2019版高考数学总复习第二章函数导数及其应用4函数及其表示课时作业文20180628237
- 格式:doc
- 大小:64.00 KB
- 文档页数:5
课时作业11 函数与方程一、选择题1.函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -2,x <0,x -1,x ≥0的所有零点的和等于( )A .-2B .-1C .0D .1解析:令⎝ ⎛⎭⎪⎫12x-2=0,解得x =-1,令x -1=0,解得x =1,所以函数f (x )存在两个零点1和-1,其和为0.答案:C2.下列函数中,在(-1,1)内有零点且单调递增的是( ) A .y =log 12x B .y =2x-1C .y =x 2-12D .y =-x 3解析:函数y =log 12x 在定义域上是减函数,y =x 2-12在(-1,1)上不是单调函数,y =-x 3在定义域上单调递减,均不符合要求.对于y =2x-1,当x =0∈(-1,1)时,y =0且y =2x-1在R 上单调递增.故选B.答案:B3.函数f (x )=x -4x的零点个数是( )A .0B .1C .2D .无数个解析:方法一:令f (x )=x -4x =0,∴x =4x,∴x 2=4,∴x =±2,有2个零点.方法二:令f (x )=x -4x =0,∴x =4x,令y 1=x ,y 2=4x结合图象有2个零点.答案:C4.(2018·豫南十校联考)函数f (x )=x 3+2x -1的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)解析:因为f (0)=-1<0,f (1)=2>0,则f (0)·f (1)=-2<0,且函数f (x )=x 3+2x -1的图象是连续曲线,所以f (x )在区间(0,1)内有零点.答案:A5.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A .0 B .1 C .2 D .3解析:由题意可知f (x )的定义域为(0,+∞). 在同一直角坐标系画出函数y 1=|x -2|(x >0),y 2=ln x (x >0)的图象,如图所示:由图可知函数f (x )在定义域内的零点个数为2. 答案:C6.根据下面表格中的数据,可以判定方程e x-x -2=0的一个根所在的区间为( )x-1 0 1 2 3 e x0.37 1 2.72 7.39 20.09 x +212345A.(1,2) B .(0,1) C .(-1,0) D .(2,3)解析:本题考查二分法的应用.令f (x )=e x-x -2,则由表中数据可得f (1)=2.72-3<0,f (2)=7.39-4>0,所以函数f (x )的一个零点在(1,2)上,即原方程的一个根在区间(1,2)上.答案:A7.(2018·广东揭阳一模)曲线y =⎝ ⎛⎭⎪⎫13x与y =x12的交点横坐标所在区间为( )A.⎝ ⎛⎭⎪⎫0,13B.⎝ ⎛⎭⎪⎫13,12C.⎝⎛⎭⎪⎫12,23D.⎝⎛⎭⎪⎫23,1解析:设f(x)=⎝⎛⎭⎪⎫13x-x12,∵f⎝⎛⎭⎪⎫13=⎝⎛⎭⎪⎫1313-⎝⎛⎭⎪⎫1312>0,f⎝⎛⎭⎪⎫12=⎝⎛⎭⎪⎫1312-⎝⎛⎭⎪⎫1212<0,∴f⎝⎛⎭⎪⎫13·f⎝⎛⎭⎪⎫12<0,根据函数零点存在性定理可得函数零点所在区间为⎝⎛⎭⎪⎫13,12,即交点横坐标所在区间为⎝⎛⎭⎪⎫13,12,故选B.答案:B8.(2018·云南省第一次统一检测)已知a,b,c,d都是常数,a>b,c>d.若f(x)=2 017-(x-a)(x-b)的零点为c,d,则下列不等式正确的是( )A.a>c>b>d B.a>b>c>dC.c>d>a>b D.c>a>b>d解析:f(x)=2 017-(x-a)(x-b)=-x2+(a+b)x-ab+2 017,又f(a)=f(b)=2 017,c,d为函数f(x)的零点,且a>b,c>d,所以可以在平面直角坐标系中作出函数f(x)的大致图象,如图所示,由图可知c>a>b>d,故选D.答案:D9.(2018·河南新乡三模)若函数f(x)=log2(x+a)与g(x)=x2-(a+1)x-4(a+5)存在相同的零点,则a的值为( )A.4或-52B.4或-2C.5或-2 D.6或-52解析:g(x)=x2-(a+1)x-4(a+5)=(x+4)[x-(a+5)],令g(x)=0,得x=-4或x=a+5,则f(-4)=log2(-4+a)=0或f(a+5)=log2(2a+5)=0,解得a=5或a=-2.答案:C10.(2018·四川绵阳模拟)函数f(x)=2x-2x-a的一个零点在区间(1,2)内,则实数a 的取值范围是( )A.(1,3) B.(1,2)C.(0,3) D.(0,2)解析:由题意,知函数f (x )在(1,2)上单调递增,又函数一个零点在区间(1,2)内,所以⎩⎪⎨⎪⎧f 1<0,f2>0,即⎩⎪⎨⎪⎧-a <0,4-1-a >0,解得0<a <3.答案:C二、填空题11.用二分法研究函数f (x )=x 3+3x -1的零点时,第一次经计算f (0)<0,f (0.5)>0,可得其中一个零点x 0∈________,第二次应计算________.解析:因为f (0)<0,f (0.5)>0,由二分法原理得一个零点x 0∈(0,0.5);第二次应计算f ⎝⎛⎭⎪⎫0+0.52=f (0.25).答案:(0,0.5) f (0.25)12.已知函数f (x )=x 2+x +a (a <0)在区间(0,1)上有零点,则a 的范围为________. 解析:由题意f (1)·f (0)<0.∴a (2+a )<0. ∴-2<a <0. 答案:(-2,0)13.(2018·陕西省宝鸡市高三质检)设函数f (x )=⎩⎪⎨⎪⎧2-x,x <1log 2x ,x ≥1,若函数y =f (x )-k 有且只有两个零点,则实数k 的取值范围是________.解析:∵当x <1时,2-x >12,当x ≥1时,log 2x ≥0,依题意函数y =f (x )的图象和直线y=k 的交点有两个,∴k >12.答案:⎝ ⎛⎭⎪⎫12,+∞ 14.(2018·南京二模)若函数f (x )=x 2-m cos x +m 2+3m -8=0有唯一零点,则满足条件的实数m 所组成的集合为________.解析:本题考查函数的性质、导数在研究函数中的应用.因为f (-x )=f (x ),所以f (x )是R 上的偶函数,所以函数f (x )的唯一零点只能是0,即f (0)=m 2+2m -8=0,解得m =2或m =-4.当m =2时,f (x )=x 2-2cos x +2,易证f ′(x )=2x +2sin x >0,x ∈(0,+∞),则f (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减.此时f (x )有唯一零点;当m =-4时,f (x )=x 2+4cos x -4,f ⎝ ⎛⎭⎪⎫π3=⎝ ⎛⎭⎪⎫π32-2<0,f (π)=π2-8>0,所以f (x )在⎝ ⎛⎭⎪⎫π3,π上有零点不符合,舍去,故实数m 的取值集合为{2}.灵活应用偶函数图象的对称性是解答本题的关键.答案:{2}[能力挑战]15.(2018·四川成都市高中毕业班第一次诊断预测)已知函数f (x )是定义在R 上的偶函数,且f (-x -1)=f (x -1),当x ∈[-1,0]时,f (x )=-x 3,则关于x 的方程f (x )=|cosπx |在⎣⎢⎡⎦⎥⎤-52,12上的所有实数解之和为( ) A .-7 B .-6 C .-3 D .-1解析:因为函数f (x )为偶函数,所以f (-x -1)=f (x +1)=f (x -1),所以函数f (x )的周期为2,又当x ∈[-1,0]时,f (x )=-x 3,由此在同一平面直角坐标系内作出函数y =f (x )与y =|cosπx |的图象,如图所示.由图知关于x 的方程f (x )=|cosπx |在⎣⎢⎡⎦⎥⎤-52,12上的实数解有7个.不妨设x 1<x 2<x 3<x 4<x 5<x 6<x 7,则由图,得x 1+x 2=-4,x 3+x 5=-2,x 4=-1,x 6+x 7=0,所以方程f (x )=|cosπx |在⎣⎢⎡⎦⎥⎤-52,12上的所有实数解的和为-4-2-1+0=-7,故选A.答案:A16.(2018·南昌模拟)定义在R 上的偶函数f (x )满足f (2-x )=f (x ),且当x ∈[1,2]时,f (x )=ln x -x +1,若函数g (x )=f (x )+mx 有7个零点,则实数m 的取值范围为( )A.⎝ ⎛⎭⎪⎫1-ln 28,1-ln 26∪⎝ ⎛⎭⎪⎫ln 2-16,ln 2-18B.⎝ ⎛⎭⎪⎫ln 2-16,ln 2-18 C.⎝ ⎛⎭⎪⎫1-ln 28,1-ln 26 D.⎝⎛⎭⎪⎫1-ln 28,ln 2-16 解析:本题考查函数与方程、导数的应用.由f (2-x )=f (x )得f (x )的图象关于直线x =1对称,又f (x )是偶函数,所以f (x )是以2为周期的周期函数.当x ∈[1,2]时,f (x )=ln x -x +1,则f ′(x )=1x -1=1-xx≤0,f (x )在[1,2]上单调递减,作出f (x )在(0,+∞)上的部分图象如图所示.函数g (x )=f (x )+mx 有7个零点,等价于f (x )的图象与直线y =-mx 有7个交点,由图易得ln 2-16<-m <ln 2-18,同理,在(-∞,0)上有ln 2-1-8<-m <ln 2-1-6,所以1-ln 28<m <1-ln 26或ln 2-16<m <ln 2-18,故选A.答案:A17.(2018·天津十二县区联考)已知函数f (x )=⎩⎪⎨⎪⎧e x+m -1,x ≥0,ax +b ,x <0,其中m <-1,对于任意x 1∈R 且x 1≠0,均存在唯一实数x 2,使得f (x 2)=f (x 1),且x 1≠x 2,若|f (x )|=f (m )有4个不相等的实数根,则a 的取值范围是( )A .(0,1)B .(-1,0)C .(-2,-1)∪(-1,0)D .(-2,-1)解析:本题考查函数的性质、函数与方程.当a =0时,显然不符合题意;当a ≠0时,函数y =e x+m -1(x ≥0)和函数y =ax +b (x <0)都是定义域内的单调函数,且函数y =e x+m -1(x ≥0)的值域为[m ,+∞),则由题意得函数y =ax +b (x <0)的值域为(m ,+∞),所以⎩⎪⎨⎪⎧b =m ,a <0,则函数f (x )=⎩⎪⎨⎪⎧e x+m -1,x ≥0,ax +b ,x <0,即f (x )=⎩⎪⎨⎪⎧e x+m -1,x ≥0,ax +m ,x <0的值域为[m ,+∞),|f (x )|的大致图象如图所示,由函数图象易得要使方程|f (x )|=f (m )有4个不相等的实数根,则⎩⎪⎨⎪⎧f m >0,|f m |<|m |,即⎩⎪⎨⎪⎧am +m >0,|am +m |<|m |,又因为m <-1,解得-2<a <-1,故选D.根据题意确定函数的值域和函数的大致图象是解题的关键. 答案:D。
