图论和网络分析算法与Matlab实现(Graph_and_Network_Analysis)
- 格式:ppt
- 大小:775.50 KB
- 文档页数:32
Matlab中的网络分析与复杂系统建模随着科技的进步和数据的爆炸性增长,网络分析和复杂系统建模成为了解决现实世界问题的有力工具。
Matlab作为一种强大的数值计算软件,提供了丰富的工具和函数,可以应用于网络分析和复杂系统建模领域。
本文将探讨Matlab在这两个领域的应用。
一、网络分析网络分析是研究网络结构和节点之间关系的领域。
在现实生活中,许多复杂的系统可以被抽象成网络,如社交网络、互联网、蛋白质相互作用网络等。
Matlab为网络分析提供了丰富的函数库,可以进行网络的建模、分析和可视化。
首先,Matlab提供了一些常用的网络模型生成函数,如随机图模型、小世界网络模型和无标度网络模型。
这些函数可以根据用户的需求生成具有特定结构的网络,从而帮助用户更好地理解和研究网络的特性和行为。
其次,Matlab提供了一些网络分析的基本函数,如节点度分布、网络直径、平均最短路径等。
这些函数可以帮助用户对网络进行定量分析,了解网络的全局特征和局部特征,比如网络的连通性、紧密度和集聚系数等。
此外,Matlab还支持网络的可视化,用户可以通过绘制网络图来展示网络的结构和关系。
除了基本的网络分析函数,Matlab还提供了一些高级的网络分析工具,如社区检测、节点重要性度量和网络动力学模拟。
社区检测可以将网络分割成不同的子图,每个子图代表一个社区,帮助用户理解网络中的组织结构和功能模块;节点重要性度量可以评估网络中节点的重要程度,从而帮助用户找到关键节点和中心节点;网络动力学模拟可以模拟网络的演化和传播过程,帮助用户研究网络的时序性和动态性。
二、复杂系统建模复杂系统建模是研究复杂系统行为和性质的领域。
复杂系统往往由大量的相互作用的组件组成,如天气系统、金融市场和生态系统等。
Matlab作为一种数值计算软件,提供了丰富的工具和函数,可以用于构建和分析复杂系统的数学模型。
在复杂系统建模中,Matlab可以用于构建系统的数学模型,包括微分方程、差分方程和代数方程等。
MATLAB在社交网络分析与建模中的应用技巧社交网络已经成为人们生活中不可或缺的一部分。
从个人的社交媒体账号到大型的在线社交平台,我们都在不断地与他人进行连接和交流。
这使得社交网络分析成为一项重要的研究领域,旨在理解人们之间的关系、信息传播以及社会动态的演化。
在这个过程中,MATLAB作为一个强大的计算工具,提供了丰富的功能和技巧,帮助研究人员进行社交网络分析与建模。
一、数据读取与处理在进行社交网络分析之前,第一步是获取和处理相关的数据。
MATLAB提供了各种函数和工具箱来实现这个目标。
例如,可以使用MATLAB自带的readtable 函数来读取和处理存储在电子表格中的数据,或者使用importdata函数来加载各种格式的数据文件。
除了读取数据文件,MATLAB还提供了强大的数据处理和转换功能。
例如,可以使用table函数将多个列向量组合成一个数据框,这对于处理大规模的社交网络数据非常有用。
此外,MATLAB还提供了各种数据处理函数,如数据过滤、排序、分组和聚合等。
二、网络分析与可视化一旦数据被加载和处理,下一步是进行社交网络分析。
MATLAB提供了许多工具和函数来分析和建模复杂的社交网络。
其中一个重要的工具是图论工具箱(Graph Theory Toolbox),它提供了各种函数来创建、操作和分析图形和网络。
在图论工具箱中,有许多关于网络拓扑结构分析的函数,如计算度分布、最短路径、连通性、聚类系数等。
这些函数可以帮助研究人员了解网络的基本特征。
此外,还可以使用社区检测算法来发现网络中的社群结构,并使用社群检测算法来识别网络中的重要节点。
除了网络分析,MATLAB还提供了丰富的可视化工具,用于直观地展示社交网络结构和特征。
通过使用MATLAB的绘图函数和图形界面工具箱,可以创建各种图形和图表,并自定义其外观和样式。
这些可视化工具可以帮助研究人员更好地理解和解释社交网络数据。
三、影响力分析与传播模型社交网络分析不仅关注网络本身的结构,还关注信息在网络中的传播和影响力。
Matlab中的复杂网络与图论分析方法在当今数字时代,数据网络正在成为各行各业的核心,这就给研究网络结构和分析网络行为提供了前所未有的机会。
而复杂网络和图论分析方法则成为了研究数据网络的一种重要手段。
本文将介绍在Matlab中应用的复杂网络和图论分析方法,探讨其原理和应用。
一、复杂网络:拓扑结构的研究复杂网络是指由大量节点和链接组成的网络,其中节点代表实体,链接代表实体之间的关系。
通过研究复杂网络的拓扑结构,我们可以揭示数据网络中的规律和性质,了解网络中节点的连接模式和信息传播机制。
1.1 网络拓扑结构的描述在复杂网络研究中,一种常用的描述方法是邻接矩阵和度矩阵。
邻接矩阵是一个由0和1组成的矩阵,其中的元素表示节点之间的连接关系,1表示连接,0表示未连接。
度矩阵是一个对角矩阵,用于描述每个节点的度数,即与该节点相连的链接数。
1.2 网络节点的度分布节点的度数是指与该节点相连的链接数,而节点的度分布则是指不同度数的节点在网络中的分布情况。
在复杂网络中,节点的度分布往往符合幂律分布,即少数节点的度数非常大,而大部分节点的度数相对较小。
通过分析节点的度分布,可以了解网络中的核心节点和边缘节点,以及网络的鲁棒性和可靠性。
1.3 网络中的社区结构社区结构是指网络中节点的聚集现象,即节点之间的连接更密集,而与其他社区的联系较弱。
通过识别和研究网络中的社区结构,可以帮助我们揭示网络中的隐含规律、发现重要节点和子网络,并理解网络的分层结构和功能。
二、图论分析:探索网络行为的机制图论是研究网络结构和图形模型的数学理论,主要关注网络中节点和链接之间的关系。
通过图论分析,我们可以量化和描述网络中的节点和链接的特性,揭示网络的演化机制和行为规律。
2.1 网络中的中心性度量中心性是衡量网络中节点重要性的指标,可以帮助我们识别重要节点和影响网络动态行为的因素。
在复杂网络中,常用的中心性度量包括度中心性、接近中心性和介数中心性等。
在MATLAB中,可以使用network对象来构建和操作神经网络模型。
以下是使用network对象的基本步骤:1. 创建network对象:可以使用`network`函数来创建一个空的network对象。
例如:```matlabnet = network;```2. 定义网络的拓扑结构:使用`net.numInputs`和`net.numOutputs`属性来指定网络的输入和输出层数。
然后,使用`yers`属性来定义网络的隐藏层。
例如,下面的代码定义了一个具有2个输入层、1个隐藏层和1个输出层的网络:```matlabnet.numInputs = 2;net.numLayers = 3;net.biasConnect = [1;1;1];```3. 设置连接权重:可以使用`net.IW`和`net.LW`属性来设置输入层到隐藏层和隐藏层到输出层的连接权重。
