对流传热系数
- 格式:xls
- 大小:42.00 KB
- 文档页数:14
对流传热系数计算公式_传热系数计算公式
一、计算公式如下
1、围护结构热阻的计算
单层结构热阻
R=δ/ λ
式中:
δ—材料层厚度( m)
λ—材料导热系数 [W/m.k]
多层结构热阻
R=R1+R2+---- Rn=δ1/ λ1+δ2/ λ2+ ---- +δn/ λn 式中: R1、 R2、---Rn —各层材料热阻( m2.k/w)
δ1 、δ2 、 ---δn—各层材料厚度( m)
λ1 、λ2 、 ---λn—各层材料导热系数 [W/m.k]
2、围护结构的传热阻
R0=Ri+R+Re
式中: Ri —内表面换热阻( m2.k/w)(一般取 0.11)
Re—外表面换热阻( m2.k/w)(一般取 0.04)
R —围护结构热阻( m2.k/w)
3、围护结构传热系数计算
K=1/ R0
式中: R0 —围护结构传热阻
外墙受周边热桥影响条件下,其平均传热系数的计算
Km=KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 / Fp + Fb1+Fb2+Fb3
式中:
Km—外墙的平均传热系数 [W/(m2.k) ]
Kp—外墙主体部位传热系数 [W/( m2.k)]
Kb1、Kb2、 Kb3—外墙周边热桥部位的传热系数 [W/( m2.k)] Fp—外墙主体部位的面积
Fb1、 Fb2、Fb3—外墙周边热桥部位的面积
感谢您的阅读,祝您生活愉快。
空气和钢的对流换热系数
对流换热系数是W/(m^2·℃)。
物体表面与附近空气温差1℃,单位时间(1s)单位面积上通过对流与附近空气交换的热量。
单位为W/(m^2·℃)或J/(m^2·s·℃)。
表面对流换热系数的数值与换热过程中流体的物理性质、换热表面的形状、部位以及流体的流速等都有密切关系。
物体表面附近的流体的流速愈大,其表面对流换热系数也愈大。
如人处在风速较大的环境中,由于皮肤表面的对流换热系数较大,其散热量也较大。
对流换热系数可用经验公式计算,通常用巴兹公式计算。
表面对流换热系数的数值与换热过程中流体的物理性质、换热表面的形状、部位以及流体的流速等都有密切关系。
物体表面附近的流体的流速愈大,其表面对流换热系数也愈大。
如人处在风速较大的环境中,由于皮肤表面的对流换热系数较大,其散热(或吸热)量也较大,对流换热系数可用经验公式计算,通常用巴兹公式计算。
影响对流传热强弱的主要因素有:
1、对流运动成因和流动状态。
2、流体的物理性质(随种类、温度和压力而变化)。
3、传热表面的形状、尺寸和相对位置。
4、流体有无相变(如气态与液态之间的转化)。
对流换热系数公式对流换热系数公式是用来描述流体与固体之间的热量传递能力的参数,它是工程领域中常用的一个重要指标。
在热传导过程中,流体与固体之间的热量传递主要通过对流方式进行,对流换热系数公式可以用来计算这种热量传递的强度。
对流换热系数公式一般可以表示为h = α * ΔT,其中h表示对流换热系数,α表示传热系数,ΔT表示温度差。
该公式的意义是:对流换热系数与传热系数成正比,与温度差成正比。
换热系数越大,意味着热量传递越快,温度差越大,热量传递也越快。
在工程实践中,对流换热系数公式的应用非常广泛。
例如,在石油化工领域中,对流换热系数的计算是设计换热设备的重要环节之一。
在换热设备的设计中,需要根据具体的工艺条件和流体性质,选择合适的对流换热系数公式,并进行计算和分析。
这样可以确保换热设备在工作过程中具有较高的换热效率和稳定的工艺性能。
对流换热系数公式的选择和计算涉及到许多因素,如流体的性质、流动状态、流速、管道尺寸、壁面特性等。
根据不同的情况,可以选择不同的对流换热系数公式进行计算。
例如,在自然对流换热过程中,可以使用格拉斯霍夫公式进行计算;在强迫对流换热过程中,可以使用科里奥利公式进行计算。
这些公式都是根据实验数据和理论分析得出的,可以在实际工程中得到较好的应用效果。
除了对流换热系数公式的选择和计算,还需要注意一些影响换热过程的因素。
例如,流体的黏度、热导率、密度等参数都会影响对流换热系数的大小和变化规律。
此外,换热表面的几何形状、表面粗糙度、表面温度等也会对对流换热系数产生影响。
因此,在工程设计和实际运行中,需要综合考虑这些因素,选择合适的对流换热系数公式,并进行合理的参数计算。
对流换热系数公式是热传导过程中非常重要的一个参数,它可以用来计算流体与固体之间的热量传递强度。
在工程实践中,合理选择和计算对流换热系数公式,可以有效提高换热设备的工作效率和性能稳定性。
因此,对流换热系数公式的研究和应用具有重要的工程意义。
依靠流体微团的宏观运动而进行的热量传递。
这是热量传递的三种基本方式之一。
化工生产中处理的物料大部分是流体,流体的加热和冷却都包含对流传热。
在化工生产中,对流传热在习惯上专指流体与温度不同于该流体的固体壁面直接接触时相互之间的热量传递。
这实际上是对流传热和热传导两种基本传热方式共同作用的传热过程。