2019版高考数学一轮复习第2章函数、导数及其应用2.11 导数在研究函数中的应用(一)学案文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第2章函数、导数及其应用2.11 导数在研究函数中的应用(一)学案文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第2章函数、导数及其应用2.11 导数在研究函数中的应用(一)学案文的全部内容。
2.11 导数在研究函数中的应用(一)[知识梳理]1.函数的单调性与导数2.函数的极值与导数设函数f(x)在点x0及其附近有定义极小值点、极大值点统称为极值点,极大值和极小值统称为极值.极值点与导数:可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0) =0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如,函数y=x3在x=0处有y′=0,但x=0不是极值点.此外,函数的不可导点也可能是函数的极值点.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.4.极值与最值(1)当连续函数在开区间内的极值点只有一个时,相应的极值点必为函数的最值点;(2)极值有可能是最值,但最值只要不在区间端点处取得,其必定是极值.[诊断自测]1.概念思辨(1)函数的导数越小,函数的变化越慢,函数的图象就越“平缓".()(2)若函数f(x)在(a,b)内恒有f′(x)〉0,那么f(x)在(a,b)上单调递增;反之,若函数f(x)在(a,b)内单调递增,那么一定有f′(x)〉0.( )(3)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.( ) (4)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.()答案(1)×(2)×(3)×(4)√2.教材衍化(1)(选修A1-2P93T2)已知函数f(x)=x2-ln |x|,则函数y=f(x)的大致图象是( )答案A解析f(-x)=(-x)2-ln |-x|=x2-ln |x|=f(x),∴f(x)是偶函数,图象关于y轴对称,排除D;当x>0时,f(x)=x2-ln x,f′(x)=2x-错误!=错误!,∴当0〈x<错误!时,f′(x)〈0,当x〉错误!时,f′(x)〉0,∴f(x)在错误!上单调递减,在错误!上单调递增,排除C;当x=错误!时,f(x)取得最小值f错误!=错误!-ln 错误!〉0,排除B.故选A.(2)(选修A1-2P93T3)已知a>0,函数f(x)=x3-ax在[1,+∞)上是单调增函数,则a的最大值是()A.0 B.1 C.2 D.3答案D解析由题意得f′(x)=3x2-a,∵函数f(x)=x3-ax在[1,+∞)上是单调增函数,∴在[1,+∞)上,f′(x)≥0恒成立,即a≤3x2在[1,+∞)上恒成立,∴a≤3。
第二章⎪⎪⎪函、导及其应用第一节函及其表示1.函与映射的概念2.函的有关概念(1)函的定义域、值域:在函y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函的定义域;与x 的值相对应的y 值叫做函值,函值的集合{f (x )|x ∈A }叫做函的值域.显然,值域是集合B 的子集.(2)函的三要素:定义域、值域和对应关系.(3)相等函:如果两个函的定义域和对应关系完全一致,则这两个函相等,这是判断两函相等的依据.(4)函的表示法表示函的常用方法有:解析法、图象法、列表法. 3.分段函若函在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函通常叫做分段函.1.下列函中,与函y =13x定义域相同的函为( )A .y =1sin xB .y =ln x xC .y =x e xD .y =sin xx答案:D2.若函y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函y =f (x )的图象可能是()答案:B3.函f (x )=x -4|x |-5的定义域是________________.答案:1.设函f (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =________.解析:若a ≥0,则a +1=2,得a =1; 若a <0,则-a +1=2,得a =-1. 答案:±12.已知f ⎝ ⎛⎭⎪⎫1x =x 2+5x ,则f (x )=________.解析:令t =1x ,∴x =1t .∴f (t )=1t 2+5t.∴f (x )=5x +1x2(x ≠0).答案:5x +1x2(x ≠0)考点一 函的定义域基础送分型考点——自主练透1.函f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .C .(-∞,0)∪(1,+∞)D .(-∞,0]∪ B .C .,则函g (x )=f x +x -1的定义域是( ) A .B .C .(1,2 017]D .解析:选B 令t =x +1,则由已知函的定义域为,可知1≤t ≤2 017.要使函f (x +1)有意义,则有1≤x +1≤2 017,解得0≤x ≤2 016,故函f (x +1)的定义域为.所以使函g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 016,x -1≠0,解得0≤x <1或1<x ≤2 016.故函g (x )的定义域为.4.函f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为____________________.解析:由⎩⎪⎨⎪⎧1-|x -1|≥0,a x-1≠0⇒⎩⎪⎨⎪⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函的定义域为(0,2]. 答案:(0,2]函定义域的求解策略(1)已知函解析式:构造使解析式有意义的不等式(组)求解. (2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)抽象函:①若已知函f (x )的定义域为,其复合函f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;②若已知函f (g (x ))的定义域为,则f (x )的定义域为g (x )在x∈时的值域.考点二 求函的解析式重点保分型考点——师生共研(1)已知f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函,且f (0)=0,f (x +1)=f (x )+x +1,求f (x );(4)已知函f (x )满足f (-x )+2f (x )=2x ,求f (x )的解析式.解:(1)(配凑法)由于f ⎝⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.(2)(换元法)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1,x >1.(3)(待定系法)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.(4)(解方程组法)由f (-x )+2f (x )=2x ,① 得f (x )+2f (-x )=2-x ,② ①×2-②,得,3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.∴f (x )的解析式是f (x )=2x +1-2-x3.求函解析式的4种方法1.已知f (x +1)=x +2x ,求f (x )的解析式.解:法一:(换元法)设t =x +1,则x =(t -1)2,t ≥1,代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1,x ≥1.法二:(配凑法)∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1,x +1≥1, 即f (x )=x 2-1,x ≥1.2.