例如,下面的代码设置了连接权重矩阵:```matlabnet.IW{1,1} = rand(4,2); % 输入层到隐藏层的连接权重net.LW{2,1} = rand(1,4); % 隐藏层到输出层的连接权重```4. 设置网络的激活函数:使用`yers`属性来设置每个层的激活函数类型。
例如,下面的代码将隐藏层和输出层的激活函数设置为sigmoid函数:```matlabyers{1}.transferFcn = 'logsig'; % 隐藏层的激活函数yers{2}.transferFcn = 'logsig'; % 输出层的激活函数```5. 训练网络:使用适当的算法和数据来训练网络。
可以使用MATLAB中的`train`函数来训练网络。
例如,下面的代码使用反向传播算法训练网络:```matlabnet.trainFcn = 'traingd'; % 设置训练算法为梯度下降net = train(net, inputs, targets); % inputs是输入数据,targets是目标输出数据```6. 使用网络进行预测:通过将输入数据传递给网络来使用已经训练好的网络进行预测。
Matlab中的网络分析与图论算法在现代社会中,网络分析和图论算法正变得越来越重要。
随着信息技术的迅猛发展,人们对网络的研究也日益深入。
而Matlab作为一种强大的科学计算软件,其网络分析和图论算法的应用也越来越广泛。
I. 网络分析的概述网络分析是指通过研究网络中的节点(节点可以代表人、物或其他实体)之间的关系,来理解和分析网络的结构和特征。
网络分析方法主要包括节点度数分布、社区结构、中心性指标等。
1. 节点度数分布网络中的节点度数指的是与该节点相连接的其他节点的数量。
在网络分析中,研究节点度数分布可以帮助我们了解网络中节点的连接情况,进而揭示网络的结构特征。
Matlab中有丰富的函数可以用来计算节点度数分布,如hist函数和bar函数。
2. 社区结构社区结构是指网络中的节点按某种规则或特征被划分为多个聚类的情况。
社区结构分析可以帮助我们发现网络中的子群体,进一步研究节点的集聚性和节点之间的相似性。
Matlab中的图论工具箱中提供了多种算法,如谱聚类算法(Spectral Clustering)和模块度优化算法(Modularity Optimization),可以用于社区结构的分析。
3. 中心性指标中心性指标是用来衡量网络中节点的重要性程度。
常见的中心性指标有度中心性(Degree Centrality),介数中心性(Betweenness Centrality)和接近中心性(Closeness Centrality)等。
这些指标可以帮助我们找出网络中的核心节点,并进行节点的排序和权重的计算。
在Matlab中,我们可以使用centrality函数来计算节点的中心性指标。
II. 图论算法的应用图论算法是一类数学算法,用于研究网络的图结构和图的性质。
在Matlab中,有许多图论算法可以帮助我们解决各种实际问题。
1. 最短路径算法最短路径算法用于寻找网络中两个节点之间的最短路径。
其中一种常见的算法是迪杰斯特拉算法(Dijkstra's algorithm),它可以在网络中找到起点到终点的最短路径,并计算路径的长度。
function [DeD,aver_DeD]=Degree_Distribution(A)%% 求网络图中各节点的度及度的分布曲线%% 求解算法:求解每个节点的度,再按发生频率即为概率,求P(k)%A————————网络图的邻接矩阵%DeD————————网络图各节点的度分布%aver_DeD———————网络图的平均度N=size(A,2);DeD=zeros(1,N);for i=1:N% DeD(i)=length(find((A(i,:)==1)));DeD(i)=sum(A(i,:));endaver_DeD=mean(DeD);if sum(DeD)==0disp('该网络图只是由一些孤立点组成');return;elsefigure;bar([1:N],DeD);xlabel('节点编号n');ylabel('各节点的度数K');title('网络图中各节点的度的大小分布图');endfigure;M=max(DeD);for i=1:M+1; %网络图中节点的度数最大为M,但要同时考虑到度为0的节点的存在性N_DeD(i)=length(find(DeD==i-1));% DeD=[2 2 2 2 2 2]endP_DeD=zeros(1,M+1);P_DeD(:)=N_DeD(:)./sum(N_DeD);bar([0:M],P_DeD,'r');xlabel('节点的度K');ylabel('节点度为K的概率P(K)');title('网络图中节点度的概率分布图');function[C,aver_C]=Clustering_Coefficient(A)%% 求网络图中各节点的聚类系数及整个网络的聚类系数%% 求解算法:求解每个节点的聚类系数,找某节点的所有邻居,这些邻居节点构成一个子图%% 从A中抽出该子图的邻接矩阵,计算子图的边数,再根据聚类系数的定义,即可算出该节点的聚类系数%A————————网络图的邻接矩阵%C————————网络图各节点的聚类系数%aver———————整个网络图的聚类系数N=size(A,2);C=zeros(1,N);for i=1:Naa=find(A(i,:)==1); %寻找子图的邻居节点if isempty(aa)disp(['节点',int2str(i),'为孤立节点,其聚类系数赋值为0']);C(i)=0;elsem=length(aa);if m==1disp(['节点',int2str(i),'只有一个邻居节点,其聚类系数赋值为0']);C(i)=0;elseB=A(aa,aa) % 抽取子图的邻接矩阵C(i)=length(find(B==1))/(m*(m-1));endendendaver_C=mean(C)function [D,aver_D]=Aver_Path_Length(A)%% 求复杂网络中两节点的距离以及平均路径长度%% 求解算法:首先利用Floyd算法求解出任意两节点的距离,再求距离的平均值得平均路径长度% A————————网络图的邻接矩阵% D————————返回值:网络图的距离矩阵% aver_D———————返回值:网络图的平均路径长度N=size(A,2);D=A;D(find(D==0))=inf; %将邻接矩阵变为邻接距离矩阵,两点无边相连时赋值为inf,自身到自身的距离为0.for i=1:ND(i,i)=0;endfor k=1:N %Floyd算法求解任意两点的最短距离for i=1:Nfor j=1:Nif D(i,j)>D(i,k)+D(k,j)D(i,j)=D(i,k)+D(k,j);endendendendaver_D=sum(sum(D))/(N*(N-1)) %平均路径长度if aver_D==infdisp('该网络图不是连通图');end%% 算法2:用时间量级O(MN)的广度优先算法求解一个含N个节点和M条边的网络图的平均路径长度可以求出复杂网络中两节点间的距离以及平均路径长度,各节点的度及度的分布曲线,以及节点的聚类系数。
