数据采集电路和简易存储示波器设计
- 格式:pdf
- 大小:1.05 MB
- 文档页数:22
简易数字存储示波器设计摘要本文介绍了一种简易的数字存储示波器的设计。
示波器是一种广泛使用的电子测试仪器,用于显示电压随时间变化的波形。
数字存储示波器通过将波形样本存储在内存中,然后再进行显示,具有更高的分辨率和更多的功能。
本设计基于嵌入式系统,并通过一块液晶显示屏显示波形。
引言示波器是电子工程师和电子爱好者常用的测试设备之一。
然而,传统的示波器通常比较昂贵,且功能复杂。
为了满足一些简单的测试需求,我们设计了一款简易的数字存储示波器。
数字存储示波器具有存储和显示波形的功能,并且可以通过嵌入式系统实现。
本设计的核心部分是使用嵌入式开发板、模数转换器和液晶显示屏构建的简易数字存储示波器。
设计方案硬件设计嵌入式开发板本设计使用一块嵌入式开发板作为主要的处理器和控制单元。
开发板上应具备足够的计算能力和接口,以支持模数转换器、存储器和显示屏的连接。
模数转换器模数转换器(ADC)负责将输入的模拟信号转换为数字信号。
常见的ADC芯片有多种型号可选,选择合适的芯片以满足高精度和合适的采样率要求。
存储器用于存储模拟信号的样本数据。
根据要求,可以选择适当的存储器类型,如SRAM或SD卡。
显示屏显示屏用于显示存储器中的波形样本。
一块液晶显示屏是一个常见的选择,因为它可以提供高清晰度的图像和良好的视觉效果。
软件设计数据采集软件的第一步是通过ADC采集模拟信号,并将其转换为数字信号。
通过选择适当的采样率和转换精度,可以确保捕捉到所需的信号信息。
数据存储采集到的模拟信号样本将存储在嵌入式开发板的存储器中。
可以根据需要选择适当的存储器类型,以满足手头的需求。
从存储器中读取波形样本,然后将其显示在液晶显示屏上。
通过适当的算法和图形库,可以实现波形的平滑显示和良好的视觉效果。
操作流程本设计的操作流程如下:1.将待测试的电路连接到示波器的输入端口。
2.启动示波器,并设置合适的采样率和采样时间。
3.通过液晶显示屏查看波形样本。
4.根据需要对波形进行测量或分析。
简易数字存储示波器设计报告摘要本设计分为四个模块,分别是:信号前向调整模块,数据采集模块,数据输出模块和控制模块。
信号前向调整模块采用高速低噪音模拟开关(MAX4545)和宽带运算放大器(MAX817)构成可编程运算放大器,对幅度不等的输入信号分别进行不同等级的放大处理.数据采集模块采用可编程器件(EPM7128SLC84—15)控制高速A/D(TLC5510)对不同频率的输入信号分别以相应的采样速度予以采样,并将采样数据存在双口RAM(IDT7132)中.数据输出模块采用另一片可编程器件(EPM7128SLC84—15)控制两片D/A(DAC0800)分别输出采样信号和锯齿波,在示波器上以X-Y的方式显示波形.控制模块以AT89C52单片机为控制核心,协调两片可编程器件的工作,并完成其它的测量,计算及控制功能.一.总体方案设计与论证:方案一:数字示波器采用数字电路,将输入信号先经过A/D变换器,把模拟波形变换成数字信息,暂存于存储器中。
显示时通过D/A变换器将存储器中的数字信息变换成模拟波形显示在模拟示波器的示波管上。
对于存储器的地址计数及数据存取可通过数字电路对时钟脉冲计数产生地址,并选通存储器来实现;对输入信号何时触发采集可通过模拟比较器及其它简单的模拟电路实现。
但是,这种方法的硬件电路过于复杂,调试起来也不方便,不利于系统的其它功能扩展,因而不可采取。
方案二:采用AT89C52单片机。
单片机软件编程灵活,自由度大。
可通过软件编程实现对模拟信号的采集,存储数据的输出以及各种测量,逻辑控制等功能。
但是,系统要求的频带上限为50KHZ,根据采样定理,采样速度的下限为100KHZ,需要用高速A/D进行采样.假设单片机系统用12M的晶体振荡器作为系统时钟,那麽一条指令就需要1us或2us,根本无法控制A/D高速工作.因此,单纯用软件是不可能实现该系统的。
方案三:采用AT89C52单片机作为控制核心,采用可编程器件(ALTERA公司的EPM7128SLC84—15)来实现对数字系统的控制。
简易数字存储示波器设计数字存储示波器是一款用于测量电信号的仪器,它可以将收集到的信号进行数字化处理,并将结果显示在屏幕上。
本文将介绍一个简易的数字存储示波器的设计。
1. 设计目标设计一个简易的数字存储示波器,使其能够接收并显示电信号的波形,并具备一定的存储功能。
该示波器需要具备以下功能:能够调节触发电平、可以调节扫描速度、能够通过按钮进行保存和回放存储的波形。
