匀速圆周运动是变加速曲线运动吗
- 格式:docx
- 大小:17.30 KB
- 文档页数:2
圆周运动的规律及其应用一、 匀速圆周运动的基本规律1.匀速圆周运动的定义:作 的物体,如果在相等时间内通过的 相等,则物体所作的运动就叫做匀速圆周运动。
2.匀速圆周运动是:速度 不变, 时刻改变的变速运动;是加速度 不变, 时刻改变的变加速运动。
3.描述匀速圆周运动的物理量 线速度:r Tr t s v ωπ===2,方向沿圆弧切线方向,描述物体运动快慢。
角速度:Tt πθω2== 描述物体转动的快慢。
转速n :每秒转动的圈数,与角速度关系n πω2= 向心加速度: v r rv a ωω===22描述速度方向变化快慢,其方向始终指向圆心。
向心力:向心力是按 命名的力,任何一个力或几个力的合力只要它的 是使物体产生 ,它就是物体所受的向心力.向心力的方向总与物体的运动方向 ,只改变线速度 ,不改变线速度 .==ma F v m r m rv m ωω==22。
二、 匀速圆周运动基本规律的应用【基础题】例1:上海锦江乐园新建的“摩天转轮”,它的直径达98m ,世界排名第五,游人乘坐时,转轮始终不停地匀速转动,每转一周用时25min.下列说法中正确的是 ( )A . 每时每刻,每个人受到的合力都不等于零 B. 每个乘客都在做加速度为零的匀速运动C. 乘客在乘坐过程中对座位的压力始终不变D. 在乘坐过程中每个乘客的线速度保持不变【同步练习】1.一物体作匀速圆周运动,在其运动过程中,不发生变化的物理量是( )A .线速度B . 角速度C .向心加速度D .合外力2.质量一定的物体做匀速圆周运动时,如所需向心力增为原来的8倍,以下各种情况中可能的是( )A. 线速度和圆半径增大为原来的2倍B. 角速度和圆半径都增大为原来的2倍C. 周期和圆半径都增大为原来的2倍D. 频率和圆半径都增大为原来的2倍3.用细线将一个小球悬挂在车厢里,小球随车一起作匀速直线运动。
当突然刹车时,绳上的张力将( )A. 突然增大B. 突然减小C. 不变D. 究竟是增大还是减小,要由车厢刹车前的速度大小与刹车时的加速度大小来决定4.汽车驶过半径为R 的凸形桥面,要使它不至于从桥的顶端飞出,车速必须小于或等于( )A. 2RgB. RgC. Rg 2D. Rg 35.做匀速圆周运动的物体,圆半径为R ,向心加速度为a ,则以下关系式中不正确的是( )A. 线速度aR v =B. 角速度R a =ωC. 频率R a f π2=D. 周期aR T π2= 6.一位滑雪者连同他的滑雪板共70kg ,他沿着凹形的坡底运动时的速度是20m/s ,坡底的圆弧半径是50m ,试求他在坡底时对雪地的压力。
变加速曲线运动的定义是什么一定是曲线运动吗变加速运动指的是加速度的大小、方向至少有一个发生改变的运动。
可以是直线,也可以是曲线;从牛顿第二定律的角度来分析,即物体所受的合外力是变化的。
关于变加速运动匀加速曲线运动,例如如平抛,斜抛。
匀加速曲线运动的加速度是不变的,且初速度方向与加速度不在同一条直线上。
在曲线运动中:当力矢量与速度矢量间的夹角等于90°时,作用力仅改变物体速度的方向,不改变速度的大小:例如匀速圆周运动;当夹角小于90°时,作用力不仅改变物体运动速度的方向,并且增大速度的量值;当夹角大于90°时,同样改变物体运动速度的方向,但是却减小速度的量值。
在曲线运动中物体运动到其中一点时,物体所受的合外力可以分解为沿速度方向和垂直速度方向两个分量,其中沿速度方向的分量改变速度的大小,垂直速度的分量改变速度的方向。
曲线运动中速度的方向时刻在变,因为是个矢量,既有大小,又有方向。