设y =f (x )是二次函,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根,∴Δ=4-4c =0,解得c =1.故f (x )=x 2+2x +1.考点三 分段函题点多变型考点——多角探明高考对分段函的考查多以选择题、填空题的形式出现,试题难度一般较小.常见的命题角度有: (1)分段函的函求值问题; (2)分段函的自变量求值问题;(3)分段函与方程、不等式问题.角度一:分段函的函求值问题1.(2017·西安质检)已知函f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x+1,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14的值是________.解析:由题意可得f ⎝ ⎛⎭⎪⎫14=log 214=-2,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14=f (-2)=3-2+1=109.答案:109角度二:分段函的自变量求值问题2.已知f (x )=⎩⎪⎨⎪⎧x 12,x ∈[0,+,|sin x |,x ∈⎝ ⎛⎭⎪⎫-π2,0,若f (a )=12,则a =________.解析:若a ≥0,由f (a )=12得,a 12=12,解得a =14;若a <0,则|sin a |=12,a ∈⎝ ⎛⎭⎪⎫-π2,0,解得a =-π6.综上可知,a =14或-π6. 答案:14或-π6角度三:分段函与方程、不等式问题3.已知函f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x+1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a , 若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0, 解得-1<a <3.答案:(-1,3)1.分段函的求值问题的解题思路(1)求函值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函定义区间的各段上,然后求出相应自变量的值,切记要代入检验.2.分段函与方程、不等式问题的求解思路依据不同范围的不同段分类讨论求解,最后将讨论结果并起.1.(2017·唐山统考)已知函f (x )=⎩⎪⎨⎪⎧2x-2,x ≤0,-log 3x ,x >0,且f (a )=-2,则f (7-a )=( )A .-log 37B .-34C .-54D .-74解析:选D 当a ≤0时,2a -2=-2无解;当a >0时,由-log 3a =-2,解得a =9,所以f (7-a )=f (-2)=2-2-2=-74.2.(2015·山东高考)设函f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x, x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1 B .C.⎣⎢⎡⎭⎪⎫23,+∞ D . B .(0,1]C .D ..∴原函的定义域为(0,1].4.已知函y =f (x )的定义域是,则函g (x )=f x x -1的定义域是( )A.⎣⎢⎡⎭⎪⎫0,13∪⎝ ⎛⎦⎥⎤13,1B . D .解析:选B 由⎩⎪⎨⎪⎧0≤3x ≤3,x -1≠0可得0≤x <1,选B.5.已知具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函,我们称为满足“倒负”变换的函,下列函:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足;对于②,f⎝ ⎛⎭⎪⎫1x =1x +x =f (x ),不满足;对于③,f⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函是①③. 6.函f (x ),g (x )分别由下表给出.则f (g (1))的值为________;满足f (g (x ))>g (f (x ))的x 的值是________.解析:∵g (1)=3,f (3)=1, ∴f (g (1))=1.当x =1时,f (g (1))=f (3)=1,g (f (1))=g (1)=3,不合题意. 当x =2时,f (g (2))=f (2)=3,g (f (2))=g (3)=1,符合题意. 当x =3时,f (g (3))=f (1)=1,g (f (3))=g (1)=3,不合题意. 答案:1 27.已知函f (x )=⎩⎪⎨⎪⎧a -x +1,x ≤1,a x -1,x >1,若f (1)=12,则f (3)=________.解析:由f (1)=12,可得a =12,所以f (3)=⎝ ⎛⎭⎪⎫122=14.答案:148.已知函y =f (x 2-1)的定义域为,则函y =f (x )的定义域为________.解析:∵y =f (x 2-1)的定义域为, ∴x ∈,x 2-1∈, ∴y =f (x )的定义域为. 答案:9.已知函f (x )=2x +1与函y =g (x )的图象关于直线x =2成轴对称图形,则函y =g (x )的解析式为________.解析:设点M (x ,y )为函y =g (x )图象上的任意一点,点M ′(x ′,y ′)是点M 关于直线x =2的对称点,则⎩⎪⎨⎪⎧x ′=4-x ,y ′=y .又y ′=2x ′+1, ∴y =2(4-x )+1=9-2x , 即g (x )=9-2x . 答案:g (x )=9-2x10.如图,已知A (n ,-2),B (1,4)是一次函y =kx +b 的图象和反比例函y =mx的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函和一次函的解析式. (2)求△AOC 的面积.解:(1)因为B (1,4)在反比例函y =mx上,所以m =4,又因为A (n ,-2)在反比例函y =m x =4x的图象上,所以n =-2,又因为A (-2,-2),B (1,4)是一次函y =kx +b 上的点,联立方程组⎩⎪⎨⎪⎧-2k +b =-2,k +b =4,解得⎩⎪⎨⎪⎧k =2,b =2.所以y =4x,y =2x +2.(2)因为y =2x +2,令x =0,得y =2,所以C (0,2),所以△AOC 的面积为:S =12×2×2=2.三上台阶,自主选做志在冲刺名校1.已知实a ≠0,函f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为( )A .-32B .-34C .-32或-34 D.32或-34解析:选B 当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-34,所以a 的值为-34,故选B.2.已知函f (x )满足对任意的x ∈R 都有f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2成立,则f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=________.解析:由f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2,得f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫78=2,f ⎝ ⎛⎭⎪⎫28+f ⎝ ⎛⎭⎪⎫68=2, f ⎝ ⎛⎭⎪⎫38+f ⎝ ⎛⎭⎪⎫58=2, 又f ⎝ ⎛⎭⎪⎫48=12⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫48+f ⎝ ⎛⎭⎪⎫48=12×2=1,∴f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=2×3+1=7.答案:73.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常).如图是根据多次实验据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0). (2)令x 2200+x100≤25.2, 得-72≤x ≤70. ∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.第二节函的单调性与最值1.函的单调性 (1)单调函的定义如果函y =f (x )在区间D 上是增函或减函,那么就说函y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函y =f (x )的单调区间.2.函的最值1.下列函中,定义域是R 且为增函的是( )A.y=e-x B.y=x3C.y=ln x D.y=|x|答案:B2.y=x2-6x+5的单调减区间为________.解析:y=x2-6x+5=(x-3)2-4,表示开口向上,对称轴为x =3的抛物线,其单调减区间为(-∞,3].答案:(-∞,3]3.若函f(x)=1x在区间上的最大值与最小值的和为34,则a=________.解析:由f(x)=1x的图象知,f(x)=1x在(0,+∞)上是减函,∵⊆(0,+∞),∴f(x)=1x在上也是减函,∴f(x)m ax=f(2)=12,f(x)min=f(a)=1a,∴12+1a=34,∴a=4.答案:41.易混淆两个概念:“函的单调区间”和“函在某区间上单调”,前者指函具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函f(x)在区间(-1,0)上是减函,在(0,1)上是减函,但在(-1,0)∪(0,1)上却不一定是减函,如函f(x)=1x .3.