设计需要保证简易、易于操作、能够满足基本的测量需求。
2. 硬件设计(1)电路板设计:设计一个电路板用于信号的采集和存储。
该电路板包括模拟前端电路用于信号的采集,数字转换电路将模拟信号转换为数字信号,以及存储器用于存储采集到的数据。
(2)显示屏和按键:电路板上需要配备一个液晶显示屏,用于显示采集到的波形图像。
同时,设计按键用于调节触发电平、扫描速度以及保存和回放。
3. 软件设计(1)数据采集:通过模拟前端电路采集信号,并使用数字转换电路将模拟信号转换为数字信号。
采用适当的采样率,将数据进行采样,并存储到存储器中。
(2)数据显示:通过显示屏将存储器中的数据显示为波形图像。
根据采样率和扫描速度,将存储器中的数字信号转换为波形,并在屏幕上显示。
(3)触发控制:通过按键调节触发电平,设置触发条件,使得波形显示能够达到最佳效果。
设计合适的触发电路用于触发信号。
(4)数据存储和回放:设计按键和存储器用于保存和回放采集到的波形。
按下保存键后,将当前的波形数据保存到存储器中,按下回放键后,将存储器中的波形数据重新显示在屏幕上。
4. 使用方法使用该简易数字存储示波器,首先将信号源连接到示波器的输入端,然后通过按键进行触发电平的调节和扫描速度的设置。
在适当的触发条件下,示波器将开始采集并显示信号的波形。
当波形满足要求后,可以通过按键将波形数据保存到存储器中。
保存后的波形可以通过按键进行回放,重新显示在屏幕上。
5. 总结通过以上的设计和实现,可以得到一个简易的数字存储示波器。
简易数字存储示波器设计【摘要】:该简易数字存储示波器的设计是介绍基于FPGA高速数据实时采集与存储、显示技术,采用FPGA中的A/D采样控制器负责对A/D模拟信号的采样控制,并将A/D转换好的数据送到FPGA的内部RAM中存储;RAM的地址信号由地址发生计数器产生。
当完成1至数个周期的被测信号的采样后,在地址发生计数器的地址扫描下,将存于RAM中的数据通过外部的D/A进入示波器的Y端;与此同时,地址发生计数器的地址信号分配后通过另一个D/A构成锯齿波信号,进入示波器的X端。
从而实现数字存储示波器的功能。
本设计的ADC0809芯片作为高速信号的A/D转换,SRAM6264存储器作为采样后数据的存储,DAC0832芯片作为信号的 D/A转换。
程序设计采用超高速硬件描述语言VHDL描述,对其A/D转换、A/D采样控制器及数据的存储、数字输出进行编程、仿真,完成硬件和软件的设计,以及实验样机的部分调试。
关键词:数字存储示波器,FPGA,0809ADC,0832ADC, S RAM6264存储器Abstract:The simple design of digital storage oscilloscope is to introduce high-speed FPGA-based real-time data acquisition and storage, display technology, the use of FPGA in the A / D sampling controller is responsible for A / D analog signal to control the sampling and A / D conversion to the good data in the FPGA is internal RAM memory; RAM address signal generated by the address counter. Upon the completion of cycle 1 to a few samples of the measured signal, the address counter in the address scan, will keep the data in RAM through the external D / A into the scope of the Y-side; At the same time, address counter After the allocation of the address signal through a D / A constitute a sawtooth signal, the X-side into the oscilloscope. In order to achieve the functions of digital storage oscilloscope.The design of the chip as a high-speed signal