不论速度的大小是否改变,只要速度的方向发生改变,就表示速度矢量发生变化,也就具有了加速度,所以曲线运动是变速运动。
加速度也可以分解为沿速度方向和垂直速度方向两个分量,其中沿速度方向的分量描述速度大小变化的快慢,垂直速度方向的分量描述速度方向变化的快慢。
常见的曲线运动有:平抛运动,斜抛运动,匀速圆周运动三种。
曲线运动的知识点1.曲线运动⑴物体作曲线运动的条件:①初速度和合外力不为零。
②两者不在一直线上。
⑵速度:①合外力的作用是改变速度(大小、方向)。
②任一点的速度方向在该点曲线的切线方向上。
③运动中速度不断改变,是一种变速运动,如果合外力是恒定的,属匀变速运动。
2.运动的合成和分解⑴两类基本运动:匀速直线运动和初速度为零的匀加速直线运动是最常见的两类基本运动;⑵运动合成:①几个同类运动的合运动仍是同类运动。
②合速度或合加速度按力的合成方法求。
③不同类运动的合运动可能是直线运动(V0与a在同一直线上),也可能是曲线运动(V0与a不在同一直线上)。
圆周运动中的匀速圆周运动和变速圆周运动的区别与联系圆周运动是指物体沿着一个固定半径的圆形路径进行的运动。
在圆周运动中,存在着两种主要类型,即匀速圆周运动和变速圆周运动。
本文将探讨这两种类型的区别与联系。
一、匀速圆周运动匀速圆周运动是指物体在圆周运动过程中保持恒定的角速度。
在匀速圆周运动中,物体在相同的时间内所经过的角度是相等的。
在匀速圆周运动中,物体呈现出以下特点:1. 物体的速度大小保持不变,但方向随时间改变。
2. 物体的加速度大小为零,即物体的运动状态保持稳定。
3. 物体所经过的弧长与时间成正比,即单位时间内所经过的弧长相等。
二、变速圆周运动变速圆周运动是指物体在圆周运动过程中速度和/或角速度发生变化。
在变速圆周运动中,物体在不同的时间段内所经过的角度是不相等的。
在变速圆周运动中,物体呈现出以下特点:1. 物体的速度大小和/或方向随着时间的改变而发生变化。
2. 物体的加速度在不同的时间段内可能不为零,即物体的运动状态可能不稳定。
3. 物体所经过的弧长与时间不一定成正比,即单位时间内所经过的弧长可能不相等。
三、区别与联系1. 区别:匀速圆周运动的速度保持不变,而变速圆周运动的速度可以不断变化。
匀速圆周运动的加速度为零,运动状态保持稳定;变速圆周运动的加速度可能不为零,运动状态可能不稳定。
匀速圆周运动所经过的弧长与时间成正比,而变速圆周运动所经过的弧长与时间不一定成正比。
2. 联系:匀速圆周运动和变速圆周运动都属于圆周运动,都是物体沿着圆形路径运动。
匀速圆周运动和变速圆周运动都涉及到角速度的概念,在运动过程中都会产生角位移。
匀速圆周运动和变速圆周运动都可以通过角速度和半径,来计算速度和加速度的大小。
综上所述,匀速圆周运动和变速圆周运动在速度、加速度和与时间的关系上有所不同。
匀速圆周运动中,速度保持不变且加速度为零,而变速圆周运动中速度可以变化且加速度可能不为零。
然而,它们都是圆周运动的特例,都与角速度和圆的半径相关。
圆周运动与平抛运动类似,圆周运动也是最为典型的曲线运动之⼀。
我们来分析圆周运动都有哪些特点?圆周运动的概念质点在以某点为圆⼼半径为r的圆周上运动时,即其轨迹是圆周的运动叫圆周运动。
在运动过程中速率的⼤⼩维持不变⽽仅仅是⽅向变化,这样的圆周运动称之为匀速圆周运动。
严格来说,匀速圆周运动应该叫做匀速率圆周运动。
因为其速度并⾮“均匀不变”的,速度是⽮量,其⼤⼩速率不变。
在圆周运动的过程中,速度⼤⼩不变,其⽅向时刻发⽣变化。
圆周运动是⼀种最常见的曲线运动。
例如电动机转⼦、车轮、⽪带轮等都作圆周运动。
圆周运动分为,匀速圆周运动和变速圆周运动。
变速圆周运动的代表是:竖直平⾯内绳或杆转动⼩球、竖直平⾯内的圆锥摆运动等。