两函f(x),g(x)在x∈(a,b)上都是增(减)函,则f(x)+g(x)也为增(减)函,但f(x)·g(x),1f x等的单调性与其正负有关,切不可盲目类比.1.设定义在上的函y=f(x)的图象如图所示,则函y=f(x)的增区间为________.答案:,2.函f (x )=2x -1在上的最大值与最小值之差为________.解析:易知f (x )在上是减函,∴f (x )m ax -f (x )min =f (-2)-f (0)=-23-(-2)=43.答案:43考点一 函单调性的判断基础送分型考点——自主练透1.下列四个函中,在(0,+∞)上为增函的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函;当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函;当x ∈(0,+∞)时,f (x )=-1x +1为增函;当x ∈(0,+∞)时,f (x )=-|x |为减函.2.试讨论函f (x )=axx -1(a ≠0)在(-1,1)上的单调性.解:法一(定义法):设-1<x 1<x 2<1,f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1, f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a x 2-x 1x 1-x 2-,由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函f (x )在(-1,1)上递增. 法二(导法):f ′(x )=axx --ax x -x -2=a x --ax x -2=-a x -2.当a >0时,f ′(x )<0,函f (x )在(-1,1)上递减; 当a <0时,f ′(x )>0,函f (x )在(-1,1)上递增.3.判断函y =x +2x +1在(-1,+∞)上的单调性.解:法一:任取x 1,x 2∈(-1,+∞),且x 1<x 2,则y 1-y 2=x 1+2x 1+1-x 2+2x 2+1=x 2-x 1x 1+x 2+.∵x 1>-1,x 2>-1, ∴x 1+1>0,x 2+1>0, 又x 1<x 2,∴x 2-x 1>0,∴x2-x1x 1+x2+>0,即y1-y2>0.∴y1>y2,∴函y=x+2x+1在(-1,+∞)上单调递减.法二:y=x+2x+1=1+1x+1.∵y=x+1在(-1,+∞)上是增函,∴y=1x+1在(-1,+∞)上是减函,∴y=1+1x+1在(-1,+∞)上是减函.即函y=x+2x+1在(-1,+∞)上单调递减.判断或证明函的单调性的2种重要方法及其步骤(1)定义法,其基本步骤:取值作差商变形确定符号与1的大小得出结论(2)导法,其基本步骤:求导函确定符号得出结论考点二求函的单调区间重点保分型考点——师生共研求下列函的单调区间:(1)y=-x2+2|x|+1;(2)y=log12(x2-3x+2).解:(1)由于y=错误!即y =⎩⎪⎨⎪⎧-x -2+2,x ≥0,-x +2+2,x <0.画出函图象如图所示,单调递增区间为(-∞,-1]和,单调递减区间为和确定函的单调区间的3种方法单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.1.函y =|x |(1-x )在区间A 上是增函,那么区间A 是( ) A .(-∞,0) B.⎣⎢⎡⎦⎥⎤0,12C .高考对函单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.常见的命题角度有: (1)求函的值域或最值;(2)比较两个函值或两个自变量的大小; (3)解函不等式;(4)利用单调性求参的取值范围或值.角度一:求函的值域或最值 1.函f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函f (x )=1x为减函,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函f (x )的最大值为2. 答案:2角度二:比较两个函值或两个自变量的大小2.(2017·哈尔滨联考)已知函f (x )的图象关于直线x =1对称,当x 2>x 1>1时,(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c解析:选D 因f (x )的图象关于直线x =1对称.由此可得f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.由x 2>x 1>1时,(x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝ ⎛⎭⎪⎫52>f (e),∴b >a >c .角度三:解函不等式3.已知函f (x )为R 上的减函,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选C 由f (x )为R 上的减函且f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1),得⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪1x >1,x ≠0,即⎩⎪⎨⎪⎧|x |<1,x ≠0.∴-1<x <0或0<x <1.故选C.角度四:利用单调性求参的取值范围或值4.已知函f (x )=⎩⎪⎨⎪⎧a -x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实a 的取值范围为________.解析:要使函f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,a -2>0,f,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实a 的取值范围是(2,3]. 答案:(2,3]函单调性应用问题的常见类型及解题策略(1)求函最值(五种常用方法)(2)比较大小比较函值的大小,应将自变量转到同一个单调区间内,然后利用函的单调性解决.(3)解不等式在求解与抽象函有关的不等式时,往往是利用函的单调性将“f”符号脱掉,使其转为具体的不等式求解.此时应特别注意函的定义域.(4)利用单调性求参视参为已知,依据函的图象或单调性定义,确定函的单调区间,与已知单调区间比较求参.①若函在区间上单调,则该函在此区间的任意子区间上也是单调的;②分段函的单调性,除注意各段的单调性外,还要注意衔接点的取值.1.已知函f(x)=|x+a|在(-∞,-1)上是单调函,则a的取值范围是( )A .(-∞,1]B .(-∞,-1]C .解析:选A 法一:由一次函的图象可知选A. 法二:设∀x 1,x 2∈R 且x 1<x 2, ∵f (x )=kx +b 在R 上是增函,∴(x 1-x 2)(f (x 1)-f (x 2))>0,即k (x 1-x 2)2>0, ∵(x 1-x 2)2>0,∴k >0,故选A.3.(2017·北京东城期中)已知函y =1x -1,那么( )A .函的单调递减区间为(-∞,1),(1,+∞)B .函的单调递减区间为(-∞,1)∪(1,+∞)C .函的单调递增区间为(-∞,1),(1,+∞)D .函的单调递增区间为(-∞,1)∪(1,+∞)解析:选A 函y =1x -1可看作是由y =1x 向右平移1个单位长度得到的,∵y =1x 在(-∞,0)和(0,+∞)上单调递减,∴y =1x -1在(-∞,1)和(1,+∞)上单调递减,∴函y =1x -1的单调递减区间为(-∞,1)和(1,+∞),故选A.4.函y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝⎛⎭⎪⎫t -122+14,结合图象知,当t =12,即x =14时,y m ax =14.答案:145.函f (x )=log 12(x 2-4)的单调递增区间为________.解析:由x 2-4>0得x <-2或x >2.又u =x 2-4在(-∞,-2)上为减函,在(2,+∞)上为增函,y =log 12u 为减函,故f (x )的单调递增区间为(-∞,-2).答案:(-∞,-2)二保高考,全练题型做到高考达标1.已知函f (x )=x 2-2x -3,则该函的单调递增区间为( ) A .(-∞,1] B . D .∪上单调递减,在B.⎝⎛⎦⎥⎤0,12C.⎣⎢⎡⎦⎥⎤12,2 D .(0,2]解析:选C 因为log 12a =-log 2 a ,且f (x )是偶函,所以f (log 2a )+f (log12a )=2f (log 2a )=2f (|log 2a |)≤2f (1),即f (|log 2a |)≤f (1),又函在的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函. ∴f (x )的最大值为f (2)=23-2=6.4.已知函f (x )=⎩⎪⎨⎪⎧a -x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2是R 上的单调递减函,则实a 的取值范围是( )A .(-∞,2) B.⎝ ⎛⎦⎥⎤-∞,138C .(0,2)D.⎣⎢⎡⎭⎪⎫138,2 解析:选B因为函为递减函,则⎩⎪⎨⎪⎧a -2<0,a -⎝ ⎛⎭⎪⎫122-1,解得a ≤138,故选B.5.(2017·安徽皖江名校联考)定义在上的函f (x )满足(x 1-x 2)>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实a 的取值范围为( )A .