ADC0809 the A / D converter, SRAM6264 memory for data storage after sampling, DAC0832 chip as a signal of D / A conversion. Programming using ultra-high-speed hardware description language VHDL description of its A / D conversion, A / D sampling controller and data storage, digital output programming, simulation, the completion of the design of hardware and software, as well as some of the experimental prototype debugging .Key words:digital storage oscilloscope, FPGA, ADC0809, DAC0832, SRAM6264 memory目录【摘要】 1【Abstract】:错误!未定义书签。
简易数字存储示波器电子综合实验项目设计
简易数字存储示波器电子综合实验项目设计详述如下:本实验要
求设计一台简易数字存储示波器(以下简称DSO),完成对信号的观察、测量和分析。
DSO在两个不同时间尺度上对电子信号进行测量,以查看
信号的周期性变化。
它的典型用途包括检测波形的工作,分析低频信
号的幅度变化,检测瞬态信号的持续时间,跟踪数字电路的时间变化等。
本实验以AD8009-18G作为DSO的A/D转换器,该模块带有基于CPLD设计的熔丝接口和控制单元,用于控制和监控示波器工作状态。
此外,本实验将使用AT89C51作为微控制器,主要用来提供操作系统,通过HD44780液晶显示屏与用户进行交互,控制数据采集和存储。
另外,为了实现示波器多功能功能,本实验系统中还设有一个键
盘输入单元,用户可以通过该单元输入控制信号,以控制显示器的分
辨率和数据采集的时间等;同时,系统还集成了一个EEPROM,用于存
储系统参数,方便用户查看和修改参数。
本实验的最终目标是通过本实验的设计,使学生能够掌握示波器
所对应的原理,了解数字存储技术,熟悉相关芯片的操作,以及学d
习数字系统设计和控制等方面的知识。
简易数字存储示波器设计任务及要求:1、设计并制作一台用普通示波器显示被测波形的简易数字存储示波器,示意图如下:2、基本要求(1)要求仪器具有单次触发存储显示方式,即每按动一次“单次触发”键,仪器在满足触发条件时,能对被测周期信号或单次非周期信号进行一次采集与存储,然后连续显示。
(2)要求仪器的输入阻抗大于100kΩ,垂直分辨率为32级/div,水平分辨率为20点/div;设示波器显示屏水平刻度为10div,垂直刻度为8div。
(3)要求设置0.2s/div、0.2ms/div、20μs/div三档扫描速度,仪器的频率范围为DC~50kHz,误差≤5%。
(4)要求设置0.1V/div、1V/div二档垂直灵敏度,误差≤5%。
(5)仪器的触发电路用内触发,要求上升沿触发、触发电平可调。
(6)观测波形无明显失真。
3、发挥部分(1)增加连续触发存储显示方式,在这种方式下,仪器能连续对信号进行采集、存储并实时显示,且具有锁存(按“锁存”键即可存储当前波形)功能。
(2)增加双踪示波功能,能同时显示两路被测信号波形。
(3)增加水平移动扩展显示功能,要求存储深度增加一倍,并且能通过操作“移动”键显示被存储信号波形的任一部分。
(4)垂直灵敏度增加0.01V/div档,以提高仪器的垂直灵敏度,并尽力减小输入短路时的输出噪声电压。
方案选择及设计理念:数字存储示波器系统由信号调理电路、采样保持电路、触发电路、A/D、D/A、X输出电路、Y输出电路、控制处理器等组成。
下图所示为数字存储示波器的原理框图。
每隔一端时间对输入的模拟信号进行采样然后经过A/D转换,把这些数字化后的信息按一定的顺序存入RAM中,当采样频率走高时,就可以实现信号的不失真存储。
当需要观察这些信息时,只要以合适的频率把这些信息从存储器RAM中按原顺序取出,经D/A转化和LPF滤波后送至示波器就可以观察到稳定的还原后的波形。
方案讨论:采样方式的选择本题要求的单次信号测量,需采用实时采样;要求最高信号频率为50KHZ,为使该频率下每个周期内有20个采样点,就要求最高采样速率为1MHZ,A/D转换速率1Ms/s,在目前市场条件下满足1MHZ采样速率的A/D无论技术条件还是价格都不是困难的。