在讲解机械振动的时候,我们研究的单摆其实在做的就是⾮匀速的圆周运动(往复性质)。
从运动性质上来说,匀速圆周运动是变速运动(v⽅向时刻在变),⽽且是变加速运动(a⽅向时刻在变)。
请同学们注意,只要物体做圆周运动,那么必然受⼒不平衡,必须有外⼒提供向⼼⼒。
描述匀速圆周运动的物理量描述匀速圆周运动的物理量有很多,包括线速度v、⾓速度ω、周期T、频率f、转速n、向⼼加速度a、向⼼⼒F等等。
转速n的单位是r/s(转每秒)或r/min(转每分),注意区分r/s和rad/s。
凡是直接⽤⽪带传动(包括链条传动、摩擦传动)的两个轮⼦,两轮边缘上各点的线速度⼤⼩相等;凡是同⼀个轮轴上(各个轮都绕同⼀根轴同步转动)的各点⾓速度相等(轴上的点除外)。
圆周运动向⼼⼒和向⼼加速度向⼼加速度的定义a = v^2/r;同时也可证明a =(2π)^2r/T^2;向⼼⼒的定义F = mv^2/r;也可表⽰为F=mω^2r(v是线速度,ω是⾓速度)⽜顿第⼆定律在圆周运动中的应⽤(1)做匀速圆周运动物体所受的合⼒为向⼼⼒。
“向⼼⼒”是⼀种效果⼒。
可以是⼀个⼒,也可以是⼏个⼒的合⼒,只要其最终效果是使物体做匀速圆周运动的,都可以作为向⼼⼒。
章末复习学习目标1.能理解圆周运动的运动学物理量,并明确其相互关系。
2.能理解圆周运动中的动力学问题,并会用牛顿运动定律分析实际问题,完善自己准确的运动和相互作用观。
3.能掌握竖直面内圆周运动的两类模型问题,并通过相应模型的建构锻炼自己的科学思维。
自主复习1.思考判断(1)匀速圆周运动是匀加速曲线运动。
()(2)向心力和重力、弹力一样,是性质力。
()(3)做匀速圆周运动的物体向心加速度与半径成反比。
()(4)做匀速圆周运动的物体角速度与转速成正比。
()(5)做圆周运动的物体所受合外力突然消失,物体将沿圆周切线方向做匀速直线运动。
()(6)做匀速圆周运动的物体相等时间内通过的位移相同。
()2.(多选)如图所示,自行车的大齿轮、小齿轮、后轮是相互关联的三个转动部分,它们的边缘有三个点A、B、C。
关于这三点的线速度、角速度、周期和向心加速度的说法中正确的是()A.A、B两点的线速度大小相等B.B、C两点的角速度大小相等C.A、C两点的周期大小相等D.A、B两点的向心加速度大小相等3.如图所示,玻璃球沿碗的内壁做匀速圆周运动(若忽略摩擦),这时球受到的力是()A.重力和向心力B.重力和支持力C.重力、支持力和向心力D.重力[合作探究](一)圆周运动的运动学问题1.圆周运动基本物理量及其关系线速度:方向,公式。
角速度:物理意义,公式。
周期:定义,公式。
转速:定义,公式。
向心加速度:方向,公式。
2.同轴转动和皮带(齿轮)传动同轴转动:特点:、相同规律:线速度与半径成皮带(齿轮)传动:特点:大小相等规律:角速度与半径成(二)圆周运动的动力学问题1.向心力的来源向心力是按力的命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的或某个力的,因此在受力分析中要避免再另外添加一个向心力。
2.运动模型[例题评析]【例题1】在某次文艺演出中,芭蕾舞演员保持如图所示姿势原地旋转,此时手臂上A、B 两点角速度大小分别为ωA、ωB,线速度大小分别为v A、v B,则()A.ωA<ωBB.ωA>ωBC.v A<v BD.v A>v B[变式练习1]汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长。
匀速圆周运动的特点和计算匀速圆周运动是指物体在圆周路径上以恒定速度运动的现象。
它具有以下特点:1.速度大小恒定:在匀速圆周运动中,物体沿圆周路径的速度大小保持不变。