>0,x 1≠x 2,∴函在上单调递增,∴⎩⎪⎨⎪⎧-2≤a 2-a ≤2,-2≤2a -2≤2,2a -2<a 2-a .∴⎩⎪⎨⎪⎧-1≤a ≤2,0≤a ≤2,a <1或a >2,∴0≤a <1,故选C.6.函f (x )=1x -1在区间上的最大值是1,最小值是13,则a +b=________.解析:易知f (x )在上为减函,∴⎩⎪⎨⎪⎧f a =1,f b =13,即⎩⎪⎨⎪⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4.∴a +b =6. 答案:67.已知函f (x )=x 2-2ax -3在区间上具有单调性,则实a 的取值范围为________________.解析:函f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函在(-∞,a ]和上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪∪上的最大值为4,最小值为m ,且函g (x )=(1-4m )x 在上的最小值为1a =m ,最大值为a 2=4,解得a =2,12=m ,与m <14矛盾;当0<a <1时,函f (x )在上的最小值为a 2=m ,最大值为a -1=4,解得a =14,m =116.所以a =14.答案:149.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=x 1-x 2x 1+x 2+.∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a.∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1. 综上所述知a 的取值范围是(0,1]. 10.已知函f (x )=a -1|x |.(1)求证:函y =f (x )在(0,+∞)上是增函;(2)若f (x )<2x 在(1,+∞)上恒成立,求实a 的取值范围. 解:(1)证明:当x ∈(0,+∞)时,f (x )=a -1x,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0,f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫a -1x 2-⎝ ⎛⎭⎪⎫a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,所以f (x )在(0,+∞)上是增函.(2)由题意a -1x<2x 在(1,+∞)上恒成立,设h (x )=2x +1x,则a <h (x )在(1,+∞)上恒成立. 任取x 1,x 2∈(1,+∞)且x 1<x 2,h (x 1)-h (x 2)=(x 1-x 2)⎝⎛⎭⎪⎫2-1x 1x 2.因为1<x 1<x 2,所以x 1-x 2<0,x 1x 2>1,所以2-1x 1x 2>0,所以h (x 1)<h (x 2),所以h (x )在(1,+∞)上单调递增. 故a ≤h (1),即a ≤3,所以实a 的取值范围是(-∞,3]. 三上台阶,自主选做志在冲刺名校1.如果函y =f (x )在区间I 上是增函,且函y =f xx在区间I上是减函,那么称函y =f (x )是区间I 上的“缓增函”,区间I 叫做“缓增区间”.若函f (x )=12x 2-x +32是区间I 上的“缓增函”,则“缓增区间”I 为( )A . C .D .解析:选D 因为函f (x )=12x 2-x +32的对称轴为x =1,所以函y =f (x )在区间上单调递减,故“缓增区间”I 为.2.已知定义在区间(0,+∞)上的函f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)证明:f (x )为单调递减函.(2)若f (3)=-1,求f (x )在上的最小值. 解:(1)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函f (x )在区间(0,+∞)上是单调递减函. (2)因为f (x )在(0,+∞)上是单调递减函,所以f (x )在上的最小值为f (9).由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝ ⎛⎭⎪⎫93=f (9)-f (3),而f (3)=-1, 所以f (9)=-2.所以f (x )在上的最小值为-2.第三节函的奇偶性及周期性1.函的奇偶性(1)周期函对于函f (x ),如果存在一个非零常T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函f (x )为周期函,称T 为这个函的周期.(2)最小正周期如果在周期函f(x)的所有周期中存在一个最小的正,那么这个最小正就叫做f(x)的最小正周期.1.下列函中,既是偶函又在(0,+∞)上单调递增的是( ) A.y=x B.y=cos xC.y=e x D.y=ln |x|答案:D2.已知函f(x)是定义在R上的奇函,且当x>0时,f(x)=x2+1x ,则f(-1)=________.答案:-23.若函f(x)是周期为5的奇函,且满足f(1)=1,f(2)=2,则f(8)-f(14)=________.答案:-11.判断函的奇偶性,易忽视判断函定义域是否关于原点对称.定义域关于原点对称是函具有奇偶性的一个必要条件.2.判断函f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)=-f(x)或f(-x)=f(x),而不能说存在x0使f(-x0)=-f(x0)或f(-x0)=f(x0).3.分段函奇偶性判定时,误用函在定义域某一区间上不是奇偶函去否定函在整个定义域上的奇偶性.1.已知f(x)=ax2+bx是定义在上的偶函,那么a+b的值是( )A .-13B.13C.12D .-12解析:选B ∵f (x )=ax 2+bx 是定义在上的偶函,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.2.下列函中,为奇函的是( ) A .y =3x+13xB .y =x ,x ∈{0,1}C .y =x ·sin xD .y =⎩⎪⎨⎪⎧1,x <0,0,x =0,-1,x >0解析:选 D 由函奇偶性定义易知函y =3x+13x 和y =x ·sin x都是偶函,排除A 和C ;函y =x ,x ∈{0,1}的定义域不关于坐标原点对称,既不是奇函又不是偶函,排除B ;由奇函的定义知y =⎩⎪⎨⎪⎧1,x <0,0,x =0,-1,x >0是奇函,故选D.考点一 函奇偶性的判断基础送分型考点——自主练透判断下列函的奇偶性:(1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3;(3)f (x )=3x -3-x ; (4)f (x )=4-x 2|x +3|-3;(5)(易错题)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)∵由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ). ∴f (x )既是奇函又是偶函.(2)∵函f (x )=3-2x +2x -3的定义域为⎩⎨⎧⎭⎬⎫32,不关于坐标原点对称,∴函f (x )既不是奇函,也不是偶函. (3)∵f (x )的定义域为R ,∴f (-x )=3-x -3x =-(3x -3-x )=-f (x ), 所以f (x )为奇函.(4)∵由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为, ∴f (x )=4-x 2|x +3|-3=4-x 2x +3-3=4-x 2x,∴f (-x )=-f (x ),∴f (x )是奇函.(5)易知函的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0, 故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x ,则当x >0时,-x <0, 故f (-x )=x 2+x =f (x ),故原函是偶函.判定函奇偶性的3种常用方法(1)定义法(2)图象法(3)性质法①设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函的奇偶性可概括为“同奇则奇,一偶则偶”.(1)“性质法”中的结论是在两个函的公共定义域内才成立的.(2)判断分段函的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x都满足相同的关系时,才能判断其奇偶性.如“题组练透”第(5)题.考点二函的周期性重点保分型考点——师生共研设f(x)是定义在R上的奇函,且对任意实x,恒有f(x+2)=-f(x),当x∈时,f(x)=2x-x2.(1)求证:f(x)是周期函;(2)计算f(0)+f(1)+f(2)+…+f(2 018).解:(1)证明:∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)是周期为4的周期函.(2)∵f(0)=0,f(1)=1,f(2)=0,f(3)=-f(1)=-1.又f(x)是周期为4的周期函,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 012)+f(2 013)+f(2 014)+f(2 015)=0.∴f(0)+f(1)+f(2)+…+f(2 018)=f(2 016)+f(2 017)+f(2 018)=f(0)+f(1)+f(2)=1.1.判断函周期性的2个方法(1)定义法.