MATLAB中的神经网络算法和实现方法简介:神经网络是一种模仿生物神经系统活动的数学模型,广泛应用于机器学习和模式识别领域。
MATLAB作为一种功能强大的科学计算软件,提供了丰富的工具箱和函数,用于神经网络的设计、训练和应用。
本文将介绍MATLAB中的神经网络算法和实现方法。
1. 神经网络的基本原理神经网络由多个神经元组成的网络结构,每个神经元都有多个输入和一个输出。
神经网络的基本原理是通过对输入和权重的加权求和,经过激活函数的处理得到输出。
神经网络的学习过程就是通过调整权重的数值和选择合适的激活函数,使网络能够逼近目标函数。
2. MATLAB中的神经网络工具箱MATLAB提供了神经网络工具箱(Neural Network Toolbox),用于快速实现各种类型的神经网络。
神经网络工具箱包含了各种神经网络算法和函数,可用于网络的创建、训练和应用。
3. 神经网络的创建与配置在MATLAB中创建神经网络可以通过网络构建函数(newff、newcf、newp等)来实现。
可以根据网络的拓扑结构、层数和节点数目来创建神经网络。
配置神经网络可以通过设置网络的参数,如网络输入、目标输出、激活函数、训练算法等。
4. 神经网络的训练神经网络的训练过程是调整网络的权值和偏置,使网络能够对输入进行正确的分类或预测输出。
在MATLAB中,可以使用train函数进行神经网络的训练。
train函数提供了多种训练算法,如梯度下降、Levenberg-Marquardt算法等。
训练过程中,可以设置训练次数、学习率、误差目标等参数。
5. 神经网络的应用神经网络可以用于各种应用领域,如模式识别、数据挖掘、图像处理等。
在MATLAB中,可以使用已经训练好的神经网络对新的输入进行分类或预测。
可以使用sim函数对训练好的网络进行模拟,并根据输出结果进行判断。
6. 神经网络的性能评估与改进在使用神经网络进行建模和预测时,需要对网络的性能进行评估。
Matlab技术网络数据分析方法总结一、引言随着互联网的快速发展和物联网应用的普及,海量的网络数据不断涌现。
如何从海量的网络数据中提取有效信息并进行深入分析,成为了现代数据科学领域的重点研究。
而Matlab作为一种简单易用且功能强大的数据分析工具,被广泛应用于网络数据分析领域。
本文将总结和介绍一些常用的Matlab技术在网络数据分析方面的应用方法。
二、数据获取与预处理在网络数据分析的开始阶段,首先需要获取并预处理原始数据。
Matlab提供了多种获取网络数据的方法,如通过HTTP协议获取API数据,使用网络爬虫获取网页数据等。
通过网络爬虫获取网页数据是常见的方法之一。
Matlab中可以使用爬虫工具包进行网页数据获取,然后利用正则表达式等技术对数据进行清洗和提取,以便后续分析。
另外,在数据预处理过程中,我们经常需要利用Matlab进行数据清洗、去重、填充缺失值等操作。
Matlab提供了丰富的数据处理函数和工具箱,可以方便地进行数据处理。
例如,可以使用dataclean函数对数据进行清洗处理,使用fillmissing函数填充缺失值等。
三、数据可视化分析数据可视化是网络数据分析不可或缺的一环。
通过数据可视化,我们可以更直观地了解数据的规律和特点。
Matlab提供了丰富的数据可视化函数和工具箱,可以满足各种可视化需求。
1. 折线图折线图是常用的数据可视化方式之一。
Matlab中的plot函数可以绘制折线图,我们可以利用该函数来展示网络数据的变化趋势。
例如,我们可以将时间作为横轴,网络流量作为纵轴,绘制出网络流量随时间的变化折线图,以便进行流量分析和预测。
2. 散点图散点图可以用于展示数据的分布情况和相关性。
Matlab中的scatter函数可以绘制散点图,我们可以将网络节点的属性作为横纵轴,展示节点之间的关系。
例如,我们可以将节点的度中心性作为横轴,介数中心性作为纵轴,绘制出节点度中心性和介数中心性的散点图,以便分析网络的核心节点。
MATLAB网络分析与建模工具箱的使用指南引言网络分析与建模是现代科学中的一个重要的研究领域,它涉及到社交网络、电力系统、交通网络等许多应用领域。
MATLAB是一个功能强大的数值计算工具,其网络分析与建模工具箱提供了一系列用于分析和建模网络的函数和工具。
本文将针对MATLAB网络分析与建模工具箱进行详细介绍和使用指南。
一、网络分析基础知识在开始学习MATLAB网络分析与建模工具箱之前,我们需要了解一些网络分析的基础知识。
网络是由节点和边组成的图形结构,其中节点表示网络中的个体,边表示节点之间的关系。
节点和边可以是任意类型的,比如人物、电力站和电缆等。
网络分析常用的概念包括节点的度、网络的直径、节点的邻居等。
节点的度指的是与该节点相连的边的数量,可以用来度量节点的重要性或者中心性。
网络的直径则是网络中任意两个节点之间最短路径的最大长度,用来度量网络的连通性。
节点的邻居是指与该节点直接相连的其他节点。
二、MATLAB网络分析与建模工具箱的安装与导入要使用MATLAB网络分析与建模工具箱,首先需要从MathWorks官方网站下载并安装MATLAB软件。
安装完成后,我们可以在MATLAB命令窗口输入以下命令导入网络分析与建模工具箱:```MATLABaddpath(genpath('toolbox/nnet'));```导入成功后,我们就可以开始使用网络分析与建模工具箱进行分析和建模了。
三、网络的创建和可视化在MATLAB中,我们可以使用网络对象来表示和操作网络。
网络对象是网络分析与建模工具箱中的一个重要数据类型,它可以包含节点和边的信息,并且提供了一系列函数来进行网络的创建和操作。
要创建一个网络对象,我们可以使用以下命令:```MATLABnet = network;```创建好网络对象后,我们可以通过添加节点和边来构建网络。
使用以下命令可以添加节点:```MATLABnet = addnode(net, numNodes);```其中,numNodes是要添加的节点数量。
图算法的应用以及在Matlab中的实现图算法是图论的基础,广泛应用于各个领域。
图算法可以用来解决很多实际问题,例如社交网络分析、路网优化、数据挖掘等。
在Matlab中,图算法的实现主要依赖于图对象和图函数库。