2.速度方向变化:虽然速度大小不变,但物体在圆周路径上运动时,速度方向不断变化,始终指向圆心。
3.向心加速度:匀速圆周运动中,物体受到一个指向圆心的向心加速度,其大小为a=v²/r,其中v为速度大小,r为圆周半径。
4.向心力:向心加速度是由向心力引起的,其大小为F=m*a,其中m为物体的质量。
5.周期性:匀速圆周运动的物体每隔一定时间会回到起点,这个时间称为周期,用T表示。
6.角速度:匀速圆周运动的物体在单位时间内转过的角度称为角速度,用ω表示。
其大小为ω=2π/T。
匀速圆周运动的计算公式如下:1.线速度v与角速度ω、半径r的关系:v=ω*r。
2.向心加速度a与速度v、半径r的关系:a=v²/r。
3.向心力F与质量m、向心加速度a的关系:F=m*a。
4.周期T与角速度ω的关系:T=2π/ω。
5.角速度ω与频率f的关系:ω=2π*f,其中频率f是单位时间内圆周运动的次数。
以上是匀速圆周运动的特点和计算方法的详细介绍,希望能对您有所帮助。
习题及方法:一辆自行车以6m/s的速度在圆形路径上匀速运动,圆形路径的半径为6m,求自行车的向心加速度和向心力。
根据向心加速度公式a=v²/r,将速度v=6m/s和半径r=6m代入,得到向心加速度a=6²/6=6m/s²。
根据向心力公式F=m a,需要知道自行车的质量m,假设自行车质量为m=10kg,将向心加速度a=6m/s²和质量m=10kg代入,得到向心力F=106=60N。
一个物体在半径为5m的圆形路径上做匀速圆周运动,角速度为ω=4π/s,求物体的线速度和周期。
根据线速度公式v=ωr,将角速度ω=4π/s和半径r=5m代入,得到线速度v=4π5=20πm/s。
高中物理匀速圆周运动知识点高中物理教材中匀速圆周运动属于曲线运动的内容,有哪些知识点需要学生理解呢?下面是店铺给大家带来的高中物理匀速圆周运动知识点,希望对你有帮助。
高中物理匀速圆周运动知识点1、关于匀速圆周运动(1)条件:①物体在圆周上运动;②任意相等的时间里通过的圆弧长度相等。
(2)性质:匀速圆周运动是加速度变化(大小不变而方向不断变化)的变加速运动。
(3)匀速圆周运动的向心力:①是按力的作用效果来命名的力,它不是具有确定性质的某种力,相反,任何性质的力都可以作为向心力。
例如,小铁块在匀速转动的圆盘上保持相对静止的原因是,静摩擦力充当向心力,若圆盘是光滑的,就必须用线细拴住小铁块,才能保证小铁块同圆盘一起做匀速转动,这时向心力是由细线的拉力提供。
②向心力的作用效果是改变线速度的方向。
做匀速圆周运动的物体所受的合外力即为向心力,它是产生向心加速度的原因,其方向一定指向圆心,是变化的(线速度大小变化的非匀速圆周运动的物体所受的合外力不指向圆心,它既要改变速度方向,同时也改变速度的大小,即产生法向加速度和切向加速度)。
③向心力可以是某几个力的合力,也可以是某个力的分力。
例如,用细绳拴着质量为m的物体,在竖直平面内做圆周运动到最低点时,其向心力由绳的拉力和重力(F向= T拉- mg)两个力的合力充当。
而在圆锥摆运动中,小球做匀速圆周运动的向心力则是由重力的分力(F 向 = mg*tanθ),其中θ为摆线与竖直轴的夹角)充当,因此决不能在受力分析时沿圆心方向多加一个向心力。
④物体做匀速圆周运动所需向心力大小可以表示为:F = ma = mv^2/r = mrω^2 = mr*4π^2/(T^2)2、描述圆周运动的物理量(1)线速度:v = s/t(s是物体在时间t内通过的圆弧长),方向沿圆弧上该点处的切线方向。
描述了物体沿圆弧运动的快慢程度。
(2)角速度:ω= θ/t(θ是物体在时间t内绕圆心转过的角度),描述了物体绕圆心转动的快慢程度。