(2)图象法.2.周期性3个常用结论(1)若f(x+a)=-f(x),则T=2a,(2)若f(x+a)=1f x,则T=2a,(3)若f(x+a)=-1f x,则T=2a(a>0).1.若f(x)是R上周期为5的奇函,且满足f(1)=1,f(2)=2,则f(3)-f(4)等于( )A.-1 B.1 C.-2 D.2 解析:选A 由f(x)是R上周期为5的奇函,知f(3)=f(-2)=-f(2)=-2,f (4)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1,故选A.2.已知定义在R 上的函满足f (x +2)=-1f x,x ∈(0,2]时,f (x )=2x -1.则f (1)+f (2)+f (3)+…+f (2 017)的值为________.解析:∵f (x +2)=-1f x,∴f (x +4)=-1fx +=f (x ),∴函y =f (x )的周期T =4. 又x ∈(0,2]时,f (x )=2x -1, ∴f (1)=1,f (2)=3,f (3)=-1f=-1,f (4)=-1f=-13. ∴f (1)+f (2)+f (3)+…+f (2 017) =504+f (504×4+1)=504⎝⎛⎭⎪⎫1+3-1-13+1=1 345. 答案:1 345考点三 函性质的综合应用题点多变型考点——多角探明函的奇偶性、周期性以及单调性是函的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函相结合,并以结合奇偶性求函值为主.多以选择题、填空题形式出现.常见的命题角度有:(1)奇偶性的应用; (2)单调性与奇偶性结合; (3)周期性与奇偶性结合;(4)单调性、奇偶性与周期性结合.角度一:奇偶性的应用1.(2017·福建三明模拟)函y =f (x )是R 上的奇函,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-xC .-2-xD .2x解析:选C x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函,∴当x >0时,f (x )=-f (-x )=-2-x .故选C.角度二:单调性与奇偶性结合2.(2016·天津高考)已知f (x )是定义在R 上的偶函,且在区间(-∞,0)上单调递增.若实a 满足f (2|a -1|)>f (-2),则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,12B.⎝ ⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫32,+∞C.⎝ ⎛⎭⎪⎫12,32 D.⎝ ⎛⎭⎪⎫32,+∞ 解析:选C 因为f (x )是定义在R 上的偶函,且在区间(-∞,0)上单调递增,所以f (-x )=f (x ),且f (x )在(0,+∞)上单调递减.由f (2|a -1|)>f (-2),f (-2)=f (2),可得2|a -1|<2,即|a -1|<12,所以12<a <32.角度三:周期性与奇偶性结合3.已知f (x )是定义在R 上以3为周期的偶函,若f (1)<1,f (5)=2a -3a +1,则实a 的取值范围是( ) A .(-1,4)B .(-2,1)C .(-1,2)D .(-1,0)解析:选A 因为函f (x )是定义在R 上以3为周期的偶函,所以f (5)=f (-1)=f (1),即2a -3a +1<1, 简得(a -4)(a +1)<0,解得-1<a <4,故选A.角度四:单调性、奇偶性与周期性结合4.已知定义在R 上的奇函f (x )满足f (x -4)=-f (x ),且在区间上是增函,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:选D 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函f (x )是以8为周期的周期函,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间上是增函,f (x )在R 上是奇函,所以f (x )在区间上是增函,所以f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).函性质综合应用问题的常见类型及解题策略(1)函单调性与奇偶性结合.注意函单调性及奇偶性的定义,以及奇、偶函图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函值的自变量转到已知解析式的函定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转自变量所在的区间,然后利用奇偶性和单调性求解.1.(2017·广州模拟)已知f(x)在R上是奇函,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=( )A.2 B.-2C.-98 D.98解析:选B 因为f(x+4)=f(x),所以函f(x)的周期T=4,又f(x)在R上是奇函,所以f(7)=f(-1)=-f(1)=-2.2.已知偶函f(x)对于任意x∈R都有f(x+1)=-f(x),且f(x)在区间上是递增的,则f(-6.5),f(-1),f(0)的大小关系是( ) A.f(0)<f(-6.5)<f(-1)B.f(-6.5)<f(0)<f(-1)C.f(-1)<f(-6.5)<f(0)D.f(-1)<f(0)<f(-6.5)解析:选 A 由f(x+1)=-f(x),得f(x+2)=-f(x+1)=f(x),∴函f(x)的周期是2.∵函f(x)为偶函,∴f(-6.5)=f(-0.5)=f(0.5),f(-1)=f(1).∵f(x)在区间上是单调递增的,∴f (0)<f (0.5)<f (1),即f (0)<f (-6.5)<f (-1).3.设f (x )是定义在R 上周期为4的奇函,若在区间上,f (x )=⎩⎪⎨⎪⎧ ax +b ,-2≤x <0,ax -1,0<x ≤2,则f (2 018)=________.解析:设0<x ≤2,则-2≤-x <0,f (-x )=-ax +b .f (x )是定义在R 上周期为4的奇函,所以f (-x )=-f (x )=-ax +1=-ax +b ,所以b =1.而f (-2)=f (-2+4)=f (2),所以-2a +1=2a -1,解得a =12,所以f (2 018)=f (2)=2×12-1=0. 答案:0一抓基础,多练小题做到眼疾手快1.(2017·石家庄质检)下列函中,既是偶函又在区间(0,+∞)上单调递增的是( )A .y =1xB .y =|x |-1C .y =lg xD .y =⎝ ⎛⎭⎪⎫12|x | 解析:选B A 中函y =1x不是偶函且在(0,+∞)上单调递减,故A 错误;B 中函满足题意,故B 正确;C 中函不是偶函,故C 错误;D 中函不满足在(0,+∞)上单调递增,故选B.2.已知f (x )为定义在R 上的奇函,当x ≥0时,f (x )=2x +m ,则f (-2)=( )A .-3B .-54C.54 D .3解析:选A 因为f (x )为R 上的奇函,所以f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.3.函f (x )=x +1x+1,f (a )=3,则f (-a )的值为( ) A .-3B .-1C .1D .2解析:选B 由题意得f (a )+f (-a )=a +1a +1+(-a )+1-a+1=2.∴f (-a )=2-f (a )=-1,故选B.4.函f (x )在R 上为奇函,且x >0时,f (x )=x +1,则当x <0时,f (x )=________.解析:∵f (x )为奇函,x >0时,f (x )=x +1,∴当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=--x -1. 答案:--x -15.设函f (x )是定义在R 上周期为2的偶函,当x ∈时,f (x )=x+1,则f ⎝ ⎛⎭⎪⎫32=________. 解析:依题意得,f (2+x )=f (x ),f (-x )=f (x ),则f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12=12+1=32. 答案:32二保高考,全练题型做到高考达标1.(2016·山西考前质检)下列函中,既是偶函又在区间(1,2)内单调递减的是( )A .f (x )=xB .f (x )=1x 2C .f (x )=2x +2-xD .f (x )=-cos x解析:选B 对于A ,偶函与单调递减均不满足;对于B ,符合题意;对于C ,不满足单调递减;对于D ,不满足单调递减,故选B.2.设f (x )是周期为2的奇函,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52等于( ) A .-12B .-14C.14D.12 解析:选A ∵f (x )是周期为2的奇函,∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+2=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-2×12×⎝ ⎛⎭⎪⎫1-12=-12. 3.(2017·绵阳诊断)已知偶函f (x )在区间(a <b <0)上的值域为,则在区间上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3解析:选B 法一:根据题意作出y =f (x )的简图,由图知,选B.