小学四年级奥数(数字与页码问题)
- 格式:docx
- 大小:15.14 KB
- 文档页数:5
第三讲页码问题知识导航页码问题常见的主要有三种题型:一、一本书有N页,求排版时用了多少个数字;或者反过来,一本书排版时用了N个数字,求这本书有多少页;二、已知一本N页的书中,求某个数字出现多少次;三、已知一本N页的书中,求含有某个数字的页码有多少页。
为了清楚起见,我们将n位数的个数、组成所有n位数需要的数字个数。
组成所有不大于n位的数需要的数字个数之间的关系列表如下:不大于该数位所需数字个数个数所需数字个数一位数9 9 9二位数90 180 189三位数900 2700 2889四位数9000 36000 38889五位数90000 450000 488889精典例题例1:一本书共204页,需多少个数字编页码?思路点拨1--9页每页上的页码是一位数,共需数字:1×9=9(个);10--99页每页上的页码是两位数,共需数字:2×90=180(个);100--204页每页上的页码是三位数,共需数字(204-100+1)×3=315(个)。
一本《快乐数学》共250页,则需要多少个数字编页码?例2:印刷厂编印一本辞典的页码,共用了2211个数字。
问:这本书共有多少页?思路点拨因为189<2211<2889,所以这本书有几百页。
由前面的分析知道,这本书在排三位数的页码时用了数字(2211-189)个,所以三位数的页数有(2211-189)÷3=674(页);因为不到三位数的页数有99页,所以这本书共有……模仿练习用了2925个数字编排出一本小说的页码,这本书共有多少页?例3:一本书共有400页,编上页码:1,2,3,4,…,399,400,数字2在这本书的页码中一共出现了多少次?思路点拨分类处理,个位上每十个数字出现一次2,即共有400÷10=40次;十位上每十个数字出现一次2,即共有400÷10=40次;百位上出现了100次。
一本书有500页,数字0在页码中共出现了多少次?例4:有一本48页的书,中间缺了一张,小明将残书的页码相加,得到1131。
小学奥数-页码问题页码问题就是根据书的页码而编制出来的一类应用题.编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数量,求这本书的页数.这是页码问题中的两个基本内容。
页码问题实际上是数论的问题。
一、页码问题的几种题型:(1)已知页码数,要求考生求出书中一共含有多少个数码。
(2)已知页码数,要求考生求此书中某个数码出现的次数。
(3)已知书中包含的数码数,要求考生求出该书的页码数。
(4)已知书中某个数码出现的次数,要求考生求出该书的页码数。
二、页码问题解题基本原理要想要想顺利解答页码问题,首先要弄明白“页码”与“组成它的数码个数”之间的关系。
1.一位数组成的页码共有9个(从1~9),组成所有的一位数需要:(9-1+1)×1=9×1=9(个)数码。
2.两位数共有90个(从10~99),组成所有的两位数需要:2×(99-10+1)=180(个)数码。
3.三位数共有900个(从100~999),组成所有的三位数需要:3×(999-100+1)=2700(个)数码。
4.四位数共有9000个(从1000~9999),组成所有四位数需要:4×(9999-1000+1)=36000(个)数码。
5.9页的书共有:9个数码组成。
6.99页的书共有:9+180=189个数码组成。
7.999页的书共有:2700+180+9=2889个数码组成。
8.9999页的书共有:36000+2700+180+9=38889个数码组成。
三.例题:例1 一本书共204页,需多少个数码编页码?分析与解:1~9页每页上的页码是一位数,共需数码1×9=9(个);10~99页每页上的页码是两位数,共需数码2×90=180(个);100~204页每页上的页码是三位数,共需数码:(204-100+1)×3=105×3=315(个).综上所述,这本书共需数码:9+180+315=504(个).例2 一本小说的页码,在排版时必须用2211个数码.问:这本书共有多少页?分析:因为189<2211<2889,所以这本书有几百页.由前面的分析知道,这本书在排三位数的页码时用了数码(2211-189)个,所以三位数的页数有(2211-189)÷3=674(页).因为不到三位的页数有99页,所以这本书共有:99+674=773(页).解:99+(2211-189)÷3=773(页).答:这本书共有773页.例3 一本书的页码从1至62,即共有62页.