)上为增函数,因为a e5=5e a,所以e55=e aa,即f(5)=f(a),而0<a<5,故0<a<1.同理0<b<1,0<c<1,f(4)=f(b),f(3)=f(c).因为f(5)>f(4)>f(3),所以f(a)>f(b)>f(c),所以0<a<b<c<1.故选D.(2)根据题意,令g(x)=x2f(x),其导数g′(x)=2xf(x)+x2f′(x),由题意可知,当x>0时,有g′(x)=x(2f(x)+xf′(x))>0恒成立,即函数g(x)在(0,+∞)上为增函数,又由函数f(x)是定义在R上的偶函数,则f(-x)=f(x),则有g(-x)=(-x)2f(-x)=x2f(x)=g(x),即函数g(x)也为偶函数,则有g(-2)=g(2),且g(2)<g(3),则有g(-2)<g(3),即有4f(-2)<9f(3).故选A.(3)根据题意,设g(x)=x2f(x)(x>0),则导函数g′(x)=x2f′(x)+2xf(x).函数f(x)在区间(0,+∞)上,满足f′(x)+2xf(x)>0,则有x 2f ′(x )+2xf (x )>0,所以g ′(x )>0,即函数g (x )在区间(0,+∞)上为增函数.(x +2 023)f (x +2 023)3<3f (3)x +2 023⇒(x +2 023)2f (x +2 023)<32f (3)⇒g (x +2023)<g (3),则有0<x +2 023<3, 解得-2 023<x <-2 020,即此不等式的解集为{x |-2 023<x <-2 020}. 【答案】 (1)D (2)A (3)D角度2 已知函数单调性求参数的取值范围(链接常用结论2)已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解】 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x-ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x-ax -2<0有解.即a >1x 2-2x有解,设G (x )=1x 2-2x,所以只要a >G (x )min 即可.而G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.所以a >-1,因为a ≠0,所以a 的取值范围是(-1,0)∪(0,+∞).(2)由题意得,当x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立.所以a ≥G (x )max ,而G (x )=⎝ ⎛⎭⎪⎫1x -12-1,因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以当x =4时,G (x )max =-716, 所以a ≥-716,因为a ≠0,所以a 的取值范围是⎣⎢⎡⎭⎪⎫-716,0∪(0,+∞).1.本例条件变为:若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围.解:由h (x )在[1,4]上单调递增得,当x ∈[1,4]时,h ′(x )≥0恒成立,所以当x ∈[1,4]时,a ≤1x 2-2x恒成立,又当x ∈[1,4]时,⎝ ⎛⎭⎪⎫1x 2-2x min =-1,所以a ≤-1,即a 的取值范围是(-∞,-1].2.若函数h (x )=f (x )-g (x )在[1,4]上存在单调递减区间,求a 的取值范围. 解:h (x )在[1,4]上存在单调递减区间, 则h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x有解,又当x ∈[1,4]时,⎝ ⎛⎭⎪⎫1x 2-2x min=-1,所以a >-1,因为a ≠0,所以a 的取值范围是(-1,0)∪(0,+∞).根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )在区间(a ,b )上为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间上存在单调区间可转化为不等式有解问题.|跟踪训练|1.(多选)已知定义在⎝⎛⎭⎪⎫0,π2上的函数f (x ),f ′(x )是f (x )的导函数,且恒有cosxf ′(x )+sin xf (x )<0成立,则( )A .f ⎝ ⎛⎭⎪⎫π6>2f ⎝ ⎛⎭⎪⎫π4 B.3f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π3C .f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3 D.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4解析:选CD.根据题意,令g (x )=f (x )cos x ,x ∈⎝⎛⎭⎪⎫0,π2,则g ′(x )=f ′(x )cos x +sin xf (x )cos 2x ,又由x ∈⎝ ⎛⎭⎪⎫0,π2,且恒有cos xf ′(x )+sin xf (x )<0,则有g ′(x )<0,即函数g (x )为减函数.由π6<π3,则有g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π3,即f ⎝ ⎛⎭⎪⎫π6cosπ6>f ⎝ ⎛⎭⎪⎫π3cos π3,分析可得f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3;又由π6<π4,则有g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π4,即f ⎝ ⎛⎭⎪⎫π6cos π6>f ⎝ ⎛⎭⎪⎫π4cosπ4,分析可得2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4.2.若f (x )=x 2-a ln x 在(1,+∞)上单调递增,则实数a 的取值范围为( ) A .(-∞,1) B.(-∞,1] C .(-∞,2)D.(-∞,2]解析:选D.由f (x )=x 2-a ln x , 得f ′(x )=2x -a x,因为f (x )在(1,+∞)上单调递增, 所以2x -a x≥0在(1,+∞)上恒成立, 即a ≤2x 2在(1,+∞)上恒成立, 因为当x ∈(1,+∞)时,2x 2>2, 所以a ≤2.3.(2022·宁波市北仑中学期中测试)函数f (x )=x 22-ln x 在其定义域内的一个子区间[k -1,k +1]内不是单调函数,则实数k 的取值范围是________.解析:函数f (x )=x 22-ln x 的定义域为(0,+∞),f ′(x )=x -1x =x 2-1x.令f ′(x )=0,因为x >0,可得x =1,列表如下:所以,函数f (x )在x =1处取得极小值,由于函数f (x )=x 22-ln x 在其定义域内的一个子区间[k -1,k +1]内不是单调函数,则1∈(k -1,k +1),由题意可得⎩⎨⎧k -1<1,k +1>1,k -1>0,解得1<k <2.因此,实数k 的取值范围是(1,2). 答案:(1,2)[A 基础达标]1.函数f (x )=x 2-2ln x 的单调递减区间是() A .(0,1) B.(1,+∞) C .(-∞,1)D.(-1,1)解析:选A.因为f ′(x )=2x -2x =2(x +1)(x -1)x(x >0),令f ′(x )<0得0<x <1,所以函数f (x )=x 2-2ln x 的单调递减区间是(0,1). 2.函数f (x )=e xx的图象大致为()解析:选B.函数f (x )=e xx的定义域为{x |x ∈R 且x ≠0},当x >0时,函数f ′(x )=x e x -e xx 2,可得函数的极值点为x =1,当x ∈(0,1)时,f ′(x )<0,函数f (x )是减函数,当x >1时,f ′(x )>0,函数f (x )是增函数,并且f (x )>0,选项B ,D 满足题意.当x <0时,函数f (x )=exx<0,选项D 不正确,选项B 正确.3.已知函数f (x )=x sin x ,x ∈R ,则f ⎝ ⎛⎭⎪⎫π5,f (1),f ⎝ ⎛⎭⎪⎫-π3的大小关系为()A .f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5B .f (1)>f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5C .f ⎝ ⎛⎭⎪⎫π5>f (1)>f ⎝ ⎛⎭⎪⎫-π3D .f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5>f (1)解析:选A.f (-x )=(-x )·sin(-x )=x sin x =f (x ), 所以函数f (x )是偶函数, 所以f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3.又当x ∈⎝⎛⎭⎪⎫0,π2时,f ′(x )=sin x +x cos x >0, 所以函数f (x )在⎝ ⎛⎭⎪⎫0,π2上是增函数,所以f ⎝ ⎛⎭⎪⎫π5<f (1)<f ⎝ ⎛⎭⎪⎫π3,即f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5.4.