款简易示波器的设计方案随着电子通信以及教学事业的发展,示波器的应用越来越广泛,它在教学中所起到的作用越来越重要,示波器可以测量信号的幅度,频率以及波形等等,但是高精度的示波器非常昂贵,对于非盈利事业的教学组织来说无疑不合适,所以提出了一种以单片机为控制核心的简易示波器设计方案。
它由前向控制部分,数据采集和存储部分, 51 单片机控制部分以及按键和 MS12864R 显示部分组成。
1 简易数字示波器的工作原理以及总体框架本设计硬件电路部分由单片机控制系统电路,前向输入调理电路,模数转换和存储电路,以及按键显示电路组成。
其工作的基本思路就是以单片机为控制核心,让 AD 芯片完成数据的离散化,采集数据经过缓冲暂存于存储器里面,当波形显示时,单片机从存储器的读使能端读取采集数据存于数组中,然后进行相应的数据处理并把所存取得数据按一定的顺序打在液晶显示器相应的位置上,从而再现波形信号 ;其中输入调理电路由阻抗变换电路,信号抬升电路以及频率测量电路构成,阻抗变换电路是为了提高输入阻抗,信号抬升是为了使信号的幅度满足 AD 芯片的输入幅度要求,频率测量电路主要是测量周期性信号的频率。
总体设计框图如图 1 所示。
2 硬件设计 2.1 前端信号的处理本模块具有两信号位置的变换主要由阻抗变换电路,信号抬升电路构成, 阻抗变换采用 ua741 构建的阻随放大电路, 信 用 ua741 构成的加法电路, 信号位置的处理主要是对被测输 入信号在幅度与偏移方面进行线性处理,使信号在垂直方向处于 A/D 转换器的输入范围内。
波形变换电路是用来测量 输入信号的频率,但是单片机属于数字器件,为此,我们需 随着写入数据或者读取数据而使地址指针进行递增或者递 减来实现寻址,两者中间接了一个缓冲器,这样可以起到数 据缓冲作用,在MCU 与AD 之间接入FIFO 的作用是起到数 据缓冲的作用,因为 AD 的时钟高于 MCU 的工作频率,所 以让 AD 和 FIFO 同步工作来存储 AD 转换的输出数据,实 验中 AD 与 FIFO 的时钟同步,来自于 ALE 引脚,为了使时 钟更加稳定, 可以让 ALE 信号先经过与门再送往采集存储模 块;FIFO 有3个标志位引脚,FF 满标志,HF 半满标志以及 EF 空标志,本设计只利用了 FF 满标志,当 FIFO 存满时通 知单片机来读取数据,这是单片机使 FIFO 的写使能禁止, 大功能, 是输入信号位置的变换 ;二是信号波形的变换 号抬升电路采 要对输入信号进行波形变换以及脉冲整形;硬件电路设计如 图2 所示。
简易数字存储示波器实验报告基于FPGA的简易数字存储示波器的设计ⅰ.数字存储示波器的介绍和设计思路ⅱ。
实验设计原则三。
系统模块四简述。
最终实施功能描述八。
实验设计实现功能模块具体分析9六.实验硬件和整体仿真波形的分配15数字存储示波器简介及设计思路数字存储示波器是XXXX早期开发的一种新型示波器。
这种示波器可以方便地实现模拟信号波形的长期存储,并且可以通过使用机内微处理器系统进一步处理存储的信号,例如自动测量参数,例如频率、幅度、前后沿时间、平均值等。
和各种复杂的过程。
这次我们将设计一个简单的数字存储示波器。
数字存储示波器可以实现以下功能。
通过从信号源收集信号(可分为实时采样和等效时间采样),获得的值存储在内置的随机存取存储器中。
后期操作包括波形显示、波形测量(如测量频率、幅度、上升和下降时间延迟等)。
)和波形处理(例如两个波形的加法、减法、X- 3,以及系统的每个模块的简要描述...............六.实验硬件和整体仿真波形的分配15数字存储示波器简介及设计思路数字存储示波器是XXXX早期开发的一种新型示波器。
这种示波器可以方便地实现模拟信号波形的长期存储,并且可以通过使用机内微处理器系统进一步处理存储的信号,例如自动测量参数,例如频率、幅度、前后沿时间、平均值等。
和各种复杂的过程。
这次我们将设计一个简单的数字存储示波器。
数字存储示波器可以实现以下功能。
通过从信号源收集信号(可分为实时采样和等效时间采样),获得的值存储在内置的随机存取存储器中。
后期操作包括波形显示、波形测量(如测量频率、幅度、上升和下降时间延迟等)。
)和波形处理(如加法、减法和双迹X两种波形)。
我们设计的简易数字存储示波器具有单通道信号的采样、存储和显示(包括实时显示、存储和后期调用显示)、信号的频率测量和数值显示、波形的向上、向下、扩展和收缩以及采样波形的演示(包括正弦波、锯齿波和方波)等功能。
我们使用的硬件包括实验箱上的高速模数转换器TLC55。