在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次.结果,得到的和数为2000.问:这个被多加了一次的页码是几?分析与解:因为这本书的页码从1至62,所以这本书的全书页码之和为1+2+…+61+62=62×(62+1)÷2=31×63=1953.由于多加了一个页码之后,所得到的和数为2000,所以2000减去1953就是多加了一次的那个页码,是2000-1953=47.例4 有一本48页的书,中间缺了一张,小明将残书的页码相加,得到1131.老师说小明计算错了,你知道为什么吗?分析与解:48页书的所有页码数之和为1+2+…+48=48×(48+1)÷2=1176.按照小明的计算,中间缺的这一张上的两个页码之和为1176-1131=45.这两个页码应该是22页和23页.但是按照印刷的规定,书的正文从第1页起,即单数页印在正面,偶数页印在反面,所以任何一张上的两个页码,都是奇数在前,偶数在后,也就是说奇数小偶数大.小明计算出来的是缺22页和23页,这是不可能的.例5 将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112…问:左起第2000位上的数字是多少?分析与解:本题类似于“用2000个数码能排多少页的页码?”因为(2000-189)÷3=603……2,所以2000个数码排到第99+603+1=703(页)的第2个数码“0”.所以本题的第2000位数是0.例6 排一本400页的书的页码,共需要多少个数码“0”?分析与解:将1~400分为四组:1~100,101~200,201~300,301~400.在1~100中共出现11次0,其余各组每组都比1~100多出现9次0,即每组出现20次0.所以共需要数码“0”例6、13/1995 化成小数后是一个无限小数,问在这个无限小数的小数点后面,从第一位到1995位,在这1995个数中,数字6共出现了多少次?解答:这是一个关于循环小数的周期问题。
奥数:页码问题(数论问题)页码问题编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数量,求这本书的页数.这是页码问题中的两个基本内容。
我们先看一下“数”与“组成它的数码个数”之间的关系.1、一位数的页码有9页,共1×9=9个数字;组成所有的一位数需要9个数码;2、两位数的页码有90页,共90×2=180个数字;需要180个数码3、三位数有900个,全部编上共用900×3=2700个数字,需要3×900=2700(个)数码。
题目会出1、一本书有N页,求排版时用了多少个数字;或者反过来,一本书排版时用了N个数字,求这本书有多少页;2、已知一本N页的书中,求某个数字出现多少次;3、已知一本N页的书中,求含有某个数字的页码有多少页一本书排版时用了N个数字,求这本书有多少页,数字数<2889时,用公式:页码数=数字数/3+36;数字数>2889时,用添加0计算。
例1 一本书共204页,需多少个数码编页码?2.编一本书的书页,用了270个数字(重复的也算,如页码115 用了2个1 和1个5共3个数字),问这本书一共有多少页?N/3+36。
270/3 +36=126。
2.一本小说的页码,在排版时必须用2211 个数码。
问这本书共有多少页?A.773 B.774 C .775 D.7763 .王先生在编一本书,其页数需要用6869 个字,问这本书具体是多少页?A.1999B.9999C.1994D.1995方法一:假设这个页数是A页,则:A+(A-9)+(A-99)+(A-999)=6869 ,求出A=1994方法二:6869>2889,所以,把所有的数字看作是4位数字,不足4位的添O补足4位,l , 2 , 3 , …9 记为0001 , 0002 , 0003 , ..0009 这样增加了3 * 9 = 27 个010 , 11 , 12 , …99 记为0010 , 0011 , 0012 ,..0099 增加了180 个0100 , 101 ,…999 记为0100 , 0101 ,…0999 增加了900 个O (6869+27+180+900)/4 =1994关于含“1”出现过多少次的问题,总结出的公式就是:总页数的1/10 乘以(数字位-1 ),再加上10 的(数字位数-l)次方。
四年级奥数专题页码问题知识导航页码问题常见的主要有三种题型:一、一本书有N页,求排版时用了多少个数字;或者反过来,一本书排版时用了N个数字,求这本书有多少页;二、已知一本N页的书中,求某个数字出现多少次;三、已知一本N页的书中,求含有某个数字的页码有多少页。