(2022·天津市高三模拟)函数f (x )=ln x -ax (a >0)的单调递增区间为() A.⎝⎛⎭⎪⎫0,1a B.⎝ ⎛⎭⎪⎫1a ,+∞ C.⎝⎛⎭⎪⎫-∞,1aD.(-∞,a )解析:选A.函数f (x )的定义域为(0,+∞),由f ′(x )=1x -a >0,得0<x <1a.所以f (x )的单调递增区间为⎝⎛⎭⎪⎫0,1a .5.已知函数f (x )=x 2+ax,若函数f (x )在[2,+∞)上单调递增,则实数a 的取值范围为()A .(-∞,8) B.(-∞,-8)∪(8,+∞) C .(-∞,16]D.(-∞,-16]∪[16,+∞)解析:选C.由题意得f ′(x )=2x -a x 2=2x 3-ax 2≥0在[2,+∞)上恒成立,则a ≤2x 3在[2,+∞)上恒成立, 所以a ≤16.6.函数f (x )=x 4+54x -ln x 的单调递减区间是________.解析:由题意知,函数f (x )的定义域为(0,+∞), 且f ′(x )=14-54x 2-1x =x 2-4x -54x 2,令f ′(x )<0,解得0<x <5,所以函数f (x )的单调递减区间为(0,5). 答案:(0,5)7.f (x )是定义在R 上的偶函数,当x <0时,f (x )+xf ′(x )<0,且f (-4)=0,则不等式xf (x )>0的解集为________.解析:构造F (x )=xf (x ),则F ′(x )=f (x )+xf ′(x ), 当x <0时,f (x )+xf ′(x )<0,可以推出当x <0时,F ′(x )<0,F (x )在(-∞,0)上单调递减. 因为f (x )为偶函数,y =x 为奇函数, 所以F (x )为奇函数,所以F (x )在(0,+∞)上也单调递减,根据f (-4)=0可得F (-4)=0,根据函数的单调性、奇偶性可得函数图象(图略),根据图象可知xf (x )>0的解集为(-∞,-4)∪(0,4).答案:(-∞,-4)∪(0,4)8.已知函数y =f (x )(x ∈R )的图象如图所示,则不等式xf ′(x )≥0的解集为________.解析:由f (x )图象特征可得,f ′(x )在⎝ ⎛⎦⎥⎤-∞,12和[2,+∞)上大于0,在⎝ ⎛⎭⎪⎫12,2上小于0,所以xf ′(x )≥0⇔⎩⎨⎧x ≥0,f ′(x )≥0或⎩⎨⎧x ≤0,f ′(x )≤0⇔0≤x ≤12或x ≥2,所以xf ′(x )≥0的解集为⎣⎢⎡⎦⎥⎤0,12∪[2,+∞). 答案:⎣⎢⎡⎦⎥⎤0,12∪[2,+∞)9.已知函数f (x )=a ln x -x -a +1x (a ∈R ).求函数f (x )的单调区间.解:由题知,f (x )的定义域为(0,+∞),f ′(x )=a x -1+1+a x 2=-(x +1)[x -(1+a )]x 2,①当a +1>0,即a >-1时,在(0,1+a )上f ′(x )>0,在(1+a ,+∞)上,f ′(x )<0,所以f (x )的单调递增区间是(0,1+a ),单调递减区间是(1+a ,+∞); ②当1+a ≤0,即a ≤-1时,在(0,+∞)上,f ′(x )<0, 所以函数f (x )的单调递减区间是(0,+∞),无单调递增区间. 10.已知函数f (x )=x +ax+b (x ≠0),其中a ,b ∈R . (1)讨论函数f (x )的单调性;(2)若函数f (x )在(1,2)上为单调函数,求实数a 的取值范围.解:(1)f ′(x )=1-a x 2=x 2-ax2.当a ≤0时,显然f ′(x )>0(x ≠0),这时f (x )在(-∞,0),(0,+∞)上是增函数;当a >0时,f ′(x )=(x +a )(x -a )x 2,令f ′(x )=0,解得x =±a ,当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )在(-∞,-a )和(a ,+∞)上是增函数, 在(-a ,0)和(0,a )上是减函数. (2)因为函数f (x )在(1,2)上为单调函数, 若f (x )在(1,2)上为单调递增函数, 则f ′(x )≥0在x ∈(1,2)时恒成立,所以x 2-a ≥0,即a ≤x 2在x ∈(1,2)时恒成立, 所以a ≤1.若f (x )在(1,2)上为单调递减函数, 则f ′(x )≤0在x ∈(1,2)时恒成立,所以x 2-a ≤0,即a ≥x 2在x ∈(1,2)时恒成立, 所以a ≥4.综上所述,实数a 的取值范围为(-∞,1]∪[4,+∞).[B 综合应用]11.(多选)定义在⎝⎛⎭⎪⎫0,π2上的函数f (x ),已知f ′(x )是它的导函数,且恒有cosx ·f ′(x )+sin x ·f (x )<0成立,则有()A .f ⎝ ⎛⎭⎪⎫π6>2f ⎝ ⎛⎭⎪⎫π4 B.3f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π3C .f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3 D.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4 解析:选CD.构造函数g (x )=f (x )cos x ⎝⎛⎭⎪⎫0<x <π2,则g ′(x )=f ′(x )cos x +f (x )sin x(cos x )2<0, 即函数g (x )在⎝ ⎛⎭⎪⎫0,π2上单调递减,所以g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π3,所以f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3,同理,g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π4,即2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4.故选CD.12.(多选)(2022·辽宁压轴试题)已知正数α,β满足e α+12β+sin β>e β+12α+sin α,则()A .2α-β+1>2 B.ln α+α<ln β+βC.1α+1β>4α+β D.1e α+1α<1e β+1β 解析:选ACD.由题意,得e α-12α+sin α>e β-12β+sin β,构造函数f (x )=e x -12x +sin x,x >0,令g (x )=2x +sin x ,则g ′(x )=2+cos x >0恒成立, 所以g (x )在(0,+∞)上单调递增,由复合函数的单调性可知-12x +sin x 在(0,+∞)上单调递增,所以f (x )=e x -12x +sin x在(0,+∞)上单调递增,由f (α)>f (β),可得α>β>0,对于A ,由α>β,可得α-β+1>1,所以2α-β+1>2,故A 正确;对于B ,由α>β>0,可得ln α>ln β,则ln α+α>ln β+β,故B 错误; 对于C ,⎝ ⎛⎭⎪⎫1α+1β(α+β)=2+αβ+βα>2+2αβ·βα=4,所以1α+1β>4α+β,故C 正确;对于D ,由α>β>0,可得e α>e β>0,1α<1β,所以1e α<1e β,所以1e α+1α<1e β+1β,故D 正确.13.已知g (x )=2x+x 2+2a ln x 在[1,2]上是减函数,则实数a 的取值范围为________.解析:g ′(x )=-2x 2+2x +2ax,由已知得g ′(x )≤0在[1,2]上恒成立, 可得a ≤1x-x 2在[1,2]上恒成立.又当x ∈[1,2]时,⎝ ⎛⎭⎪⎫1x -x 2min =12-4=-72.所以a ≤-72.答案:⎝⎛⎦⎥⎤-∞,-7214.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x=-(x -1)(x -3)x,由f ′(x )=0,得函数f (x )的两个极值点为1和3, 则只要这两个极值点有一个在区间(t ,t +1)内, 函数f (x )在区间[t ,t +1]上就不单调, 由t <1<t +1或t <3<t +1,得0<t <1或2<t <3. 答案:(0,1)∪(2,3)[C 素养提升]15.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.解析:f ′(x )=-x 2+x +2a =-⎝⎛⎭⎪⎫x -122+14+2a .由题意知,f ′(x )>0在⎣⎢⎡⎭⎪⎫23,+∞上有解,当x ∈⎣⎢⎡⎭⎪⎫23,+∞时, f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a . 令29+2a >0,解得a >-19, 所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞.答案:⎝ ⎛⎭⎪⎫-19,+∞16.(2022·北京高三一模)已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.解:(1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a (1-x )x, 当a >0时,f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞); 当a <0时,f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1); 当a =0时,f (x )为常数函数,没有单调区间. (2)由(1)及题意得f ′(2)=-a2=1,即a =-2,所以f (x )=-2ln x +2x -3,f ′(x )=2x -2x.所以g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x ,所以g ′(x )=3x 2+(m +4)x -2.因为g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点. 由于g ′(0)=-2,所以⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意的t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,即m >-373.所以-373<m <-9.21 / 21 即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.。