匀速圆周运动知识归纳圆周运动是高中物体中一种常见的运动,也是高中物理的一个重要知识点.以下就这部分内容需要重点掌握的知识进行归纳.一.知识整理1.匀速圆周运动的定义:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动.2.描述匀速圆周运动的物理量(1)线速度:v s t=(s 是物体在时间t 内通过的圆弧长),方向沿圆弧上该点处的切线方向,它是描述物体做匀速圆周运动快慢的物理量.(2)角速度:ωθθ=t(是物体在时间t 内绕圆心转过的角度),单位是弧度每秒,符号是rad/s ,它是描述物体做匀速圆周运动快慢的物理量.(3)周期T 和频率f :做匀速圆周运动的物体运动一周所用的时间叫周期,周期的倒数叫频率.转速是指做匀速圆周运动的物体每秒转过的圈数,用n 表示,单位是转每秒,符号是r/s .它们都是描述物体做匀速圆周运动快慢的物理量.(4)线速度、角速度、周期和频率以及转速间的关系:①v r r Trf rn ====ωπππ222②ωπππ===222T f n ③T f n ==11.(5)向心加速度:描述线速度方向变化快慢的物理量.大小:a v r r r Tf r n r n =====22222222444ωπππ方向:总是沿着半径指向圆心,所以方向时刻在变化,是一个变的加速度.(6)向心力大小:F ma mv r m r rm Tf rm n rm n n ======22222222444ωπππ方向:总是沿着半径指向圆心,所以时刻在变化,向心力是一个变力.3.匀速圆周运动的特点:线速度大小恒定,角速度、周期和频率及转速都是恒定不变的,向心力和向心加速度的大小也都是恒定不变的,但线速度、向心力和向心加速度的方向都时刻在变化.所以匀速圆周运动是一种变加速曲线运动.4.物体做匀速圆周运动的条件:合外力的大小不变,方向始终与速度方向垂直且指向圆心.即合外力提供向心力,且时刻等于向心力时,物体就做匀速圆周运动.做圆周运动的物体,若实际提供的向心力小于它所需的向心力时,物体将逐渐远离圆心,做离心运动.做圆周运动的物体,若实际提供的向心力大于它所需的向心力时,物体将逐渐向圆心运动,做逐渐靠近圆心的运动.5.向心力的来源:在匀速圆周运动中,向心力是由物体受到的合外力来提供,且与合外力相等.在非匀速圆周运动中,向心力是由物体受到的合外力在指向圆心方向的分力来提供,且与合外力的这个分力相等,而这个分力只改变物体的速度方向;合外力在切线方向上的另一个分力改变了物体的速度大小.二.典型例题赏析例:如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则()A.球A 的线速度必定大于球B 的线速度B.球A 的角速度必定小于球B 的角速度C.球A 的运动周期必定小于球B 的运动周期D.球A 对筒壁的压力必定大于球B 对筒壁的压力解析:对A 、B 球进行受力分析可知,A 、B 两球受力一样,它们均受重力mg 和支持力N ,则重力和支持力的合力提供向心力,受力图如图3所示.则可知筒壁对小球的弹力N mg =sin θ,而重力和弹力的合力F mgctg =θ,由牛顿第二定律可得:mgctg mr m v r m r T θωπ===22224.则可得:ωθθπθθ====gctg r v grctg T r gctg N mg ,,,2sin 由于A 球运动的半径大于B 球运动的半径,由ωθ=gctg r 可知球A 的角速度必定小于球B 的角速度;由v grctg =θ可知球A 的线速度必定大于球B 的线速度;由T r gctg =2πθ可知球A 的运动周期必定大于球B 的运动周期;由N mg =sin θ可知球A 对筒壁的压力一定等于球B 对筒壁的压力.故正确的答案为A 、B .。