为了清楚起见,我们将n位数的个数、组成所有n位数需要的数字个数。
组成所有不大于n位的数需要的数字个数之间的关系列表如下:不大于该数位所需数字个数个数所需数字个数一位数9 9 9二位数90 180 189三位数900 2700 2889四位数9000 36000 38889五位数90000 450000 488889精典例题例1:一本书共204页,需多少个数字编页码?思路点拨1--9页每页上的页码是一位数,共需数字:1×9=9(个);10--99页每页上的页码是两位数,共需数字:2×90=180(个);100--204页每页上的页码是三位数,共需数字(204-100+1)×3=315(个)。
模仿练习一本《快乐数学》共250页,则需要多少个数字编页码?例2:印刷厂编印一本辞典的页码,共用了2211个数字。
问:这本书共有多少页?思路点拨因为189<2211<2889,所以这本书有几百页。
由前面的分析知道,这本书在排三位数的页码时用了数字(2211-189)个,所以三位数的页数有(2211-189)÷3=674(页);因为不到三位数的页数有99页,所以这本书共有……模仿练习用了2925个数字编排出一本小说的页码,这本书共有多少页?例3:一本书共有400页,编上页码:1,2,3,4,…,399,400,数字2在这本书的页码中一共出现了多少次?思路点拨分类处理,个位上每十个数字出现一次2,即共有400÷10=40次;十位上每十个数字出现一次2,即共有400÷10=40次;百位上出现了100次。
第三讲页码问题一年级姓名学号【知识要点】0、1、2、3、4、5、6、7、8、9是大家最常见、最常用、最熟悉的数,也是当今世界各国通用的数字。
他们是构成十进制数的“零件”。
由一个数字编写的页码是第1页到第9页,共需要用到9个数字。
由两个数字编写的页码是第10页到第99页,共需用到180个数字,由两个数字编写的页码是第100页到第999页,共需用到2700个数字,……依次可类推出其它情况。
【例题】★例1.你知道书上页码排列的规律吗?每张纸上的页码总是正面为,反面为;任意翻开书中的两页,这两页的号码数字是,左边一页为,右边一页为。
一位数有()个,即,两位数有()个,即,三位数有()个,即,四位数有()个,即。
★例2.小明和小智是同学,他们经常在一起探讨数学问题。
一次,小明对小智说:我有一本课外读物,它的页数是一个三位数,个位数字比百位数字大4,十位数字比个位数字也大4,这本课外读物有几页?小智稍加思索就说出了正确答案。
你知道这个答案是多少吗?★例3.一本《成语故事》共有131页,编印这本书的页码共用了多少个数字?★例4.印刷厂编印一本故事书的页码,共用了360个数字,请算一算,这本故事书有多少页?★★例5.一本含有相片的纪实文集的书,共有250页。
其中每两页文字之间有3页是相片插图,也就是3页相片插图前后各有1页文字。
(1)若第1页是文字,这本书含有相片插图的共有多少页?(2)若第1页是相片插图,这本书共有相片插图多少页?【池中戏水】★1.小智也给小明出了一个类似的问题,一本书的页码是一个三位数,百位数字比个位数字大6,十位数字是个位数字与百位数字的平均数,这本书有多少页?★2.一本《快乐数学》共560页,则需要多少个数字编页码?★3.一本书共104页,排页码时要用到多少个数字?★4.用了204个数字编排出一本小书的页码,这本书共有多少页?★5.给一本书编页码,在印刷时必须用到207个铅字(一个铅字代表一个数字),这本书共有多少页?★6.小浩打开数学书做作业,发现这时左右两个页码的和是165,你知道小浩打开的页码是多少吗?为什么?【江中畅游】★7.给一部书编上页码需要689个数字,那么这部书共有多少页?★8.一本书的页码从1~62页,即共有62页,在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次,结果得到的和为2004。
奥数中的数码和页码题目
数码和页码题目:
题目1:小明参加了一个奥数比赛,他打开试卷,发现每一页都有一个三位数的数码。
如果小明一共翻了100页试卷,每一页的数码都是顺序递增的,试问最后一页的数码是多少?
题目2:在一本奥数题集中,从第一页开始,每一页的页码都是一个四位数。
如果小红翻了20页,她发现每一页的页码的千位数字都是顺序递减的,百位数字都是顺序递增的,个位数字都是0,十位数字都是5,试问小红翻到的最后一页的页码是多少?