高中数学导数新课标内容
在高中数学中,导数是微积分学的基础概念之一,它描述了函数在某
一点处的变化率。
新课标下的高中数学导数内容主要包括以下几个方面:
1. 导数的概念:导数是函数在某一点处的切线斜率,它反映了函数值
随自变量变化的快慢。
2. 导数的几何意义:在函数图像上,导数表示的是曲线在某一点处的
切线斜率。
3. 导数的计算:对于基本初等函数,如幂函数、指数函数、对数函数、三角函数等,新课标要求学生能够熟练掌握它们的导数公式,并能运
用这些公式进行导数的计算。
4. 导数的运算法则:包括导数的加减法、乘法、除法以及复合函数的
求导法则。
5. 高阶导数:对于函数的导数再次求导,得到的结果称为高阶导数。
6. 导数在实际问题中的应用:新课标强调导数在实际问题中的应用,
如最优化问题、物理运动学问题等。
7. 微分的概念:微分是导数的另一种表述,它描述了函数在某一点处
的微小变化量。
8. 微分的应用:微分在近似计算、误差分析等方面有广泛应用。
9. 导数与函数的单调性、极值和最值:导数可以用来研究函数的单调性,通过求导数的符号变化来确定函数的单调区间;同时,导数的零点可以用来寻找函数的极值点,进而研究函数的最值问题。
10. 导数与曲线的凹凸性:通过二阶导数的符号,可以判断曲线在某一点的凹凸性,这对于理解函数图像的局部行为非常重要。
新课标下的高中数学导数内容不仅要求学生掌握理论知识,还强调了导数在解决实际问题中的应用,以及与其他数学分支的联系。
通过这些内容的学习,学生能够更好地理解函数的变化规律,为进一步学习高等数学打下坚实的基础。
2019年高考文科数学考点梳理之导数的概念及计算和导数的应用汇编考点11 导数的概念及计算1.导数概念及其几何意义 (1)了解导数概念的实际背景. (2)理解导数的几何意义. 2.导数的运算(1)能根据导数定义求函数y =C (C 为常数),21,,y x y x y x===的导数. (2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. • 常见基本初等函数的导数公式:1()0();(),n n C C x nx n -+''==∈N 为常数; (sin )cos ;(cos )sin x x x x ''==-;(e )e ;()ln (0,1)x x x x a a a a a ''==>≠且;11(ln );(log )log e(0,1)a a x x a a x x''==>≠且. • 常用的导数运算法则:法则1:()()()()u x v x u x v x ±'⎡⎦'⎤±⎣'=.法则2:()()()()()()·u x v x u x v x u x v x ⎡⎤⎣⎦'''=+.法则3:2()()()()()[](()0)()()u x u x v x u x v x v x v x v x ''-'=≠.一、导数的概念 1.平均变化率函数()y f x =从1x 到2x 的平均变化率为2121()()f x f x x x --,若21x x x ∆=-,2()y f x ∆=-1()f x ,则平均变化率可表示为y x∆∆.2.瞬时速度一般地,如果物体的运动规律可以用函数()s s t =来描述,那么,物体在时刻t 的瞬时速度v 就是物体在t 到t t +∆这段时间内,当t ∆无限趋近于0时,st∆∆无限趋近的常数. 3.瞬时变化率4.导数的概念一般地,函数()y f x =在0x x =处的瞬时变化率是0000()()limlim x x f x +x f x yx x∆→∆→∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即00()l i mx yf x x ∆→∆'==∆000()()lim x f x +x f x x∆→∆-∆.【注】函数()y f x =在0x x =处的导数是()y f x =在0x x =处的瞬时变化率. 5.导函数的概念如果函数()y f x =在开区间(a ,b )内的每一点都是可导的,则称()f x 在区间(a ,b )内可导.这样,对开区间(a ,b )内的每一个值x ,都对应一个确定的导数()f x ',于是在区间(a ,b )内()f x '构成一个新的函数,我们把这个函数称为函数()y f x =的导函数(简称导数),记为()f x '或y ',即()f x y ''==0()()li mx f x +x f x x∆→∆-∆.二、导数的几何意义函数()y f x =在0x x =处的导数0()f x '就是曲线()y f x =在点00(,())x f x 处的切线的斜率k ,即0000()()()limx f x +x f x k f x x∆→∆-'==∆.【注】曲线的切线的求法:若已知曲线过点P (x 0,y 0),求曲线过点P 的切线,则需分点P (x 0,y 0)是切点和不是切点两种情况求解.(1)当点P (x 0,y 0)是切点时,切线方程为y −y 0=f ′(x 0)(x −x 0); (2)当点P (x 0,y 0)不是切点时,可分以下几步完成:第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过P ′(x 1,f (x 1))的切线方程为y −f (x 1)=f ′ (x 1)(x −x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y −f (x 1)=f ′(x 1)(x −x 1),可得过点P (x 0,y 0)的切线方程. 三、导数的计算1.基本初等函数的导数公式2.导数的运算法则(1)()()()()u x v x u x v x ±'⎡⎦'⎤±⎣'=.(2)()()()()()()·u x v x u x v x u x v x ⎡⎤⎣⎦'''=+.(3)2()()()()()[](()0)()()u x u x v x u x v x v x v x v x ''-'=≠. 3.复合函数的导数复合函数y=f (g (x ))的导数和函数y=f (u ),u=g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.考向一 导数的计算1.导数计算的原则和方法(1)原则:先化简解析式,使之变成能用八个求导公式求导的函数的和、差、积、商,再求导. (2)方法:①连乘积形式:先展开化为多项式的形式,再求导;②分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; ③对数形式:先化为和、差的形式,再求导; ④根式形式:先化为分数指数幂的形式,再求导;⑤三角形式:先利用三角函数公式转化为和或差的形式,再求导. 2.求复合函数的导数的关键环节和方法步骤 (1)关键环节:①中间变量的选择应是基本函数结构; ②正确分析出复合过程;③一般是从最外层开始,由外及里,一层层地求导; ④善于把一部分表达式作为一个整体; ⑤最后结果要把中间变量换成自变量的函数. (2)方法步骤:①分解复合函数为基本初等函数,适当选择中间变量; ②求每一层基本初等函数的导数;③每层函数求导后,需把中间变量转化为自变量的函数.典例1 求下列函数的导函数:(1)42356y x x x --=+; (2)21y x x=+; (3)2cos y x x =; (4)tan y x =.【名师点睛】熟记基本初等函数的求导公式,导数的四则运算法则是正确求导数的基础.(1)运用基本初等函数求导公式和运算法则求函数()y f x =在开区间(a ,b )内的导数的基本步骤: ①分析函数()y f x =的结构和特征;②选择恰当的求导公式和运算法则求导;③整理得结果.(2)对较复杂的函数求导数时,先化简再求导.如对数函数的真数是根式或分式时,可用对数的性质将真数转化为有理式或整式求解更为方便;对于三角函数,往往需要利用三角恒等变换公式,将函数式进行化简,使函数的种类减少,次数降低,结构尽量简单,从而便于求导.1.