一、图算法的应用1.社交网络分析:通过图算法可以进行社交网络的分析和挖掘,例如寻找网络中的关键节点、查找社区结构、计算网络的中心性指标等。
2.路网优化:图算法可以用来解决路网中的最短路径问题、最小生成树问题、最大流问题等,以优化交通运输和资源分配。
3.数据挖掘:图算法可以用于发现模式和关联规则,例如通过挖掘网页链接关系发现重要网页、通过分析推荐系统中用户的行为图谱进行个性化推荐等。
二、Matlab中图算法的实现在Matlab中,图算法的实现主要依赖于图对象(Graph Object)和图函数库(Graph and Network Algorithms),Matlab提供了一套完整的图算法库供用户使用。
1. 图对象(Graph Object)Matlab中的图对象是用来存储图数据的数据结构,可以表示有向图或无向图。
可以通过创建图对象,设置节点和边的属性,以及添加节点和边来构建图。
图对象提供了很多有用的方法,用于访问和操作图数据。
2. 图函数库(Graph and Network Algorithms)Matlab提供了一系列的图函数,用于解决常见的图算法问题。
其中包括最短路径算法、最小生成树算法、最大流算法等。
这些图函数可以用来解决各种实际问题,例如计算两节点之间的最短路径、查找网络中的关键节点等。
在Matlab中,通过以下几个步骤可以实现图算法:1.创建图对象:使用图对象的构造函数可以创建一个空的图对象,并指定图的类型(有向图或无向图)。
2.添加节点和边:使用图对象的方法可以添加节点和边,设置节点和边的属性。
3.访问图数据:可以通过图对象的方法访问和操作图数据,例如获取节点数、获取边数、获取节点的邻居等。
利用MATLAB进行神经网络算法研究与实现神经网络是一种模仿人脑神经元之间相互连接方式进行信息处理的数学模型,近年来在各个领域都得到了广泛的应用。
利用MATLAB这一功能强大的工具,可以方便地进行神经网络算法的研究与实现。
本文将介绍如何利用MATLAB进行神经网络算法的研究与实现,包括神经网络的基本概念、MATLAB中神经网络工具箱的使用方法以及如何实现一个简单的神经网络算法。
神经网络基本概念神经网络是由大量的人工神经元组成的一种计算模型,它可以通过学习得到输入和输出之间的映射关系。
在神经网络中,通常包括输入层、隐藏层和输出层,每个神经元都有权重和偏置,通过激活函数对输入信号进行处理并传递给下一层。
神经网络通过不断地调整权重和偏置来优化模型,从而实现对复杂问题的建模和预测能力。
MATLAB中神经网络工具箱的使用方法MATLAB提供了强大的神经网络工具箱,可以帮助用户快速构建和训练神经网络模型。
首先需要在MATLAB环境中导入神经网络工具箱,然后可以通过简单的命令创建不同类型的神经网络结构,包括前馈神经网络、循环神经网络等。
接着可以使用内置的训练算法对神经网络进行训练,并通过验证集和测试集来评估模型的性能。
此外,MATLAB 还提供了丰富的可视化工具,帮助用户直观地理解神经网络模型的结构和训练过程。
实现一个简单的神经网络算法下面我们将通过一个简单的案例来演示如何利用MATLAB实现一个基本的神经网络算法。
假设我们要解决一个二分类问题,输入特征为2维,输出为0或1。
首先我们需要生成一些训练数据,并将数据分为训练集和测试集。
接着我们可以使用MATLAB中的patternnet函数创建一个具有一个隐藏层的前馈神经网络模型,并选择适当的训练算法进行训练。
最后我们可以通过混淆矩阵等指标来评估模型在测试集上的性能,并对结果进行可视化展示。
示例代码star:编程语言:matlab生成训练数据X = randn(2, 1000);Y = X(1, :) + X(2, :) > 0;划分训练集和测试集X_train = X(:, 1:800);Y_train = Y(1:800);X_test = X(:, 801:end);Y_test = Y(801:end);创建神经网络模型net = patternnet(10);net = train(net, X_train, Y_train);预测并评估模型性能Y_pred = net(X_test);plotconfusion(Y_test, Y_pred);示例代码end通过以上步骤,我们就可以利用MATLAB实现一个简单的神经网络算法,并对其性能进行评估。
图论算法及其MATLAB程序代码图论算法及其MATLAB程序代码求赋权图G = (V, E , F )中任意两点间的最短路的Warshall-Floyd 算法:设A = (a ij )n×n为赋权图G = (V, E , F )的矩阵, 当v i v j∈E时a ij= F (v i v j), 否则取a ii=0, a ij = +∞(i≠j ), d ij表示从v i到v j点的距离, r ij表示从v i到v j点的最短路中一个点的编号.①赋初值. 对所有i, j, d ij = a ij, r ij = j. k = 1. 转向②②更新d ij, r ij . 对所有i, j, 若d ik + d k j<d ij, 则令d ij = d ik + d k j, r ij = k, 转向③.③终止判断. 若d ii<0, 则存在一条含有顶点v i的负回路, 终止; 或者k = n终止; 否则令k = k + 1, 转向②.最短路线可由r ij得到.例1求图6-4中任意两点间的最短路.图6-4解:用Warshall-Floyd算法, MA TLAB程序代码如下:n=8;A=[0 2 8 1 Inf Inf Inf Inf2 0 6 Inf 1 Inf Inf Inf8 6 0 7 5 1 2 Inf1 Inf 7 0 Inf Inf 9 InfInf 1 5 Inf 0 3 Inf 8Inf Inf 1 Inf 3 0 4 6Inf Inf 2 9 Inf 4 0 3Inf Inf Inf Inf 8 6 3 0]; % MATLAB中, Inf表示∞D=A; %赋初值for(i=1:n)for(j=1:n)R(i,j)=j;end;end%赋路径初值for(k=1:n)for(i=1:n)for(j=1:n)if(D(i,k)+D(k,j)<=""bdsfid="85" p="">R(i,j)=R(k,j);end;end;end%更新rijk %显示迭代步数D %显示每步迭代后的路长R %显示每步迭代后的路径pd=0;for i=1:n %含有负权时if(D(i,i)<0)pd=1;break;end;end%存在一条含有顶点vi的负回路if(pd)break;end%存在一条负回路, 终止程序end%程序结束Kruskal避圈法:将图G中的边按权数从小到大逐条考察, 按不构成圈的原则加入到T 中(若有选择时, 不同的选择可能会导致最后生成树的权数不同), 直到q (T ) = p (G ) - 1为止, 即T的边数= G的顶点数- 1为止.Kruskal避圈法的MATLAB程序代码如下:n=8;A=[0 