题目3:斐波那契数列是一个典型的数列,它的第一项和第二项均是1,之后的每一项是前两项的和。
小明翻开一本奥数题集,数码以斐波那契数列的方式排列在每一页的右下角,第一页的右下角是第三项,第二页是第四项,以此类推。
如果小明翻到第20页,试问右下角的数码是多少?
题目4:某本数学家的传记共有300页。
对于前100页,每一页的数码都是从1开始,顺序递增的。
对于接下来的100页,每一页的数码都是从101开始,顺序递增的。
对于最后100页,每一页的数码都是从201开始,顺序递增的。
试问第50页的数码是多少?
题目5:小华翻开一本奥数参考书,第一页的数码是1,第二页是2,以此类推。
当他翻开第N页时,所有页码的数码之和是675。
试问N是多少?
参考答案:
题目1:最后一页的数码是100。
题目2:小红翻到的最后一页的页码是6590。
题目3:右下角的数码是6765。
题目4:第50页的数码是150。
题目5:N是18。
四年级奥数详解答案第23讲第二十三讲页码问题一、知识概要页码是指书本每一页(面)上所标注的数目。
(这里的“页”不是指书中的一张纸,而是指一张纸的一面)。
页码问题主要是研究编一本书的页码,一共需要多少个数码,以及知道编一本书的页码所需的数码数量,求这本书页数。
典型的页码问题有如下三类(最基本的):(1)算页码中所用数字个数的和,或是根据已知的页码中所用数字个数的和来求页码。
(2)计算页码中某个数字出现的项数。
(3)计算页码中所有数字的和。
解决页码问题的基本方法是:分段(或分类或分组)计算。
页码个数与组成页码的数码个数之间的关系,如下表所示。
二、典型题目精讲1、一本故事书共180页,需多少个数码编页码?解:数码是指0,1,2,3,4,5,6,7,8,9这十个数字,页码就是由每页上由数码组成的数目。
所以,1~9页有9个数码;10—99页有180个数码;100~180页有81×3=243 (个)数码。
一共有9+180+243=432(个)2、有一本辞典,所编页码共用了3401个数码,这本辞典一共有________页。
解:①1~9页用9个数码;10—99页用了180个数码;100~999用了2700个数码;则1~999页共用数码9+180+2700=2889(个)。
②1000~?页共用数码(3401-2889)=512 (个);则512÷4=128(页)。
故这本辞典共有999+128=1127(页)3、一本漫画共121页,在这本书的页码中数字一共出现了_______次。
解:(分类计算)①在个位上,1出现13次(即1,11,21……101,111,121);②在十位上,1出现20次(即10,11,12……19;110,111,112……119);③在百位上,1出现22次(即100,101,102,……121)。
综合①②③可知,1在书的页码中共出现(13 +20+22)=55(次)。
4、一本书共200页,求页码中全部数字的和。
第三讲页码问题知识导航页码问题常见的主要有三种题型:一、一本书有N页,求排版时用了多少个数字;或者反过来,一本书排版时用了N个数字,求这本书有多少页;二、已知一本N页的书中,求某个数字出现多少次;三、已知一本N页的书中,求含有某个数字的页码有多少页。
为了清楚起见,我们将n位数的个数、组成所有n位数需要的数字个数。
组成所有不大于n位的数需要的数字个数之间的关系列表如下:精典例题例1:一本书共204页,需多少个数字编页码?思路点拨1--9页每页上的页码是一位数,共需数字:1×9=9(个);10--99页每页上的页码是两位数,共需数字:2×90=180(个);100--204页每页上的页码是三位数,共需数字(204-100+1)×3=315(个)。
一本《快乐数学》共250页,则需要多少个数字编页码?例2:印刷厂编印一本辞典的页码,共用了2211个数字。
问:这本书共有多少页?思路点拨因为189<2211<2889,所以这本书有几百页。
由前面的分析知道,这本书在排三位数的页码时用了数字(2211-189)个,所以三位数的页数有(2211-189)÷3=674(页);因为不到三位数的页数有99页,所以这本书共有……模仿练习用了2925个数字编排出一本小说的页码,这本书共有多少页?例3:一本书共有400页,编上页码:1,2,3,4,…,399,400,数字2在这本书的页码中一共出现了多少次?思路点拨分类处理,个位上每十个数字出现一次2,即共有400÷10=40次;十位上每十个数字出现一次2,即共有400÷10=40次;百位上出现了100次。
一本书有500页,数字0在页码中共出现了多少次?例4:有一本48页的书,中间缺了一张,小明将残书的页码相加,得到1131。
孙老师说小明计算错了,你知道为什么吗?思路点拨48页书的所有页码数之和为:1+2+ …+48=1176;按照小明的计算,中间缺的这一张上的页码之和为1176-1131=45……模仿练习一本书的页码从1至62,即共有62页。