已知函数2()22(1(1))f x x x f f ++'=,则()2f '的值为A .2-B .0C .4-D .6-考向二 导数的几何意义求曲线y =f (x )的切线方程的类型及方法(1)已知切点P (x 0, y 0),求y =f (x )过点P 的切线方程:求出切线的斜率f ′(x 0),由点斜式写出方程; (2)已知切线的斜率为k ,求y =f (x )的切线方程:设切点P (x 0, y 0),通过方程k =f ′(x 0)解得x 0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y =f (x )的切线方程:设切点P (x 0, y 0),利用导数求得切线斜率f ′(x 0),再由斜率公式求得切线斜率,列方程(组)解得x 0,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k =f ′(x 0)求出切点坐标(x 0, y 0),最后写出切线方程. (5)①在点P 处的切线即是以P 为切点的切线,P 一定在曲线上.②过点P 的切线即切线过点P ,P 不一定是切点.因此在求过点P 的切线方程时,应首先检验点P 是否在已知曲线上.典例2 已知函数2ln y x x =.(1)求这个函数的图象在1x =处的切线方程;(2)若过点()0,0的直线l 与这个函数图象相切,求直线l 的方程. 【解析】(1)2ln y x x x '=+, 当1x =时,0,1y y '==,∴这个函数的图象在1x =处的切线方程为1y x =-.【规律总结】求切线方程的步骤: (1)利用导数公式求导数. (2)求斜率. (3)写出切线方程.注意导数为0和导数不存在的情形.2.已知函数,则函数的图象在处的切线方程为A .B .C .D .1.函数在处的导数是A .0B .1C .D .2.已知函数的导函数是,且,则实数的值为A .B .C .D .13.设函数的导函数记为,若,则A .-1B .C .1D .34.已知函数的图象如图,是的导函数,则下列数值排序正确的是A .B .C .D .5.已知过曲线e xy =上一点()00,P x y 作曲线的切线,若切线在y 轴上的截距小于0,则0x 的取值范围是A .()0,+∞BC .()1,+∞D .()2,+∞6.已知是函数的导函数,且对任意的实数都有(是自然对数的底数),,则A .B .C .D .7.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:300()2t M t M -=,其中0M 为0t =时铯137的含量,已知30t =时,铯137含量的变化率为10ln 2-(太贝克/年),则(60)M = A .5太贝克 B .75ln 2太贝克 C .150ln 2太贝克 D .150太贝克8.设过曲线(为自然对数的底数)上任意一点处的切线为,总存在过曲线上一点处的切线,使得,则实数的取值范围为 A . B . C .D .9,则(1)f '=__________. 10.已知函数的导函数为,且满足,则_________.11.曲线的切线方程为,则实数的值为_________.12.曲线250xy x y -+-=在点()1,2A 处的切线与两坐标轴所围成的三角形的面积为_________. 13.求下列函数的导数:(1)21cos xy x +=; (2)()3ln xy x x =⋅-.14.已知函数()32f x x bx cx d =+++的图象过点()0,2P ,且在点()()1,1M f --处的切线方程为670x y -+=.(1)求()1f -和()1f '-的值;(2)求函数()f x 的解析式.1.(2018新课标全国Ⅰ文科)设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =2.(2016山东文科)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是 A .y =sin x B .y =ln x C .y =e xD .y =x 33.(2016四川文科)设直线l 1,l 2分别是函数f (x )=ln 01,ln ,1x x x x -<<⎧⎨>⎩,图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 A .(0,1) B .(0,2) C .(0,+∞)D .(1,+ ∞)4.(2018天津文科)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为__________. 5.(2018新课标全国Ⅱ文科)曲线2ln y x =在点(1,0)处的切线方程为__________.6.(2017天津文科)已知a ∈R ,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为___________.7.(2017北京文科节选)已知函数()e cos x f x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;8.(2017山东文科节选)已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;9.(2017天津文科节选)设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线, (i )求证:()f x 在0x x =处的导数等于0;10.(2017浙江节选)已知函数f (x )=(x e x -(12x ≥). (Ⅰ)求f (x )的导函数;2.【答案】C【解析】∵,∴,∴,又,∴所求切线方程为,即.故选C.1.【答案】C【解析】因为,故选C.2.【答案】B【解析】,选B.3.【答案】D【解析】根据题意,得,由,得,化简可得,即,故选D.4.【答案】C【解析】结合函数的图象可知过点的切线的倾斜角较大,过点的切线的倾斜角较小,又因为过点的切线的斜率,过点的切线的斜率,直线的斜率,故,应选C.5.【答案】C【解析】因为()0e xk f x'==,所以切线方程为()00e xy y x x-=-,即()00e ex xy x x-=-,令0x=得()01e xy x=-,截距小于0时,()01e0xy x=-<,解得1x>,故选C.6.【答案】D【解析】令G (x )=()exf x ,则G ′(x )==2x -2,可设G (x )=x 2+c ,∵G (0)=f (0)=1,∴c =1.∴f (x )=(x 2+1)ex故选D.8.【答案】C【解析】因为切线,的切点分别为而,所以.因为,所以(.因为,所以,因此,选C .9.【答案】12.【解析】 1x =,得()()111f f ='-',解得 10.【答案】【解析】求导得,把代入得,解得.11.【答案】212.【答案】496【解析】由250xy x y -+-=,得()52x y f x x +==+,∴()()232f x x -='+,∴()113f '=-, ∴曲线在点()1,2A 处的切线方程为()1213y x -=--. 令0x =,得73y =;令0y =,得7x =. ∴切线与两坐标轴所围成的三角形的面积为17497236S =⨯⨯=. 13.【解析】(1()()()24sin 1cos 2x x x x x --+⋅=3sin 2cos 2x x x x++=-. (2)()()()3ln 3ln xxy x x x x '⋅⋅''=-+-()13ln3ln 31x x x x x ⎛⎫=⋅⋅-+⋅- ⎪⎝⎭13ln3ln ln31x x x x ⎛⎫=-+- ⎪⎝⎭.14.【解析】(1)∵()f x 在点()()1,1M f --处的切线方程为670x y -+=,故点()()1,1f --在切线670x y -+=上,且切线斜率为6,得()11f -=且()16f '-=.(2)∵()f x 过点()0,2P ,∴2d =,∵()32f x x bx cx d =+++,∴2()32f x x bx c '=++,由()16f '-=得326b c -+=,又由()11f -=,得11b c d -+-+=,联立方程得232611d b c b c d =-+==-+-+⎧⎪⎨⎪⎩,解得332b c d ⎧=-=-=⎪⎨⎪⎩,故()32332f x x x x =--+.1.【答案】D 【解析】因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.【名师点睛】该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 2.【答案】A【解析】当sin y x =时,cos y x '=,cos 0cos 1⋅π=-,所以在函数sin y x =的图象上存在两点,使条件成立,故A 正确;函数3ln ,e ,x y x y y x ===的导数值分别为10,e 0,x y y y x'''=>=>=230x ≥,不符合题意,故选A . 3.【答案】A【解析】设111222(,ln ),(,ln )P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程为1111ln ()y x x x x -=-,切线2l 的方程为2221ln ()y x x x x +=--,即1111ln ()y x x x x -=--.分别令0x =得11(0,1ln ),(0,1ln ).A x B x -++又1l 与2l 的交点为2111221121(,ln ).11x x P x x x -+++211122112111,||||1,01211PABA B P PABx x x S y y x S x x +>∴=-⋅=<=∴<<++△△,故选A.4.