法二:当x ∈时,-x ∈,由题意得f (b )≤f (-x )≤f (a ),即-3≤-f (x )≤4,∴-4≤f (x )≤3,即在区间上f (x )min =-4,f (x )m ax =3,故选B.5.设f (x )是定义在实集上的函,且f (2-x )=f (x ),若当x ≥1时,f (x )=ln x ,则有( )A .f ⎝ ⎛⎭⎪⎫13<f (2)<f ⎝ ⎛⎭⎪⎫12 B .f ⎝ ⎛⎭⎪⎫12<f (2)<f ⎝ ⎛⎭⎪⎫13 C .f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2) D .f (2)<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13 解析:选C 由f (2-x )=f (x )可知函f (x )的图象关于x =1对称,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫13=f ⎝ ⎛⎭⎪⎫53,又当x ≥1时,f (x )=ln x 单调递增,所以f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫53<f (2),即f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2),故选C. 6.(2017·贵州适应性考试)已知f (x )是奇函,g (x )=2+f x f x .若g (2)=3,则g (-2)=________.解析:由题意可得g (2)=2+f f =3,则f (2)=1,又f (x )是奇函,则f (-2)=-1,所以g (-2)=2+f -f -=2-1-1=-1.答案:-17.定义在R 上的奇函y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,则满足f (x )>0的x 的集合为________.解析:由奇函y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,得函y=f (x )在(-∞,0)上递增,且f ⎝ ⎛⎭⎪⎫-12=0,∴f (x )>0时,x >12或-12<x <0. 即满足f (x )>0的x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -12<x <0或x >12. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -12<x <0或x >12 8.已知f (x ),g (x )分别是定义在R 上的奇函和偶函,且f (x )-g (x )=⎝ ⎛⎭⎪⎫12x ,则f (1),g (0),g (-1)之间的大小关系是______________.解析:在f (x )-g (x )=⎝ ⎛⎭⎪⎫12x 中,用-x 替换x , 得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函和偶函,所以f (-x )=-f (x ),g (-x )=g (x ),因此得-f (x )-g (x )=2x .联立方程组解得f (x )=2-x -2x 2,g (x )=-2-x +2x 2, 于是f (1)=-34,g (0)=-1,g (-1)=-54, 故f (1)>g (0)>g (-1).答案:f (1)>g (0)>g (-1)9.设f (x )的定义域为(-∞,0)∪(0,+∞),且f (x )是奇函,当x >0时,f (x )=x1-3x .(1)求当x <0时,f (x )的解析式;(2)解不等式f (x )<-x 8. 解:(1)因为f (x )是奇函,所以当x <0时, f (x )=-f (-x ),-x >0,又因为当x >0时,f (x )=x1-3x , 所以当x <0时,f (x )=-f (-x )=--x 1-3-x =x 1-3-x. (2)f (x )<-x 8,当x >0时,即x 1-3x <-x 8, 所以11-3x <-18,所以13x -1>18,所以3x -1<8, 解得x <2,所以x ∈(0,2).当x <0时,即x 1-3-x <-x 8,所以11-3-x >-18, 所以3-x >32,所以x <-2,所以解集是(-∞,-2)∪(0,2). 10.已知函f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函.(1)求实m 的值;(2)若函f (x )在区间上单调递增,求实a 的取值范围.解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧ a -2>-1,a -2≤1,所以1<a ≤3,故实a 的取值范围是(1,3].三上台阶,自主选做志在冲刺名校1.已知y =f (x )是偶函,当x >0时,f (x )=x +4x,且当x ∈时,n ≤f (x )≤m 恒成立,则m -n 的最小值是________.解析:∵当x ∈时,n ≤f (x )≤m 恒成立,∴n ≤f (x )min 且m ≥f (x )m ax ,∴m -n 的最小值是f (x )m ax -f (x )min ,又由偶函的图象关于y 轴对称知,当x ∈时,函的最值与x ∈时的最值相同,又当x >0时,f (x )=x +4x,在上递减,在上递增,且f (1)>f (3), ∴f (x )m ax -f (x )min =f (1)-f (2)=5-4=1.答案:12.设函f (x )是定义在R 上的奇函,对任意实x有f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x 成立. (1)证明y =f (x )是周期函,并指出其周期;(2)若f (1)=2,求f (2)+f (3)的值;(3)若g (x )=x 2+ax +3,且y =|f (x )|·g (x )是偶函,求实a 的值.解:(1)由f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x ,且f (-x )=-f (x ),知f (3+x )=f ⎣⎢⎡⎦⎥⎤32+⎝ ⎛⎭⎪⎫32+x = -f ⎣⎢⎡⎦⎥⎤32-⎝ ⎛⎭⎪⎫32+x =-f (-x )=f (x ), 所以y =f (x )是周期函,且T =3是其一个周期.(2)因为f (x )为定义在R 上的奇函,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.(3)因为y =|f (x )|·g (x )是偶函,且|f (-x )|=|-f (x )|=|f (x )|,所以|f (x )|为偶函. 故g (x )=x 2+ax +3为偶函,即g (-x )=g (x )恒成立,于是(-x )2+a (-x )+3=x 2+ax +3恒成立.于是2ax =0恒成立,所以a =0. 第四节函的图象1.描点法作图其基本步骤是列表、描点、连线,具体为:(1)①确定函的定义域;②简函的解析式;③讨论函的性质(奇偶性、单调性、周期性).(2)列表(注意特殊点、零点、最大值点、最小值点以及坐标轴的交点).(3)描点,连线.。
(全国通用版)2019版高考数学一轮复习第二章函数、导数及其应用课时分层作业四2.1 函数及其表示文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考数学一轮复习第二章函数、导数及其应用课时分层作业四2.1 函数及其表示文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考数学一轮复习第二章函数、导数及其应用课时分层作业四2.1 函数及其表示文的全部内容。
课时分层作业四函数及其表示一、选择题(每小题5分,共35分)1.下列所给图象是函数图象的个数为( )A。
1 B。
2 C.3 D。
4【解析】选B。
①中当x>0时,每一个x的值对应两个不同的y值,因此不是函数图象,②中当x=x0时,y的值有两个,因此不是函数图象,③④中每一个x的值对应唯一的y值,因此是函数图象。
2。
(2016·全国卷Ⅱ)函数y=的定义域为()A.(1,+∞)B.[1,+∞)C。
(1,2)∪(2,+∞) D.(1,2)∪[3,+∞)【解析】选C。
由ln(x-1)≠0,得x-1>0且x-1≠1。
由此解得x〉1且x≠2,即函数y=的定义域是(1,2)∪(2,+∞)。
3.给出四个命题:①函数是其定义域到值域的映射;②f(x)=+是一个函数;③函数y=2x(x∈N)的图象是一条直线;④f(x)=lg x2与g(x)=2lg x是同一函数。
其中正确的有( )A。
1个B。
2个 C.3个D。
4个【解析】选A。
由函数的定义知①正确。
因为满足f(x)=+的x不存在,所以②不正确。
因为y=2x(x∈N)的图象是位于直线 y=2x上的一群孤立的点,所以③不正确。
课时作业4 函数及其表示
一、选择题
1.下列四个图象中,是函数图象的是( )
A .(1)
B .(1)(3)(4)
C .(1)(2)(3)
D .(3)(4) 解析:由函数定义知(2)错. 答案:B
2.下面各组函数中为相同函数的是( ) A .f (x )=
x -1
2
,g (x )=x -1
B .f (x )=x 2
-1,g (x )=x +1·x -1 C .f (x )=ln e x
与g (x )=e ln x
D .f (x )=x 0
与g (x )=1x
解析:函数的三要素相同的函数为相同函数,对于选项A ,f (x )=|x -1|与g (x )对应关系不同,故排除选项A ,选项B 、C 中两函数的定义域不同,排除选项B 、C ,故选D.