2 8 1 0 0 0 02 0 6 0 1 0 0 08 6 0 7 5 1 2 01 0 7 0 0 0 9 00 1 5 0 0 3 0 80 0 1 0 3 0 4 60 0 2 9 0 4 0 30 0 0 0 8 6 3 0];k=1; %记录A中不同正数的个数for(i=1:n-1)for(j=i+1:n) %此循环是查找A中所有不同的正数if(A(i,j)>0)x(k)=A(i,j); %数组x记录A中不同的正数kk=1; %临时变量for(s=1:k-1)if(x(k)==x(s))kk=0;break;end;end%排除相同的正数k=k+kk;end;end;endk=k-1 %显示A中所有不同正数的个数for(i=1:k-1)for(j=i+1:k) %将x中不同的正数从小到大排序if(x(j)< bdsfid="113" p=""><>T(n,n)=0; %将矩阵T中所有的元素赋值为0q=0; %记录加入到树T中的边数for(s=1:k)if(q==n)break;end%获得最小生成树T, 算法终止for(i=1:n-1)for(j=i+1:n)if (A(i,j)==x(s))T(i,j)=x(s);T(j,i)=x(s); %加入边到树T中TT=T; %临时记录Twhile(1)pd=1; %砍掉TT中所有的树枝for(y=1:n)kk=0;for(z=1:n)if(TT(y,z)>0)kk=kk+1;zz=z;end;end%寻找TT中的树枝if(kk==1)TT(y,zz)=0;TT(zz,y)=0; p d=0;end;end%砍掉TT中的树枝if(pd)break;end;end%已砍掉了TT中所有的树枝pd=0; %判断TT中是否有圈for(y=1:n-1)for(z=y+1:n)if(TT(y,z)>0)pd=1;break;end;end;endif(pd)T(i,j)=0;T(j,i)=0; %假如TT中有圈else q=q+1;end;end;end;end;endT %显示近似最小生成树T, 程序结束求二部图G的最大匹配的算法(匈牙利算法), 其基本思想是:从G 的任意匹配M开始, 对X中所有M的非饱和点, 寻找M-增广路. 若不存在M-增广路, 则M为最大匹配; 若存在M-增广路P, 则将P中M与非M的边互换得到比M多一边的匹配M1 , 再对M1重复上述过程.设G = ( X, Y, E )为二部图, 其中X = {x1, x2, … , x n }, Y = { y1,y2, … , y n}. 任取G的一初始匹配M (如任取e∈E, 则M = {e}是一个匹配).①令S = φ , T = φ , 转向②.②若M饱和X \ S的所有点, 则M是二部图G的最大匹配. 否则, 任取M的非饱和点u∈X \ S , 令S = S ∪{ u }, 转向③.③记N (S ) = {v | u∈S, uv∈E}. 若N (S ) = T, 转向②. 否则取y∈N (S ) \ T. 若y是M 的饱和点, 转向④, 否则转向⑤.④设x y∈M, 则令S = S ∪{ x }, T = T ∪{ y }, 转向③.⑤u -y路是M-增广路, 设为P, 并令M = M⊕P, 转向①. 这里M⊕P = M∪P \ M∩P, 是对称差.由于计算M-增广路P比较麻烦, 因此将迭代步骤改为:①将X中M的所有非饱和点(不是M中某条边的端点)都给以标号0和标记*, 转向②.②若X中所有有标号的点都已去掉了标记*, 则M是G的最大匹配. 否则任取X中一个既有标号又有标记*的点x i , 去掉x i的标记*, 转向③.③找出在G中所有与x i邻接的点y j (即x i y j∈E ), 若所有这样的y j都已有标号, 则转向②, 否则转向④.④对与x i邻接且尚未给标号的y j都给定标号i. 若所有的y j都是M的饱和点, 则转向⑤, 否则逆向返回. 即由其中M的任一个非饱和点y j的标号i找到x i, 再由x i的标号k找到y k , …, 最后由y t的标号s 找到标号为0的x s时结束, 获得M-增广路x s y t…x i y j, 记P = {x s y t, …, x i y j }, 重新记M为M⊕P, 转向①.⑤将y j在M中与之邻接的点x k (即x k y j∈M), 给以标号j和标记*, 转向②.例1求图6-9中所示的二部图G的最大匹配.图6-9匈牙利算法的MATLAB程序代码如下:m=5;n=5;A=[0 1 1 0 01 1 0 1 10 1 1 0 00 1 1 0 00 0 0 1 1];M(m,n)=0;for(i=1:m)for(j=1:n)if(A(i,j))M(i,j)=1;break;end;end%求初始匹配Mif(M(i,j))break;end;end%获得仅含一条边的初始匹配Mwhile(1)for(i=1:m)x(i)=0;end%将记录X中点的标号和标记*for(i=1:n)y(i)=0;end%将记录Y中点的标号和标记*for(i=1:m)pd=1; %寻找X中M的所有非饱和点for(j=1:n)if(M(i,j))pd=0;end;endif(pd)x(i)=-n-1;end;end%将X中M的所有非饱和点都给以标号0和标记*, 程序中用n+1表示0标号, 标号为负数时表示标记* pd=0;while(1)xi=0;for(i=1:m)if(x(i)<0)xi=i;break;end;end%假如X中存在一个既有标号又有标记*的点, 则任取X中一个既有标号又有标记*的点xi if(xi==0)pd=1;break;end%假如X中所有有标号的点都已去掉了标记*, 算法终止x(xi)=x(xi)*(-1); %去掉xi的标记*k=1;for(j=1:n)if(A(xi,j)&y(j)==0)y(j)=xi;yy(k)=j;k=k+1;end;end%对与xi邻接且尚未给标号的yj都给以标号iif(k>1)k=k-1;for(j=1:k)pdd=1;for(i=1:m)if(M(i,yy(j)))x(i)=-yy(j);pdd=0;break;end;end%将yj 在M中与之邻接的点xk (即xkyj∈M), 给以标号j和标记* if(pdd)break;end;endif(pdd)k=1;j=yy(j); %yj不是M的饱和点while(1)P(k,2)=j;P(k,1)=y(j);j=abs(x(y(j))); %任取M的一个非饱和点yj, 逆向返回if(j==n+1)break;end%找到X中标号为0的点时结束, 获得M-增广路Pk=k+1;endfor(i=1:k)if(M(P(i,1),P(i,2)))M(P(i,1),P(i,2))=0; %将匹配M在增广路P中出现的边去掉else M(P(i,1),P(i,2))=1;end;end%将增广路P中没有在匹配M中出现的边加入到匹配M中break;end;end;endif(pd)break;end;end%假如X中所有有标号的点都已去掉了标记*, 算法终止M %显示最大匹配M, 程序结束利用可行点标记求最佳匹配的算法步骤如下:设G = ( X , Y , E , F )为完备的二部赋权图, L 是其一个初始可行点标记, 通常取.,,0)(},|)(max{)(Y y X x y L Y y xy F x L ∈∈=∈= M 是G L 的一个匹配. ① 若X 的每个点都是M 的饱和点, 则M 是最佳匹配. 