【答案】e【解析】由函数的解析式可得,则.即的值为e.【名师点睛】本题主要考查导数的运算法则,基本初等函数的导数公式等知识,意在考查学生的转化能力和计算求解能力. 5.【答案】y =2x –2 【解析】由,得.则曲线在点处的切线的斜率为,则所求切线方程为,即.【名师点睛】求曲线在某点处的切线方程的步骤:①求出函数在该点处的导数值即为切线斜率;②写出切线的点斜式方程;③化简整理. 6.【答案】1【解析】由题可得(1)f a =,则切点为(1,)a ,因为1()f x a x'=-,所以切线l 的斜率为(1)1f a '=-,切线l 的方程为(1)(1)y a a x -=--,令0x =可得1y =,故l 在y 轴上的截距为1.【名师点睛】本题考查导数的几何意义,属于基础题型,函数()f x 在点0x 处的导数0()f x '的几何意义是曲线()y f x =在点00(,)P x y 处的切线的斜率,切线方程为000()()y y f x x x '-=-.解题时应注意:求曲线切线时,要分清在点P 处的切线与过点P 的切线的不同,没切点应设出切点坐标,建立方程组进行求解.7.【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0x f x x x f ''=--=. 又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.9.【解析】(II )(i )因为()e (()())xx x g'f f 'x =+,由题意知000()e ()exx x x g g'⎧=⎪⎨=⎪⎩,所以0000000()e e e (()())ex x xx f f f x 'x x ⎧=⎪⎨+=⎪⎩,解得00()1()0f 'x x f =⎧⎨=⎩. 所以,()f x 在0x x =处的导数等于0. 10.【解析】(Ⅰ)因为(1x '=,(e )e x x '--=-,所以()(1(x xf x x --'=-1)2xx -=>.考点12 导数的应用1.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 2.生活中的优化问题 会利用导数解决某些实际问题.一、导数与函数的单调性一般地,在某个区间(a ,b )内:(1)如果()0f x '>,函数f (x )在这个区间内单调递增; (2)如果()0f x '<,函数f (x )在这个区间内单调递减; (3)如果()=0f x ',函数f (x )在这个区间内是常数函数.注意:(1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号;(2)在某个区间内,()0f x '>(()0f x '<)是函数f (x )在此区间内单调递增(减)的充分条件,而不是必要条件.例如,函数3()f x x =在定义域(,)-∞+∞上是增函数,但2()30f x x '=≥.(3)函数f (x )在(a ,b )内单调递增(减)的充要条件是()0f x '≥(()0f x '≤)在(a ,b )内恒成立,且()f x '在(a ,b )的任意子区间内都不恒等于0.这就是说,在区间内的个别点处有()0f x '=,不影响函数f (x )在区间内的单调性. 二、利用导数研究函数的极值和最值 1.函数的极值一般地,对于函数y =f (x ),(1)若在点x =a 处有f ′(a )=0,且在点x =a 附近的左侧()0f 'x <,右侧()0f 'x >,则称x=a 为f (x )的极小值点,()f a 叫做函数f (x )的极小值.(2)若在点x =b 处有()f 'b =0,且在点x=b 附近的左侧()0f 'x >,右侧()0f 'x <,则称x=b 为f (x )的极大值点,()f b 叫做函数f (x )的极大值.(3)极小值点与极大值点通称极值点,极小值与极大值通称极值. 2.函数的最值函数的最值,即函数图象上最高点的纵坐标是最大值,图象上最低点的纵坐标是最小值,对于最值,我们有如下结论:一般地,如果在区间[,]a b 上函数()y f x =的图象是一条连续不断的曲线,那么它必有最大值与最小值.设函数()f x 在[,]a b 上连续,在(,)a b 内可导,求()f x 在[,]a b 上的最大值与最小值的步骤为: (1)求()f x 在(,)a b 内的极值;(2)将函数()f x 的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.3.函数的最值与极值的关系(1)极值是对某一点附近(即局部)而言,最值是对函数的定义区间[,]a b 的整体而言;(2)在函数的定义区间[,]a b 内,极大(小)值可能有多个(或者没有),但最大(小)值只有一个(或者没有);(3)函数f (x )的极值点不能是区间的端点,而最值点可以是区间的端点; (4)对于可导函数,函数的最大(小)值必在极大(小)值点或区间端点处取得. 三、生活中的优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.导数是求函数最值问题的有力工具.解决优化问题的基本思路是:考向一 利用导数研究函数的单调性1.利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式()0f x '>(()0f x '<)在给定区间上恒成立.一般步骤为: (1)求f ′(x );(2)确认f ′(x )在(a ,b )内的符号;(3)作出结论,()0f x '>时为增函数,()0f x '<时为减函数.注意:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论. 2.在利用导数求函数的单调区间时,首先要确定函数的定义域,解题过程中,只能在定义域内讨论,定义域为实数集R 可以省略不写.在对函数划分单调区间时,除必须确定使导数等于零的点外,还要注意在定义域内的不连续点和不可导点.3.由函数()f x 的单调性求参数的取值范围的方法(1)可导函数在某一区间上单调,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()f x '在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围;(2)可导函数在某一区间上存在单调区间,实际上就是()0f x '>(或()0f x '<)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;(3)若已知()f x 在区间I 上的单调性,区间I 中含有参数时,可先求出()f x 的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.4.利用导数解决函数的零点问题时,一般先由零点的存在性定理说明在所求区间内至少有一个零点,再利用导数判断在所给区间内的单调性,由此求解.典例1 已知函数,其中.(1)函数的图象能否与轴相切?若能,求出实数,若不能,请说明理由;(2)讨论函数的单调性.(2)由于,当时,,当时,,单调递增,当时,,单调递减;当时,由得或,①当时,,当时,,单调递增,当时,,单调递减,当,,单调递增;②当时,,单调递增;③当时,,当时,,单调递增,当时,,单调递减,当时,,单调递增.综上,当时,在上是减函数,在上是增函数;当时,在上是增函数,在上是减函数;当时,在上是增函数;当时,在上是增函数,在上是减函数.典例2 设函数2()e ln x f x a x =-.(1)讨论()f x 的导函数()f x '的零点的个数; (2)证明:当0a >时,2()2lnf x a a a≥+. 【解析】(1)()f x 的定义域为(0+),¥,2()=2e (0)x af x x x¢->. 当0a £时,()0f x ¢>,()f x ¢没有零点; 当0a >时,因为2=e x y 单调递增,ay x=-单调递增,所以()f x ¢在(0+),¥上单调递增. 又()0f a ¢>,当b 满足04a b <<且14b <时,()0f b ¢<,故当0a >时,()f x ¢存在唯一零点.(2)由(1),可设()f x ¢在(0+),¥上的唯一零点为0x . 当0(0)x x ,Î时,()0f x ¢<;当0(+)x x ,违时,()0f x ¢>. 故()f x 在0(0)x ,上单调递减,在0(+)x ,¥上单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202e=0x a x -,所以02000022()=e ln 2ln 2ln 2xa f x a x ax a a a x a a -=++?(当且仅当0022aax x =,即012x =时,等号成立).故当0a >时,2()2lnf x a a a?.1(1)当1a =时,求()y f x =在0x =处的切线方程;(2)若函数()f x 在[]1,1-上单调递减,求实数a 的取值范围.考向二 利用导数研究函数的极值和最值1.函数极值问题的常见类型及解题策略(1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号. (2)求函数()f x 极值的方法: ①确定函数()f x 的定义域. ②求导函数()f x '. ③求方程()0f x '=的根.