答案:D
3.(2018·东北三省四市模拟)函数y =x 3-x +x -1的定义域为( )
A .[0,3]
B .[1,3]
C .[1,+∞) D.[3,+∞)
解析:要使函数有意义,则需⎩⎪⎨
⎪⎧
x 3-x ≥0,
x -1≥0.
∴⎩
⎪⎨
⎪⎧
0≤x ≤3,
x ≥1.∴1≤x ≤3,故选B.
答案:B
4.(2018·黄山质检)已知f (x )是一次函数,且f (f (x ))=x +2,则f (x )=( ) A .x +1 B .2x -1 C .-x +1 D .x +1或-x -1
解析:f (x )是一次函数,设f (x )=kx +b ,f (f (x ))=x +2,可得k (kx +b )+b =x +2,即k 2
x +kb +b =x +2,∴k 2
=1,kb +b =2.解得k =1,b =1.即f (x )=x +1.故选A.
答案:A
5.下列函数中,值域是(0,+∞)的是( ) A .y =x 2
-2x +1 B .y =x +2
x +1
(x ∈(0,+∞)) C .y =1
x 2
+2x +1
(x ∈N )
D .y =
1
|x +1|
解析:选项A 中y 可等于零;选项B 中y 显然大于1;选项C 中x ∈N ,值域不是(0,+∞),选项D 中|x +1|>0,故y >0.
答案:D
6.已知f 1
2x -1=2x -5,且f (a )=6,则a 等于( )
A .-74 B.74
C.43 D .-43
解析:令t =1
2x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a
=74
. 答案:B
7.(2018·河北“五名校”质检)函数f (x )=⎩
⎪⎨⎪⎧
2e x -1
,x <2,
log 3x 2
-1,x ≥2,则不等式
f (x )>2的解集为( )
A .(-2,4)
B .(-4,-2)∪(-1,2)
C .(1,2)∪(10,+∞) D.(10,+∞) 解析:令2e x -1
>2(x <2),解得1<x <2;令log 3(x 2
-1)>2(x ≥2),解得x >10,故选C.
答案:C
8.已知等腰△ABC 周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,则函数的定义域为( )
A .{x |x ∈R }
B .{x |x >0}
C .{x |0<x <5} D.⎩⎨⎧⎭
⎬⎫
x 52<x <5
解析:由题意知⎩⎪⎨⎪
⎧
x >0,10-2x >0,
2x >10-2x ,
即5
2
<x <5. 答案:D
9.定义a b =⎩⎪⎨⎪
⎧
a ×
b ,a ×b ≥0,a
b
,a ×b <0,设函数f (x )=ln x
x ,则f (2)+f ⎝ ⎛⎭
⎪⎫
12=( )
A .4ln 2
B .-4ln 2
C .2
D .0
解析:2×ln 2>0,所以f (2)=2×ln 2=2ln 2. 因为12×ln 12<0,所以f ⎝ ⎛⎭
⎪⎫12=ln 1212
=-2ln 2.
则f (2)+f ⎝ ⎛⎭
⎪⎫12=2ln 2-2ln 2=0. 答案:D
10.(2018·唐山统考)已知函数f (x )=⎩⎪⎨
⎪
⎧
2x
-2,x ≤0,-log 3x ,x >0,
且f (a )=-2,则f (7-a )
=( )
A .-log 37
B .-3
4
C .-54
D .-74
解析:当a ≤0时,2a
-2=-2无解;当a >0时,由-log 3a =-2,解得a =9,所以f (7-a )=f (-2)=2-2
-2=-74
.
答案:D 二、填空题
11.(2018·南京二模)函数f (x )=ln 1
1-x 的定义域为________.
解析:本题考查对数函数的定义域.要使函数f (x )=ln
11-x 有意义,则11-x
>0,解得x <1,故函数f (x )的定义域为(-∞,1).
答案:(-∞,1)
12.对任意x 都满足2f (x )-f (-x )=x 2
+x ,求f (x )=________.
解析:∵2f (x )-f (-x )=x 2
+x ,① ∴2f (-x )-f (x )=x 2
-x ,② ①×2+②得 3f (x )=3x 2
+x , ∴f (x )=x 2
+13x .
答案:x 2
+13
x
13.已知函数y =f (x 2
-1)的定义域为[-3,3],则函数y =f (x )的定义域为________.
解析:∵y =f (x 2
-1)的定义域为[-3,3], ∴x ∈[-3,3],x 2
-1∈[-1,2], ∴y =f (x )的定义域为[-1,2]. 答案:[-1,2]
14.(2018·青岛检测)已知函数f (x )=⎩⎪⎨
⎪⎧
2x
,x <2,
f x -1,x ≥2,
则f (log 27)=________.
解析:本题考查分段函数.由题意得log 27>2,log 27
2
<log 24=2,所以f (log 27)=f (log 27-
1)=f ⎝
⎛⎭⎪⎫log 272=22
7
log 2
=72.
答案:72
[能力挑战]
15.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x 2
+1,值域为{1,3}的同族函数有( )
A .1个
B .2个
C .3个
D .4个
解析:由x 2
+1=1得x =0,由x 2
+1=3得x =±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个.
答案:C
16.(2018·广东韶关调研)已知实数a <0,函数f (x )=⎩
⎪⎨
⎪⎧
x 2
+2a ,x <1,-x ,x ≥1,若f (1-
a )≥f (1+a ),则实数a 的取值范围是( )
A .(-∞,-2]
B .[-2,-1]
C .[-1,0)
D .(-∞,0) 解析:当a <0时,1-a >1,1+a <1,
所以f (1-a )=-(1-a )=a -1,f (1+a )=(1+a )2
+2a =a 2
+4a +1, 由f (1-a )≥f (1+a )得a 2
+3a +2≤0,
解得-2≤a ≤-1,所以a ∈[-2,-1],故选B. 答案:B
17.已知函数f (x )=⎩⎪⎨
⎪⎧
x 2,x >0
x +1,x ≤0
,g (x )=log 2x ,若f (a )+f (g (2))=0,则实数a
的值为________.
解析:因为函数f (x )=⎩
⎪⎨
⎪⎧
x 2
,x >0
x +1,x ≤0,g (x )=log 2x ,所以g (2)=log 22=1,f (g (2))
=f (1)=1,由f (a )+f (g (2))=0,得f (a )=-1.当a >0时,因为f (a )=a 2
≠-1,所以此时不符合题意;当a ≤0时,f (a )=a +1=-1,解得a =-2.
答案:-2。