否则取M 的非饱和点u ∈X , 令S = {u }, T = φ , 转向②.② 记N L (S ) = {v | u ∈S , uv ∈E L }. 若N L ( S ) = T , 则G L 没有完美匹配, 转向③. 否则转向④.③ 调整可行点标记, 计算a L = min { L ( x ) + L ( y ) - F (x y ) | x ∈S , y ∈Y \T }.由此得新的可行顶点标记H (v ) =,,),(,)(,)(T v S v v L a v L a v L L L ∈∈??+-令L = H , G L = G H , 重新给出G L 的一个匹配M , 转向①.④ 取y ∈N L ( S ) \T , 若y 是M 的饱和点, 转向⑤. 否则, 转向⑥.⑤ 设x y ∈M , 则令S = S ∪{ x }, T = T ∪{ y }, 转向②.⑥ 在G L 中的u - y 路是M -增广路, 记为P , 并令M = M ⊕P , 转向①.利用可行点标记求最佳匹配算法的MATLAB 程序代码如下:n=4;A=[4 5 5 12 2 4 64 2 3 35 0 2 1];for (i=1:n)L(i,1)=0;L(i,2)=0;endfor (i=1:n)for (j=1:n)if (L(i,1)<="" ;="" bdsfid="205" p="">M(i,j)=0;end ;endfor (i=1:n)for (j=1:n) %生成子图Glif (L(i,1)+L(j,2)==A(i,j))Gl(i,j)=1;else Gl(i,j)=0;end ;end ;endii=0;jj=0;for (i=1:n)for (j=1:n)if (Gl(i,j))ii=i;jj=j;break ;end ;endif (ii)break ;end ;end %获得仅含Gl 的一条边的初始匹配MM(ii,jj)=1;for (i=1:n)S(i)=0;T(i)=0;NlS(i)=0;endwhile (1)for (i=1:n)k=1;否则.for(j=1:n)if(M(i,j))k=0;break;end;endif(k)break;end;endif(k==0)break;end%获得最佳匹配M, 算法终止S(1)=i;jss=1;jst=0; %S={xi}, T=while(1)jsn=0;for(i=1:jss)for(j=1:n)if(Gl(S(i),j))jsn=jsn+1;NlS(jsn)=j; %NL(S) ={v|u∈S,uv∈EL}for(k=1:jsn-1)if(NlS(k)==j)jsn=jsn-1;end;end;end;end;endif(jsn==jst)pd=1; %判断NL(S)=T?for(j=1:jsn)if(NlS(j)~=T(j))pd=0;break;end;end;endif(jsn==jst&pd)al=Inf; %如果NL(S)=T, 计算al, Inf为∞for(i=1:jss)for(j=1:n)pd=1;for(k=1:jst)if(T(k)==j)pd=0;break;end;endif(pd&al>L(S(i),1)+L(j,2)-A(S(i),j))al=L(S(i),1)+L(j,2)-A(S(i),j);end;end;end for(i=1:jss)L(S(i),1)=L(S(i),1)-al;end%调整可行点标记for(j=1:jst)L(T(j),2)=L(T(j),2)+al;end%调整可行点标记for(i=1:n)for(j=1:n) %生成子图GLif(L(i,1)+L(j,2)==A(i,j))Gl(i,j)=1;else Gl(i,j)=0;endM(i,j)=0;k=0;end;endii=0;jj=0;for(i=1:n)for(j=1:n)if(Gl(i,j))ii=i;jj=j;break;end;endif(ii)break;end;end%获得仅含Gl的一条边的初始匹配MM(ii,jj)=1;breakelse %NL(S)≠Tfor(j=1:jsn)pd=1; %取y∈NL(S)\Tfor(k=1:jst)if(T(k)==NlS(j))pd=0;break;end;endif(pd)jj=j;break;end;endpd=0; %判断y是否为M的饱和点for(i=1:n)if(M(i,NlS(jj)))pd=1;ii=i;break;end;endif(pd)jss=jss+1;S(jss)=ii;jst=jst+1;T(jst)=NlS(jj); %S=S∪{x}, T=T∪{y}else %获得Gl的一条M-增广路, 调整匹配Mfor(k=1:jst)M(S(k),T(k))=1;M(S(k+1),T(k))=0;endif(jst==0)k=0;endM(S(k+1),NlS(jj))=1;break;end;end;end;endMaxZjpp=0;for(i=1:n)for(j=1:n)if(M(i,j))MaxZjpp=MaxZjpp+A(i,j);end;en d;endM %显示最佳匹配MMaxZjpp %显示最佳匹配M的权, 程序结束从一个可行流f开始, 求最大流的Ford--Fulkerson标号算法的基本步骤:⑴标号过程①给发点v s以标号(+, +∞) , δs = +∞.②选择一个已标号的点x, 对于x的所有未给标号的邻接点y, 按下列规则处理:当yx∈E, 且f yx >0时, 令δy = min { f yx , δx }, 并给y以标号( x - , δy ).当xy∈E, 且f xy<C xy时, 令δy = min {C xy - f xy , δx }, 并给y 以标号( x + , δy ).③重复②直到收点v t被标号或不再有点可标号时为止. 若v t得到标号, 说明存在一条可增广链, 转⑵调整过程; 若v t未得到标号, 标号过程已无法进行时, 说明f已经是最大流.⑵调整过程④决定调整量δ =δv t , 令u = v t.⑤若u点标号为( v +, δu ), 则以f vu + δ代替f vu ; 若u点标号为( v-, δu ), 则以f vu -δ代替f vu.