④检查()f x '在方程的根的左、右两侧的符号,确定极值点.如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果()f x '在这个根的左、右两侧符号不变,则()f x 在这个根处没有极值.(3)利用极值求参数的取值范围:确定函数的定义域,求导数()f x ',求方程()0f x '=的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围. 2.求函数f (x )在[a ,b ]上最值的方法(1)若函数f (x )在[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值. (2)若函数f (x )在区间(a ,b )内有极值,先求出函数f (x )在区间(a ,b )上的极值,与f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(3)函数f (x )在区间(a ,b )上有唯一一个极值点时,这个极值点就是最大(或最小)值点. 注意:(1)若函数中含有参数时,要注意分类讨论思想的应用.(2)极值是函数的“局部概念”,最值是函数的“整体概念”,函数的极值不一定是最值,函数的最值也不一定是极值.要注意利用函数的单调性及函数图象直观研究确定. 3.利用导数解决不等式恒成立问题的“两种”常用方法:(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,()f x a ≥恒成立,只需min ()f x a ≥即可;()f x a ≤恒成立,只需max ()f x a ≤即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.典例3 已知函数21()e 2xf x ax x =-+. (1)当1a >-时,试判断函数()f x 的单调性;(2)若1e a <-,求证:函数()f x 在[1,)+∞上的最小值小于12.(2)由(1)知()f 'x 在[1,)+∞上单调递增, 因为1e a <-,所以()e 110f 'a =-+<,所以存在(1,)t ∈+∞,使得()0f 't =,即e 0t t a -+=,即e t a t =-, 所以函数()f x 在[1,)t 上单调递减,在(,)t +∞上单调递增,所以当[1,)x ∈+∞时222min 111()()e e (e )e (1)222t t t t f f t at t t t t t x t ==-+=-+-=-+,令21()e (1)2x h x x x =-+,1x >,则()(1e )0x h'x x =-<恒成立,所以函数()h x 在(1,)+∞上单调递减,所以211()e(11)122h x <-+⨯=, 所以211e (1)22tt t -+<,即当[1,)x ∈+∞时min 1()2x f <, 故函数()f x 在[1,)+∞上的最小值小于12. 典例4 已知函数,.(1)若曲线与曲线在它们的交点处的公共切线为,求,,的值;(2)当时,若,,求的取值范围.【解析】(1)设它们的公共交点的横坐标为,则.,则,①;,则,②.由②得,由①得.将,代入得,∴,.(2)由,得,即在上恒成立,令,则,其中在上恒成立,∴在上单调递增,在上单调递减,则,∴.故的取值范围是.2.已知函数()1 lnf x a x xx=+-,其中a为实常数.(1)若12x=是()f x的极大值点,求()f x的极小值;(2)若不等式1lna xb xx-≤-对任意52a-≤≤,122x≤≤恒成立,求的最小值.考向三(导)函数图象与单调性、极值、最值的关系1.导数与函数变化快慢的关系:如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.2.导函数为正的区间是函数的增区间,导函数为负的区间是函数的减区间,导函数图象与x 轴的交点的横坐标为函数的极值点.典例 5 设函数2()f x ax bx c =++(a ,b ,c ∈R ),若函数()e x y f x =在1x =-处取得极值,则下列图象不可能为()y f x =的图象是【答案】D【解析】2()e ()e e [(2)]x x x y f x f x ax a b x b c ''=+=++++,因为函数()e x y f x =在1x =-处取得极值,所以1x =-是2(2)0ax a b x b c ++++=的一个根,整理可得c a =,所以2()f x ax bx a =++,对称轴对于A,由图可得0,(0)0,(1)0a f f >>-=,适合题意; 对于B,由图可得0,(0)0,(1)0a f f <<-=,适合题意;对于C, 对于D, D.3.已知函数的导函数的图象如图所示,则函数A .有极大值,没有最大值B .没有极大值,没有最大值C .有极大值,有最大值D .没有极大值,有最大值考向四生活中的优化问题1.实际生活中利润最大,容积、面积最大,流量、速度最大等问题都需要利用导数来求解相应函数的最大值.若在定义域内只有一个极值点,且在极值点附近左增右减,则此时唯一的极大值就是最大值. 2.实际生活中用料最省、费用最低、损耗最小、最节省时间等问题都需要利用导数求解相应函数的最小值.用料最省、费用最低问题出现的形式多与几何体有关,解题时根据题意明确哪一项指标最省(往往要从几何体的面积、体积入手),将这一指标表示为自变量x的函数,利用导数或其他方法求出最值,但一定要注意自变量的取值范围.典例 6 如图,点为某沿海城市的高速公路出入口,直线为海岸线,,,是以为圆心,半径为的圆弧型小路.该市拟修建一条从通往海岸的观光专线CP PQ-,其中为上异于的一点,与平行,设.(1)证明:观光专线CP PQ-的总长度随的增大而减小;(2)已知新建道路的单位成本是翻新道路CP的单位成本的2倍.当取何值时,观光专线CP PQ-的修建总成本最低?请说明理由.【解析】(1)由题意,,所以π3CPθ=-,又,所以观光专线的总长度为,,因为当时,,所以在上单调递减,即观光专线CP PQ-的总长度随的增大而减小.(2)设翻新道路的单位成本为,则总成本,,,令,得,因为,所以, 当时,;当时,.所以,当时,最小.答:当时,观光专线CP PQ -的修建总成本最低.4.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率). (1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.1.已知函数()()2e e ln exf x f x '=-(e 是自然对数的底数),则()f x 的极大值为 A .2e-1 B .C .1D .2ln22.已知函数,则的单调递减区间为A .B .C .和D .和3.函数在闭区间上的最大值,最小值分别是A .B .C .D .4.设定义在上的函数的导函数满足,则 A .B .C .D .5.若函数在上有最小值,则的取值范围为A .B .C .D .6.已知函数()22,2e 2,2x x xx f x x x ⎧+>⎪=⎨⎪+≤⎩,函数有两个零点,则实数的取值范围为A .B .C .D .7.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________.①当x =时函数取得极小值; ②f (x )有两个极值点; ③当x =2时函数取得极小值;④当x =1时函数取得极大值.8.已知函数.若函数在定义域内不是单调函数,则实数的取值范围是__________. 9.定义在上的函数满足,则当时,与的大小关系为__________.(其中为自然对数的底数)10.用一张16cm 10cm ⨯的长方形纸片,经过折叠以后,糊成了一个无盖的长方体形纸盒,则这个纸盒的最大容积是_________3cm .11.已知函数3()f x ax bx c =++在2x =处取得极值16c -. (1)求a 、b 的值;(2)若()f x 有极大值28,求()f x 在[3,3]-上的最小值.12.如图,有一块半圆形空地,开发商计划建一个矩形游泳池ABCD 及其矩形附属设施EFGH ,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为O ,半径为R ,矩形的一边AB 在直径上,点C 、D 、G 、H 在圆周上,E 、F 在边CD BOC θ∠=.(1)记游泳池及其附属设施的占地面积为()fθ,求()f θ的表达式;(2)当cos θ为何值时,能符合园林局的要求?13.设函数.(1)讨论函数的单调性; (2)若,且在区间上恒成立,求的取值范围.14.设.(1)在上单调,求的取值范围; (2)已知在处取得极小值,求的取值范围.15.已知函数.(1)若曲线的切线经过点,求的方程;(2)若方程有两个不相等的实数根,求的取值范围.1.(2016四川文科)已知a 为函数()3–12f x x x =的极小值点,则a =A .–4B .–2C .4D .22.(2017浙江)函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是3.(2016新课标全国Ⅰ文科)若函数1()sin2sin 3f x x x a x =-+在(,)-∞+∞上单调递增,则a 的取值范围是 A .[1,1]-B .1[1,]3-C .11[,]33-D .1[1,]3--4.(2017浙江)已知函数f (x )=(x e x -(12x ≥). (1)求f (x )的导函数;。