奥数:页码问题(数论问题)页码问题与图书的页码有亲密联系.事实上,页码问题就是依据书的页码而编制出来的一类应用题.编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数目,求这本书的页数.这是页码问题中的两个基本内容。
页码问题是此刻的奥数比赛以及公事员考试中常有的、常常考试的知识点。
页码问题其实是数论的问题。
为了顺利地解答页码问题,我们先看一下“数”与“构成它的数码个数”之间的关系.一位数共有 9 个,构成全部的一位数需要 9 个数码;两位数共有 90 个,构成全部的两位数需要 2×90=180(个 )数码;三位数共有 900 个,构成全部的三位数需要 3×900=2700(个)数码。
为了清楚起见,我们将 n 位数的个数、构成全部 n 位数需要的数码个数、构成全部不大于 n 位的数需要的数码个数之间的关系列表以下:由上表能够看出,假如一本书不足100 页,那么排这本书的页码所需的数码个数不会超过 189 个;假如某本书排的页码用了 10000 个数码,因为 2889<10000< 38889,因此这本书一定是上千页。
例1 一本书共 204 页,需多少个数码编页码?剖析与解: 1~ 9 页每页上的页码是一位数,共需数码1×9= 9(个);10~99 页每页上的页码是两位数,共需数码2×90=180(个);100~ 204 页每页上的页码是三位数,共需数码(204-100+1) ×3=105×3= 315(个).综上所述,这本书共需数码9+180+315= 504(个) .例2 一本小的,在排版必用 2211 个数.:本共有多少?剖析:因 189< 2211< 2889,因此本有几百.由前面的剖析知道,本在排三位数的用了数(2211-189)个,因此三位数的数有(2211-189) ÷3= 674( ).因不到三位的数有99 ,因此本共有: 99+674=773( ).解: 99+(2211-189) ÷3=773( ).答:本共有773 .例 3 一本的从 1 至 62,即共有 62 .在把本的各的累加起来,有一个被地多加了一次.果,获得的和数 2000.:个被多加了一次的是几?剖析与解:因本的从 1 至 62,因此本的全之和1+2+⋯+ 61+62= 62×(62+ 1) ÷2= 31×63= 1953.因为多加了一个以后,所获得的和数2000,因此 2000 减去 1953 就是多加了一次的那个,是2000-1953=47.例 4有一本48的,中缺了一,小明将残的相加,获得1131.老小明算了,你知道什么?剖析与解: 48 的全部数之和1+2+⋯+ 48=48×(48+ 1) ÷2=1176.依据小明的算,中缺的一上的两个之和1176-1131= 45.两个是 22 和 23 .可是依据印刷的定,的正文从第 1 起,即数印在正面,偶数印在反面,因此任何一上的两个,都是奇数在前,偶数在后,也就是奇数小偶数大.小明算出来的是缺22 和 23 ,是不行能的.第2000 位上的数字是多少?剖析与解:本似于“用2000 个数能排多少的?”因(2000-189) ÷3=603⋯⋯2,因此2000 个数排到第 99+603+1=703( )的第 2 个数“ 0.”因此本的第 2000 位数是 0.例6 排一本 400 的的,共需要多少个数“0?”剖析与解:将1~400 分四:1~100,101~ 200,201~300, 301~400.在 1~100 中共出 11 次 0,其他各每都比 1~ 100 多出 9 次 0,即每出 20 次0.因此共需要数“ 0”典型例:例 1、13/1995 化成小数后是一个无穷小数,在个无穷小数的小数点后边,从第一位到1995 位,在 1995 个数中,数字 6 共出了多少次?解答:是一个对于循小数的周期。
小学四年级奥数
第14讲数字与页码
知识方法…………………………………………………
在日常的编门牌号码中、在编书所用页码中,都会用到数与数字之间的关系。
这样的一些问题,如果用一般的思考方法,往往觉得无法入手,但是只要我们认真思考,善于捕捉数量之同的“蛛丝马迹”,通过合乎情理的运算与推导,就会找出一定的规律,很快地解答这些问题。
重点点拨…………………………………………………
【例1】有一个两位数,十位上的数字是个位上数字的3倍。
如果把这两个数字对调位置,组成一个新的两位数,这时两个数的和是132,求原两位数。
分析与解符合十位上的数字是个位上数字的3倍这个条件的两位数有:31,62,93这两个数字对调位置后,得到的是13,26,39,只有39+93=132,所以原来的两位数是93。
【例2】张家的门牌号码是一个三位数,而且三个数宇都不相同,但知道三个数字的和是6,你说说他家的门牌号码是多少?(把所有可能的情况都写出来)
分析与解根据三个数字都不相同,但三个数字的和是6,我们找出符合条件的情况:
0,1,5组合:150,105,510,501。
0,2,4组合:240,204,420,402。
1,2,3组合:123,132,213,231,312,321。
一共有14种可能。
【例3】一本书共222页,需多少个数码编页码?