⑥若v = v s, 则去掉所有标号转⑴重新标号; 否则令u = v, 转⑤.算法终止后, 令已有标号的点集为S, 则割集(S, S c )为最小割, 从而W f = C (S, S c ).例1求图6-19所示网络的最大流.图6-19利用Ford--Fulkerson标号法求最大流算法的MATLAB程序代码如下:n=8;C=[0 5 4 3 0 0 0 00 0 0 0 5 3 0 00 0 0 0 0 3 2 00 0 0 0 0 0 2 00 0 0 0 0 0 0 40 0 0 0 0 0 0 30 0 0 0 0 0 0 50 0 0 0 0 0 0 0]; %弧容量for(i=1:n)for(j=1:n)f(i,j)=0;end;end%取初始可行流f为零流for(i=1:n)No(i)=0;d(i)=0;end%No,d记录标号while(1)No(1)=n+1;d(1)=Inf; %给发点vs标号while(1)pd=1; %标号过程for(i=1:n)if(No(i)) %选择一个已标号的点vifor(j=1:n)if(No(j)==0&f(i,j)<="">No(j)=i;d(j)=C(i,j)-f(i,j);pd=0;if(d(j)>d(i))d(j)=d(i);endelseif(No(j)==0&f(j,i)>0) %对于未给标号的点vj, 当vjvi为非零流弧时No(j)=-i;d(j)=f(j,i);pd=0;if(d(j)>d(i))d(j)=d(i);end;end;end;end;endif(No(n)|pd)break;end;end%若收点vt得到标号或者无法标号, 终止标号过程if(pd)break;end%vt未得到标号, f已是最大流, 算法终止dvt=d(n);t=n; %进入调整过程, dvt表示调整量while(1)if(No(t)>0)f(No(t),t)=f(No(t),t)+dvt; %前向弧调整elseif(No(t)<0)f(No(t),t)=f(No(t),t)-dvt;end%后向弧调整if(No(t)==1)for(i=1:n)No(i)=0;d(i)=0; end;break;end%当t的标号为vs时, 终止调整过程t=No(t);end;end; %继续调整前一段弧上的流fwf=0;for(j=1:n)wf=wf+f(1,j);end%计算最大流量f %显示最大流wf %显示最大流量No %显示标号, 由此可得最小割, 程序结束设网络G = ( V , E , C ), 取初始可行流 f 为零流, 求解最小费用流问题的迭代步骤:① 构造有向赋权图 G f = ( V , E f , F ), 对于任意的v i v j ∈E , E f , F 的定义如下:当f ij = 0时, v i v j ∈E f , F ( v i v j ) = b ij ;当f ij = C ij 时, v j v i ∈E f , F ( v j v i ) = -b ij ;当0< f ij <C ij 时, v i v j ∈E f , F ( v i v j ) = b ij , v j v i ∈E f , F ( v j v i ) = -b ij .转向②.② 求出有向赋权图G f = (V , E f , F )中发点v s 到收点v t 的最短路μ , 若最短路μ存在转向③; 否则f 是所求的最小费用最大流, 停止.③ 增流. 同求最大流的方法一样, 重述如下:令.,,,-+∈∈-=μμδj i j i ij ij ij ij v v v v f f C δ = min {δ ij | v i v j ∈μ}, 重新定义流f = { f ij }为 f ij =,,,,-+∈∈-+μμδδj i j i ij ij ij v v v v f f f如果W f 大于或等于预定的流量值, 则适当减少δ 值, 使W f 等于预定的流量值, 那么 f 是所求的最小费用流, 停止; 否则转向①.求解含有负权的有向赋权图G = ( V , E , F )中某一点到其它各点最短路的Ford 算法. 当v i v j ∈E 时记w ij = F (v i v j ), 否则取w ii =0, w ij = +∞(i ≠j ). v 1到v i 的最短路长记为π ( i ), v 1到v i 的最短路中v i 的前一个点记为θ ( i ). Ford 算法的迭代步骤:① 赋初值π (1) = 0, π ( i ) = +∞, θ ( i ) = i , i = 2, 3, … , n .② 更新π ( i ), θ ( i ). 对于i = 2, 3, … , n 和j = 1, 2, … , n , 如果π ( i )<π ( j ) + w ji , 则令π ( i ) = π ( j ) , θ ( i ) = j .③ 终止判断:若所有的π ( i )都无变化, 停止; 否则转向②.在算法的每一步中, π ( i )都是从v 1到v i 的最短路长度的上界. 若不存在负长回路, 则从v 1到v i 的最短路长度是π ( i )的下界, 经过n -1次迭代后π ( i )将保持不变. 若在第n 次迭代后π ( i )仍在变化时, 说明存在负长回路.其它.例2在图6-22所示运输网络上, 求s到t的最小费用最大流, 括号内为(C ij , b ij ).图6-22求最小费用最大流算法的MATLAB程序代码如下:n=5;C=[0 15 16 0 00 0 0 13 140 11 0 17 00 0 0 0 80 0 0 0 0]; %弧容量b=[0 4 1 0 00 0 0 6 10 2 0 3 00 0 0 0 20 0 0 0 0]; %弧上单位流量的费用wf=0;wf0=Inf; %wf表示最大流量, wf0表示预定的流量值for(i=1:n)for(j=1:n)f(i,j)=0;end;end%取初始可行流f为零流while(1)for(i=1:n)for(j=1:n)if(j~=i)a(i,j)=Inf;end;end;end%构造有向赋权图for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j);elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j);elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;endfor(i=2:n)p(i)=Inf;s(i)=i;end %用Ford算法求最短路, 赋初值for(k=1:n)pd=1; %求有向赋权图中vs到vt的最短路for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd =0;end;end;endif(pd)break;end;end %求最短路的Ford算法结束if(p(n)==Inf)break;end %不存在vs到vt的最短路, 算法终止. 