3.1 变化的快慢与变化率学习目标 1.理解函数的平均变化率与瞬时变化率的概念.2.会求物体运动的平均速度并估计瞬时速度.知识点一 函数的平均变化率 观察图形,回答下列问题:思考1 函数f (x )在区间[x 1,x 2]上平均变化率的大小与曲线在区间上的陡峭程度有何关系? 答案 (1)y =f (x )在区间[x 1,x 2]上的平均变化率是曲线y =f (x )在区间[x 1,x 2]上陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”.(2)平均变化率的绝对值越大,曲线y =f (x )在区间[x 1,x 2]上越“陡峭”,反之亦然. 思考2 怎样理解自变量的增量、函数值的增量?答案 (1)自变量的增量:用Δx 表示,即Δx =x 2-x 1,表示自变量相对于x 1的“增加量”. (2)函数值的增量:用Δy 表示,即Δy =f (x 2)-f (x 1),也表示为f (x 1+Δx )-f (x 1),表示函数值在x 1的“增加量”.(3)增量并不一定都是正值,也可以是负值,函数值的增量还可以是0,比如常数函数,其函数值的增量就是0. 梳理 平均变化率 (1)定义式:Δy Δx=f x 2-f x 1x 2-x 1.(2)实质:函数值的改变量与自变量的改变量之比. (3)作用:刻画函数值在区间[x 1,x 2]上变化的快慢.(4)几何意义:已知P 1(x 1,f (x 1)),P 2(x 2,f (x 2))是函数y =f (x )图像上的两点,则平均变化率Δy Δx=f x 2-f x 1x 2-x 1表示割线P 1P 2的斜率.知识点二 瞬时变化率思考1 物体的平均速度能否精确反映物体的运动状态?答案 不能.如高台跳水运动员从起跳高度到最高点然后回到起跳高度的过程中,平均速度为0,而运动员一直处于运动状态.思考2 如何描述物体在某一时刻的运动状态?答案 可以使用瞬时速度精确描述物体在某一时刻的运动状态.梳理 要求物体在t 0时刻的瞬时速度,设运动方程为s =s (t ),可先求物体在(t 0,t 0+Δt )内的平均速度Δs Δt=st 0+Δt -s t 0Δt,然后Δt 趋于0,得到物体在t 0时刻的瞬时速度.类型一 函数的平均变化率 命题角度1 求函数的平均变化率例1 求函数y =f (x )=x 2在x =1,2,3附近的平均变化率,取Δx 都为13,哪一点附近的平均变化率最大?解 在x =1附近的平均变化率为k 1=f 1+Δx -f 1Δx =1+Δx 2-1Δx=2+Δx ;在x =2附近的平均变化率为k 2=f 2+Δx -f 2Δx =2+Δx 2-22Δx=4+Δx ;在x =3附近的平均变化率为k 3=f 3+Δx -f 3Δx =3+Δx 2-32Δx=6+Δx .当Δx =13时,k 1=2+13=73,k 2=4+13=133,k 3=6+13=193.由于k 1<k 2<k 3,所以在x =3附近的平均变化率最大. 反思与感悟 求平均变化率的主要步骤 (1)先计算函数值的改变量Δy =f (x 2)-f (x 1); (2)再计算自变量的改变量Δx =x 2-x 1; (3)得平均变化率Δy Δx=fx 2-f x 1x 2-x 1.跟踪训练1 (1)已知函数f (x )=x 2+2x -5的图像上的一点A (-1,-6)及邻近一点B (-1+Δx ,-6+Δy ),则ΔyΔx= .(2)如图所示是函数y =f (x )的图像,则函数f (x )在区间[-1,1]上的平均变化率为 ;函数f (x )在区间[0,2]上的平均变化率为 .答案 (1)Δx (2)12 34解析 (1)Δy Δx =f-1+Δx -f -1Δx=-1+Δx2+2-1+Δx -5--6Δx=Δx .(2)函数f (x )在区间[-1,1]上的平均变化率为f 1-f -11--1=2-12=12. 由函数f (x )的图像知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以函数f (x )在区间[0,2]上的平均变化率为 f 2-f 02-0=3-322=34.命题角度2 平均变化率的几何意义例2 过曲线y =f (x )=x 2-x 上的两点P (1,0)与Q (1+Δx ,Δy )作曲线的割线,已知割线PQ 的斜率为2,求Δx 的值.解 割线PQ 的斜率即为函数f (x )从1到1+Δx 的平均变化率Δy Δx .∵Δy =f (1+Δx )-f (1)=(1+Δx )2-(1+Δx )-(12-1)=Δx +(Δx )2, ∴割线PQ 的斜率k =ΔyΔx=1+Δx .又∵割线PQ 的斜率为2,∴1+Δx =2,∴Δx =1.反思与感悟 函数y =f (x )从x 1到x 2的平均变化率的实质是函数y =f (x )图像上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2))连线P 1P 2的斜率,即12P P k =Δy Δx =f x 2-f x 1x 2-x 1.跟踪训练2 (1)甲,乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图所示,则在[0,t 0]这个时间段内,甲,乙两人的平均速度v 甲,v 乙的关系是( )A.v 甲>v 乙B.v 甲<v 乙C.v 甲=v 乙D.大小关系不确定(2)过曲线y =f (x )=x1-x 图像上一点(2,-2)及邻近一点(2+Δx ,-2+Δy )作割线,则当Δx =0.5时割线的斜率为 . 答案 (1)B (2)23解析 (1)设直线AC ,BC 的斜率分别为k AC ,k BC ,由平均变化率的几何意义知,s 1(t )在[0,t 0]上的平均变化率v 甲=k AC ,s 2(t )在[0,t 0]上的平均变化率v 乙=k BC .因为k AC <k BC ,所以v 甲<v 乙.(2)当Δx =0.5时,2+Δx =2.5,故-2+Δy = 2.51-2.5=-53,故k PQ =-53+22.5-2=23.类型二 求函数的瞬时变化率例3 以初速度v 0(v 0>0)竖直上抛的物体,t 秒时的高度s 与t 的函数关系为s =v 0t -12gt 2,求物体在时刻t 0处的瞬时速度.解 因为Δs =v 0(t 0+Δt )-12g (t 0+Δt )2-⎝ ⎛⎭⎪⎫v 0t 0-12gt 20=(v 0-gt 0)Δt -12g (Δt )2,所以Δs Δt =v 0-gt 0-12g Δt .当Δt 趋于0时,ΔsΔt 趋于v 0-gt 0,故物体在时刻t 0处的瞬时速度为v 0-gt 0. 反思与感悟 (1)求瞬时速度的步骤 ①求位移改变量Δs =s (t 0+Δt )-s (t 0);②求平均速度v =ΔsΔt;③当Δt 趋于0时,平均速度ΔsΔt 趋于瞬时速度.(2)求当Δx 无限趋近于0时ΔyΔx的值 ①在表达式中,可把Δx 作为一个数来参加运算;②求出ΔyΔx的表达式后,Δx 无限趋近于0就是令Δx =0,求出结果即可.跟踪训练3 一质点M 按运动方程s (t )=at 2+1做直线运动(位移单位:m ,时间单位:s),若质点M 在t =2 s 时的瞬时速度为8 m/s ,求常数a 的值. 解 质点M 在t =2时的瞬时速度即为函数在t =2处的瞬时变化率. ∵质点M 在t =2附近的平均变化率 Δs Δt =s 2+Δt -s 2Δt=a 2+Δt2-4aΔt=4a +a Δt ,当Δt 趋于0时,ΔsΔt趋于4a ,∴4a =8,得a =2.1.已知函数f (x ),当自变量由x 0变化到x 1时,函数值的增量与相应的自变量的增量之比是函数( ) A.在x 0处的变化率B.在区间[x 0,x 1]上的平均变化率C.在x 1处的变化率D.以上结论都不对 答案 B 解析Δy Δx=f x 1-f x 0x 1-x 0,由平均变化率的定义可知,故选B.2.一物体的运动方程是s =3+2t ,则在[2,2.1]这段时间内的平均速度是( ) A.0.4 B.2 C.0.3 D.0.2答案 B 解析s 2.1-s 22.1-2=3+2×2.1-3+2×20.1=2.3.物体运动时位移s 与时间t 的函数关系是s =-4t 2+16t ,此物体在某一时刻的瞬时速度为零,则相应的时刻为( )A.t =1B.t =2C.t =3D.t =4答案 B解析 设此物体在t 0时刻的瞬时速度为0, Δs Δt =s t 0+Δt -s t 0Δt=-8t 0+16-4Δt ,当Δt 趋于0时,ΔsΔt 趋于-8t 0+16,令-8t 0+16=0,解得t 0=2.4.球的半径从1增加到2时,球的体积平均膨胀率为 . 答案28π3解析 ∵Δy =43π×23-43π×13=28π3,∴球的体积平均膨胀率为Δy Δx =28π3.5.设函数f (x )=3x 2+2在x 0=1,2,3附近Δx 取12时的平均变化率分别为k 1,k 2,k 3,比较k 1,k 2,k 3的大小.解 函数在[x 0,x 0+Δx ]上的平均变化率为6x 0+3Δx . 当x 0=1,Δx =12时,函数在[1,1.5]上的平均变化率为k 1=6×1+3×0.5=7.5;当x 0=2,Δx =12时,函数在[2,2.5]上的平均变化率为k 2=6×2+3×0.5=13.5;当x 0=3,Δx =12时,函数在[3,3.5]上的平均变化率为k 3=6×3+3×0.5=19.5,所以k 1<k 2<k 3.1.