第5节向心加速度一、感受圆周运动的向心加速度1.圆周运动必有加速度圆周运动是变速运动,变速运动必有加速度。
2.匀速圆周运动的加速度方向实例地球绕太阳做(近似的)匀速圆周运动光滑桌面上的小球由于细线的牵引,绕桌面上的图钉做匀速圆周运动受力分析地球受太阳的引力,方向指向太阳中心,即为地球轨迹的圆心小球受重力、支持力、拉力三个力,合力总是指向圆心加速度分析由牛顿第二定律知,加速度方向与其合外力方向相同,指向圆心二、向心加速度1.定义做匀速圆周运动的物体具有的指向圆心的加速度。
1.圆周运动是变速运动,故圆周运动一定有加速度,任何做匀速圆周运动的加速度都指向圆心,这个加速度叫向心加速度。
2.向心加速度的大小为a n =v 2r =rω2,向心加速度方向始终沿半径指向圆心,与线速度垂直。
3.向心加速度是由物体受到指向圆心的力产生的,反映了速度方向变化的快慢。
2.大小(1)a n =v 2r ;(2)a n =ω2r。
3.方向沿半径方向指向圆心,与线速度方向垂直。
1.自主思考——判一判(1)匀速圆周运动的加速度的方向始终不变。
(×)(2)匀速圆周运动是匀变速曲线运动。
(×)(3)匀速圆周运动的加速度的大小不变。
(√)(4)根据a=v2r 知加速度a 与半径r 成反比。
(×)(5)根据a=ω2r 知加速度a 与半径r 成正比。
(×)2.合作探究——议一议如图所示,小球在拉力作用下做匀速圆周运动,请思考:(1)小球的向心加速度是恒定的吗?其方向一定指向圆心吗?提示:小球的向心加速度方向时刻指向圆心,方向时刻改变,因此,小球的向心加速度不是恒定的。
(2)若手握绳子的位置不变,增加小球的转速,则它的向心加速度大小如何变化?提示:根据a=ω2r 可知,当半径不变时,角速度变大时,加速度a 也变大。
对向心加速度的理解1.物理意义描述线速度改变的快慢,只表示线速度的方向变化的快慢,不表示其大小变化的快慢。
匀速圆周运动是变加速曲线运动吗
不是。
质点沿圆周运动,假设在任意相等的时间里通过的圆弧长度都相等,这种运动就叫做“匀速圆周运动”。
匀速圆周运动是圆周运动中,最常见和最简陋的运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。
扩展资料
匀速圆周运动和非匀速圆周运动的区别:
物体做匀速圆周运动只有沿半径方向的力,没有沿圆周切线方向上的力。
物体做非匀速圆周运动不但有沿半径方向的力,还有沿圆周切线方向上的力。
所以,研究圆周运动第一要分析物体的受力情况。
匀速圆周运动的特性:
(1)运动特征:线速度的大小不变,方向时刻改变。
(2)受力特征:合外力全部提供向心力。
(3)运动性质:有雨加速度的方向时刻变容化,所以匀速圆周运动是非匀变速运动。
用实验验证向心力公式测定匀速圆周运动向心力的`实验仪器种类非常多,它们不仅能定性验证,而且也能定量测定,验证的基本步骤是:
第一,在确定转速、圆周半径都恒定的前提下,验证向心力与质量是不是正比关系。
用来作对比实验的两物体要经过严厉配重,并且用天平测量出两球的质量一个是另一个的一半,实验显示:测力计所示的向心力随着作圆周运动物体质量的加倍而加倍,这就证明了向心力与物体质量的正比关系。
其次,在保持质量、运动半径都恒定的情况下。
由于角速度与转速是正比关系,所以我们只需要验证向心力与转速的平方是不是正比关系。
实验时,转速增加到2倍,从测力计上可以看出,在答应的误差范畴内,向心力增加到4倍。
向你推荐的相关文章
相关文章列表
微信扫码分享。