分析与解1~9页每页上的页码是一位数,共需数码1×9=9(个);
10~99页每页上的页码是两位数,共需数码2×90=180(个);
100~222页每页上的页码是三位数,共需数码(222-2100+1)×3=369(个)。
9+180+369=558(个)。
答:需要558个数码编页码。
【例4】《民间故事》的正文第一页到最后一页共用了360个数码编页码,这本书的正文有多少页?
分析一位数页码只有一位数字,共有1~9这9个数字;两位数页码从10~9,共90个数,180个数字;三位数页码从100~990共900个数,2700个数字。
这本书从第一页到最后一页共用了360个数字,所以这本书的页数是三位数。
360-180-9=171,这剩下的171个数字组成的是三位数页码,所以有171÷3=57(页),一共有99+57=156(页)。
解答360-180-9=171(个171÷3=57(页)99+57=156(页)
答:这本书有156页
【例5】有一本从正文开始一共50页的书,中间缺了一张,小华将这本书的页码相加,得到的和是1254。
老师说小华计算错了,你知道为什么吗?
分析与解50页书的所有页码数之和为
1+2+…+5050×(50+1)÷:21275
按照小明的计算,中间缺的这一张上的两个页码之和为1275-1254=21。
这两个页码应该是10页和11页。
一本书的正文从第1页起,即单数页印在正面,偶数页印在反面,所以任何一张上的两
个页码,都是奇数在前,偶数在后。
小华计算出来的是缺10页和11页,这是不可能的。
【例6】将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112……问:左起第2000位上的数字是多少?
分析与解本题类似于“用2000个数码能排多少页的页码?”
1~9页每页上的页码是一位数,共需数码
10~99页每页上的页码是两位数,共需数码2×90=180(个);
因为(2000-189)÷3=603……2,所以2000个数码排到第99+603+1=703(页)的第2个数码“0”。
所以本题的第2000位数是0。
培优高手…………………………………………………
1.一个两位数,个位上的数字是十位上数字的2倍。
如果把十位上的数字与个位上的数字对调,那么所得的两位数比原来的两位数大36,求原来的两位数。
2.一个两位数,十位上的数字比个位上的数字的3倍还多1,将个位数字与十位数字对调,得到一个新的两位数,这两个两位数的差是45,求这个两位数。
3.某个密码锁由3个非零的数字组成,而且三个数字都不相同,现在知道3个数字的和9,你能找出所有可能的情况吗?
4.某个密码锁由4个数字组成(O除外),而且4个数字都不相同,但知道4个数字的和是14,你能找出所有可能的情况吗?
5.排一本辞典的页码共用了2925个数字,请你算一下,这本辞典有多少页?
6.一本科幻小说共320页,编印这本科幻小说的页码共要用多少个数字?
7.一本书的页码从1至62,即共有62页。
在把这本书的各页页码累积加起来时,有一个页码被错误地多加了一次。
结果,得到的和数为2000。
问:这个被多加了一次的页码是几?
8.将自然数按从小到大的顺序无间隔地排成一个大数:1234568910112……问:左起第1000位上的数字是多少?
9.从1993到5989的所有自然数中,十位数字与个位数字相同的共有多少个?。