平均变化率反映函数在某个范围内变化的快慢;瞬时变化率反映函数在某点处变化的快慢.2.可以使用逼近的思想理解瞬时变化率,同时结合变化率的实际意义.40分钟课时作业一、选择题1.已知函数y =f (x )=sin x ,当x 从π6变到π2时,函数值的改变量Δy 等于( )A.-12B.12C.π3D.32答案 B解析 Δy =f (π2)-f (π6)=sin π2-sin π6=12.2.一质点运动的方程为s =5-3t 2,若该质点在时间段[1,1+Δt ]内相应的平均速度为-3Δt -6,则该质点在t =1时的瞬时速度是( ) A.-3 B.3 C.6 D.-6 答案 D解析 由平均速度与瞬时速度的关系可知,当Δt 趋于0时,-3Δt -6趋于-6,故该质点在t =1时的瞬时速度为-6.3.如图,函数y =f (x )在A ,B 两点间的平均变化率是( )A.1B.-1C.2D.-2答案 B解析 依题意可知Δy =y B -y A =1-3=-2, Δx =x B -x A =3-1=2,所以函数y =f (x )在x A 到x B 之间的平均变化率为 Δy Δx =-22=-1. 4.甲、乙两厂污水的排放量W 与时间t 的关系如图所示,则治污效果较好的是( )A.甲B.乙C.相同D.不确定答案 B解析 在t 0处,虽然W 1(t 0)=W 2(t 0), 但是在t 0-Δt 处,W 1(t 0-Δt )<W 2(t 0-Δt ),即⎪⎪⎪⎪⎪⎪W 1t 0-W 1t 0-Δt Δt <⎪⎪⎪⎪⎪⎪W 2t 0-W 2t 0-Δt Δt ,所以在相同时间Δt 内,甲厂比乙厂的平均治污率小. 所以乙厂的治污效果较好.5.函数f (x )=x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1,k 2的大小关系是( ) A.k 1<k 2 B.k 1>k 2 C.k 1=k 2 D.无法确定 答案 D 解析 k 1=f x 0+Δx -f x 0Δx =2x 0+Δx ,k 2=f x 0-f x 0-ΔxΔx=2x 0-Δx ,而Δx可正可负,故k 1、k 2大小关系不确定.6.如果函数y =f (x )=ax +b 在区间[1,2]上的平均变化率为3,则( ) A.a =-3 B.a =3C.a =2D.a 的值不能确定答案 B 解析Δy Δx=f2-f 12-1=a =3.7.一个物体的运动方程是s =2t 2+at +1,该物体在t =1时的瞬时速度为3,则a 等于( ) A.-1 B.0 C.1 D.7答案 A 解析 Δs Δt=s1+Δt -s 1Δt=21+Δt2+a1+Δt +1-2+a +1Δt=a +4+2Δt ,当Δt 趋于0时,a +4+2Δt 趋于a +4, 由题意知a +4=3,得a =-1. 二、填空题8.汽车行驶的路程s 与时间t 之间的函数图像如图所示,在时间段[t 0,t 1],[t 1,t 2],[t 2,t 3]上的平均速度分别为v 1,v 2,v 3,则三者的大小关系为 .答案 v 1<v 2<v 3解析 v 1=k OA ,v 2=k AB ,v 3=k BC , 由图像知,k OA <k AB <k BC .9.函数f (x )=1x2+2在x =1处的瞬时变化率为 .答案 -2 解析 ∵Δy =11+Δx2+2-(112+2)=11+Δx2-1=-2Δx -Δx 21+Δx2,∴Δy Δx =-2-Δx 1+Δx2, 当Δx 趋于0时,ΔyΔx趋于-2.10.已知函数f (x )=-x 2+x 的图像上的一点A (-1,-2)及邻近一点B (-1+Δx ,-2+Δy ),则ΔyΔx= . 答案 3-Δx解析 ∵-2+Δy =-(-1+Δx )2+(-1+Δx ), ∴Δy Δx =--1+Δx2+-1+Δx --2Δx=3-Δx .11.函数f (x )=x 2-x 在区间[-2,t ]上的平均变化率为2,则t = . 答案 5解析 函数f (x )=x 2-x 在区间[-2,t ]上的平均变化率是Δy Δx =f t -f -2t --2=t 2-t --22-2t +2=2,即t 2-t -6=2t +4,t 2-3t -10=0, 解得t =5或t =-2(舍去).所以当函数f (x )=x 2-x 在区间[-2,t ]上的平均变化率是2时,t 的值是5. 三、解答题12.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的取值范围.解 ∵函数f (x )在[2,2+Δx ]上的平均变化率为Δy Δx =f 2+Δx -f 2Δx =-2+Δx2+2+Δx --4+2Δx=-3-Δx ,∴由-3-Δx ≤-1,得Δx ≥-2. 又∵Δx >0,∴Δx 的取值范围是(0,+∞).13.若一物体运动方程如下:(位移单位:m ,时间单位:s)s =⎩⎪⎨⎪⎧3t 2+2 t ≥3 ①29+3t -320≤t <3 ②求:(1)物体在t ∈[3,5]内的平均速度; (2)物体的初速度v 0; (3)物体在t =1时的瞬时速度.解 (1)∵物体在t ∈[3,5]内的时间变化量为 Δt =5-3=2,物体在t ∈[3,5]内的位移变化量为Δs =3×52+2-(3×32+2)=3×(52-32)=48, ∴物体在t ∈[3,5]内的平均速度为 Δs Δt =482=24 (m/s). (2)求物体的初速度v 0即求物体在t =0时的瞬时速度. ∵物体在t =0附近的平均变化率为 Δs Δt =f 0+Δt -f 0Δt=29+3[0+Δt -3]2-29-30-32Δt=3Δt -18,∴当Δt 趋于0时,ΔsΔt 趋于-18,∴物体在t =0处的瞬时变化率为-18, 即物体的初速度为-18 m/s.(3)物体在t =1时的瞬时速度即为函数在t =1处的瞬时变化率. ∵物体在t =1附近的平均变化率为 Δs Δt =f 1+Δt -f 1Δt=29+3[1+Δt -3]2-29-31-32Δt=3Δt -12. ∴当Δt 趋于0时,Δs Δt趋于-12, ∴物体在t =1处的瞬时变化率为-12. 即物体在t =1时的瞬时速度为-12 m/s.。
§1 变化的快慢与变化率
(共1课时新授课)
学习目标:
1、理解函数瞬时变化率的概念;
2、会求给定函数在某点处的瞬时变化率,并能根据函数的瞬时变化率判断函数在某点处变化的快慢;
3、理解瞬时速度、线密度的物理意义,并能解决一些简单的实际问题。
学习重点:知道瞬时变化率刻画的是函数在某点处变化的快慢
学习难点:对于平均变化率与瞬时变化率的关系的理解
一、自主学习-------知识要点
探究任务一:平均变化率
1、阅读课本总结公式:
(1)物体的平均速度__________________________________
(2)体温的平均变化率________________________________
(3)函数的平均变化率
_____________________________________________________
2、函数的平均变化率与函数单调性之间的关系。
分析:
_______________________________________________________
探究任务二:瞬时变化率
1、阅读课本总结公式:
(1)物体的瞬时速度__________________
(2)物体的线密度________________________
(3)函数的瞬时变化率
_______________________________________________________ 2、如果某一物体在某一段时间平均速度为0,那么该物体在这段时间里是否静止?
分析:
_______________________________________________________
二、合作探究-------典例分析
知识点一求平均变化率
例1求函数2
()
f x x
=从1到2的平均变化率.
.
.
(理科做)变式1求235
y x x
=-+在1
x=附近的平均变化率.
总结1:求平均变化率的步骤
知识点二求瞬时变化率
例2、一个小球从高空自由下落,其走过的路程s(单位:m)与时间t(单位:s)的函数关系
为2
2
1
gt
s=,其中g为重力加速度)
/
8.9
(2s
m
g=,试估计小球在t=5s这个时刻的瞬时速度。
例3、如图所示,一根质量分布不均匀的合金棒,长为10m 。
x (单位:m )表示OX 这段棒长,
y (单位:kg )表示OX 这段棒的质量,它们满足以下函数关系:
x x f y 2)(==。
估计该合金棒在x =2m 处的线密度。
2
21121
4=-=+=x x x
y )()(率:在下列各点的瞬时变化函数、通过平均变化率估计例
总结2:求瞬时变化率的步骤
三、理解应用
1.一质点的运动方程是253s t =-+,则在一段时间[1,1]t +∆内相应在的平均速度是( ) A.36t ∆+ B.36t -∆+ C.36t ∆- D.36t -∆- 2.函数22y x x =-在2x =附近的平均变化率是( ) A.2 B.x ∆ C.2x ∆+ D.1
3.一质点按规律3()2s t t =运动,则在2t =时的瞬时速度为( ) A.4 B.6 C.24 D.48
4.利用平均变化率求下列函数在2x =处的瞬时变化率 (1)2312y x =- (2)235y x x =-+ (3)1y x x
=+
四、学习小结:(谈谈你本节课的收获)
五、课后作业:
思考:平均变化率与瞬时变化率的几何意义是什么?。