注意在求最小费用最大流时构造有向赋权图中不会含负权回路, 所以不会出现k=ndvt=Inf;t=n; %进入调整过程, dvt表示调整量while(1) %计算调整量if(a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量elseif(a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量if(dvt>dvtt)dvt=dvtt;endif(s(t)==1)break;end %当t的标号为vs时, 终止计算调整量t=s(t);end %继续调整前一段弧上的流fpd=0;if(wf+dvt>=wf0)dvt=wf0-wf;pd=1;end %如果最大流量大于或等于预定的流量值t=n;while(1) %调整过程if(a(s(t),t)>0)f(s(t),t)=f(s(t),t)+dvt; %前向弧调整elseif(a(s(t),t)<0)f(t,s(t))=f(t,s(t))-dvt;end %后向弧调整if(s(t)==1)break;end %当t的标号为vs时, 终止调整过程t=s(t);endif(pd)break;end %如果最大流量达到预定的流量值wf=0; for(j=1:n)wf=wf+f(1,j);end;end %计算最大流量zwf=0;for(i=1:n)for(j=1:n)zwf=zwf+b(i,j)*f(i,j);end;end %计算最小费用f %显示最小费用最大流wf %显示最小费用最大流量zwf %显示最小费用, 程序结束。
Matlab中的社交网络分析与推荐系统技巧1.引言社交网络已经成为了人们日常生活中不可或缺的一部分,而对社交网络进行分析和利用则更是引人关注。
Matlab作为一种强大的数据分析和计算工具,在社交网络分析和推荐系统的研究中也发挥了重要的作用。
本文将介绍一些在Matlab中进行社交网络分析和推荐系统研究时常用的技巧和方法。
2.数据预处理在进行社交网络分析之前,我们首先需要对原始数据进行一些预处理工作。
这包括数据清洗、去噪、特征提取等步骤。
Matlab提供了丰富的数据处理工具和函数,可以帮助我们高效地完成这些任务。
3.社交网络分析社交网络分析旨在揭示社交网络中的潜在结构和模式,以及个体之间的关系。
Matlab中的Graph和Social Network Analysis Toolbox是进行社交网络分析的有力工具。
3.1 社交网络可视化通过绘制社交网络图可以直观地了解社交网络中个体之间的联系。
Matlab提供了丰富的绘图函数,可以帮助我们实现社交网络图的可视化。
3.2 社交网络中心性度量社交网络中心性度量用于评估个体在整个网络中的重要性。
常见的中心性度量包括度中心性、接近中心性、介数中心性等。
Matlab中的Graph和Social Network Analysis Toolbox提供了一系列中心性度量算法,可以帮助我们快速计算并分析网络中个体的中心性。
3.3 社区检测社区是指在社交网络中由紧密相连的个体组成的子群体。
社区检测旨在发现社交网络中的潜在社区结构。
Matlab中的Community Detection Toolbox提供了多种社区检测算法,可以帮助我们准确地识别社交网络中的社区结构。
4.推荐系统推荐系统是通过对用户的行为和兴趣进行分析,向用户提供个性化的推荐内容。
Matlab中的Recommender Systems Toolbox提供了一系列用于构建和评估推荐系统的工具和函数。
4.1 协同过滤推荐协同过滤是一种常用的推荐算法,其基本思想是通过分析用户之间的相似性来为用户产生个性化的推荐。
图论算法及m a t l a b程序的三个案例-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN图论实验三个案例单源最短路径问题 Dijkstra 算法Dijkstra 算法是解单源最短路径问题的一个贪心算法。
其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。
一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。
设v 是图中的一个顶点,记()l v 为顶点v 到源点v 1的最短距离,,i j v v V∀∈,若(,)i j v v E∉,记i v到j v 的权ij w =∞。
Dijkstra 算法:① 1{}S v =,1()0l v =;1{}v V v ∀∉-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③;③()min{(),(,)}j l v l v d v v =,j v S∈,v S ∀∈;④ 存在1i v +,使1()min{()}i l v l v +=,v S ∈;⑤1{}i S S v +=,1{}i S S v +=-,1i i =+,转②;实际上,Dijkstra 算法也是最优化原理的应用:如果121n nv v v v -是从1v 到nv 的最短路径,则121n v v v -也必然是从1v 到1n v -的最优路径。
在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元素表示顶点i v 到j v 的权ij w ,若i v到j v 无边,则realmax ij w =,其中realmax 是MATLAB 常量,表示最大的实数+308)。
function re=Dijkstra(ma)%用Dijkstra算法求单源最短路径%输入参量ma是距离矩阵%输出参量是一个三行n列矩阵,每列表示顶点号及顶点到源的最短距离和前顶点n=size(ma,1);%得到距离矩阵的维数s=ones(1,n);s(1)=0;%标记集合S和S的补r=zeros(3,n);r(1,:)=1:n;r(2,2:end)=realmax;%初始化for i=2:n;%控制循环次数mm=realmax;for j=find(s==0);%集合S中的顶点for k=find(s==1);%集合S补中的顶点if(r(2,j)+ma(j,k)<r(2,k))r(2,k)=r(2,j)+ma(j,k);r(3,k)=j;endif(mm>r(2,k))mm=r(2,k);t=k;endendends(1,t)=0;%找到最小的顶点加入集合S end re=r;动态规划求解最短路径动态规划是美国数学家Richard Bellman 在1951年提出来的分析一类多阶段决策过程的最优化方法,在工程技术、工业生产、经济管理、军事及现代化控制工程等方面均有着广泛的应用。