例如间壁式换热器中的流体与间壁侧面之间的热量传递,反应器中固体物料或催化剂与流体之间的热量传递,都是这样的传热过程。
类型按流体在传热过程中有无相态变化,对流传热分两类:①无相变对流传热。
流体在换热过程中不发生蒸发、凝结等相的变化,如水的加热或冷却。
根据引起流体质点相对运动的原因,对流传热又分自然对流和强制对流。
自然对流是由于流体内各部分密度不同而引起的流动(如散热器旁热空气的向上流动);强制对流是流体在外力(如压力)作用下产生的流动。
强制对流时流体流速高,能加快热量传递,因而工程上广泛应用。
②有相变对流传热。
流体在与壁面换热过程中,本身发生了相态的变化。
这一类对流传热包括冷凝传热和沸腾传热。
对流传热机理流体的运动对传热过程有强烈影响。
当边界层中的流动完全处于层流状态时,垂直于流动方向上的热量传递虽然只能通过流体内部的导热,但流体的流动造成了沿流动方向的温度变化,使壁面处的温度梯度增加,因而促进了传热。
当边界层中的流动是湍流时,壁面附近的流动结构包括湍流区、过渡区和层流底层。
湍流区垂直于流动方向上的热量传递除了热传导外,主要依靠不同温度的微团之间剧烈混合,即依靠对流传热。
此传递机理与湍流区中的动量传递机理十分类似。
垂直于流动方向上的热量通量为:式中εh称涡流热扩散系数(与流体的流动状况有关);λ为热导率;cp、ρ分别为流体的等压比热容和密度;dT/dy为垂直于流动方向的温度变化率。
由于εh一般比λ大得多,故湍流区的对流传热热阻很小,所以此区的温度下降也很小。
在层流底层中热量传递只能靠热传导。
由于流体的热导率一般很小,所以即使该层很薄,仍是传热过程的主要热阻,相应的温度下降很大。
自然对流强制对流传热流化床系数的比较
答案:
自然对流传热系数与强制对流时的对流传热系数相比,自然对流传热系数要小得多。
自然对流和强制对流是两种不同的对流换热方式,它们的传热系数受到流体流动的原因和条件的影响。
自然对流是由于温差引起的密度差异导致的流体运动,而强制对流则是通过外部力量(如泵或风扇)驱动的流体运动。
这两种流动形态决定了它们各自的传热效率。
自然对流的传热系数相对较低,因为它依赖于流体内部的自然温差引起的密度差异,这种流动通常较为缓慢,不利于高效的热量传递。
例如,空气自然对流换热系数大约在5到25 W/(m²·℃)之间。
强制对流则通过外部力量驱动流体流动,可以显著提高流速和湍流程度,从而增强传热效果。
强制对流的流速较高,因此其对流换热系数也较高,有利于提高传热效率。
流化床作为一种特殊的传热方式,其传热系数与自然对流和强制对流相比,可能会有所不同,具体取决于流化床的操作条件和流体特性。
但一般来说,强制对流的传热效率要高于自然对流,而流化床的传热效率可能会介于两者之间,具体取决于流化床的设计和操作参数。
综上所述,虽然具体数值会因条件而异,但总体上可以认为自然对流的传热系数与强制对流的传热系数相比要小得多。
这表明在设计和优化传热系统时,通过适当的方式(如使用泵或风扇)促进流体流动,可以提高传热效率。
表面传热系数和对流传热系数的区别表面传热系数和对流传热系数是热传导和对流传热两种方式中的重要参数。
在热传导过程中,物体表面与周围介质之间的热量传递需要通过表面传热系数来描述;而在对流传热过程中,热量的传递则需要通过对流传热系数来描述。
本文将分别介绍表面传热系数和对流传热系数的概念、计算方法以及影响因素。
一、表面传热系数表面传热系数是指单位面积上的热量通过单位时间内从物体表面传递到周围介质的能力。
在热传导过程中,物体表面与周围介质之间的热量传递主要通过热传导实现。
表面传热系数与热传导性能有关,通常用符号h表示。
表面传热系数的计算方法主要有经验公式法和换热器法。
经验公式法是通过实验测定得到的经验公式来计算表面传热系数,适用于一些常见的传热情况。
而换热器法则是通过构造一个等效的换热器来计算表面传热系数,适用于一些复杂的传热情况。
表面传热系数的大小受多种因素影响,包括物体表面的性质、介质的性质、流体的速度等。
物体表面的性质包括表面的粗糙度、表面的形状等,一般来说,表面越粗糙、形状越复杂,表面传热系数就越大。
介质的性质包括介质的热导率、热容等,介质的热导率越大,表面传热系数就越大。
流体的速度也是影响表面传热系数的重要因素,一般来说,流体的速度越大,表面传热系数就越大。
二、对流传热系数对流传热是指热量通过流体传递的过程,是自然对流和强制对流两种方式的总称。
对流传热系数是指单位面积上的热量通过单位时间内从物体表面传递到流体中的能力。
对流传热系数与流体性质、流动状态以及物体表面性质等因素有关,通常用符号α表示。
对流传热系数的计算方法主要有经验公式法、数值模拟法和实验测定法。
经验公式法是通过实验测定得到的经验公式来计算对流传热系数,适用于一些常见的传热情况。
数值模拟法则是通过数值模拟计算来获得对流传热系数,适用于一些复杂的传热情况。
实验测定法是通过实际的实验测量来获得对流传热系数,是最直接、最准确的方法。
对流传热系数的大小受多种因素影响,包括流体的性质、流体的速度、物体表面的性质等。