电磁场与微波测量实验报告(三)
- 格式:docx
- 大小:237.41 KB
- 文档页数:13
电磁场与微波测量实验报告学院:电子工程学院班级: 2011211207组员:王龙-2013210998刘炜伦-2013210999黄斌斌-2013211000实验一电磁波反射和折射实验一、实验目的1.熟悉S426型分光仪的使用方法2.掌握分光仪验证电磁波反射定律的方法3.掌握分光仪验证电磁波折射定律的方法二、实验设备与仪器S426型分光仪,金属板,玻璃板三、实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。
四、实验内容与步骤(一)金属板全反射实验1.熟悉分光仪的结构和调整方法。
2.连接仪器,调整系统。
图1 反射实验仪器的布置如图1所示,仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个角度后放下,即可压紧支座。
3.测量入射角和反射角反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻线一致。
而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相应90度的一对刻线一致。
这是小平台上的0刻度就与金属板的法线方向一致。
转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角,然后转动活动臂在表头上找到一最大指示,此时活动臂上的指针所指的刻度就是反射角。
如果此时表头指示太大或太小,应调整衰减器或晶体检波器,使表头指示接近满量程。
做此项实验,入射角最好取30°至65°之间,因为入射角太大或太小接收喇叭有可能直接接收入射波。
做这项实验时应注意系统的调整和周围环境的影响(二)玻璃板上的反射和折射实验步骤1、2如金属板全反射实验步骤1、2所示3、(1)测总能量:将两喇叭口正对,通过可变衰减器调整微波幅度的大小(通过电流大小来反映),尽量使其接近满偏,读出电流表读数,记录下来(2)测玻璃板反射的能量:反射玻璃板放到支座上时,应使玻璃板平面与支座下面的小圆盘上的某一对刻线一致。
电磁场与微波技术实验报告班级:学号:姓名:目录目录 (2)实验2 微带分支线匹配器 (3)一、实验目的: (3)二、实验原理 (3)三、实验内容 (3)四、实验步骤 (3)实验三四分之一波长阻抗变换器 (15)实验目的 (15)实验原理 (15)单节4λ阻抗变换器 (16)多节4λ阻抗变换器 (16)实验内容 (17)实验步骤 (18)实验4 低通滤波器 (31)实验目的 (31)实验原理 (31)低通原型滤波电路 (32)Richards变换 (32)Kuroda变换 (33)实验内容 (33)实验步骤 (33)总结 (41)完成任务 (41)问题及解决 (41)心得与体会 (41)实验2 微带分支线匹配器一、实验目的:1.熟悉支节匹配器的匹配原理2. 了解微带线的工作原理和实际应用3.掌握Smith图解法设计微带线匹配网络二、实验原理支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。
单支节匹配器,调谐时主要有两个可调参量:距离d和由并联开路或短路短截线提供的电纳。
匹配的基本思想是选择d,使其在距离负载d处向主线看去的导纳Y是Y0+jB 形式。
然后,此短截线的电纳选择为-jB,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。
双支节匹配器,通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。
三、实验内容已知:输入阻抗Zin=75欧负载阻抗Zl=(64+j35)欧特性阻抗Z0=75欧介质基片εr=2.55,H=1mm假定负载在2G赫兹时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=四分之一波长,两分支线之间的距离为d2=八分之一波长。
画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz 的变化四、实验步骤(一):单支节匹配在史密斯圆图上找到等反射系数圆和g=1圆的交点,有两个点与其匹配。
微波测量实验报告一、实验背景微波测量是指利用微波技术对被测物体进行测量的一种方法。
微波是一种电磁波,其频率范围在300MHZ至300GHz之间。
微波测量广泛应用于通信、测距、雷达、卫星等领域。
本实验旨在通过对微波信号的发射、传播和接收进行实验,了解微波测量的基本原理和方法。
二、实验原理微波测量实验主要依赖于微波发射器和接收器的配合。
首先,发射器通过产生一个特定频率和幅度的微波信号,将信号输入到一个导波器(如开放式传输线)中。
信号在导波器中通过传播,并且可以根据特定的设计进行传播路径的调整。
接收器用来接收由被测物体反射或传播过来的微波信号,通过对信号进行处理,可以得到关于被测物体的信息。
在微波测量中,由于微波的特殊性质,测距、测速和测向等参数可以通过对微波信号的相位、频率和幅度进行分析来实现。
例如,利用多普勒频移原理,可以通过测量微波信号的频率变化来计算目标物体的速度;利用相位差原理,可以通过测量微波信号的相位差来计算目标物体的位置。
三、实验设备和材料1.微波发射器:用来产生微波信号的设备;2.导波器:用来传输微波信号的导向装置;3.微波接收器:用来接收被测物体反射或传播过来的微波信号并进行参数分析的设备;4.被测物体:用来反射或传播微波信号的物体。
四、实验步骤1.连接微波发射器和接收器,并对其进行相位校准;2.将被测物体放置在适当位置,调整微波接收器的位置和角度,以便接收到反射或传播过的微波信号;3.运行微波发射器和接收器,记录并分析接收到的微波信号的相位、频率和幅度等参数;4.根据参数分析的结果,计算并得出被测物体的测量结果。
五、实验结果与分析在实验中,我们成功地利用微波发射器和接收器对一块金属板进行了微波测量。
通过对接收到的微波信号的相位、频率和幅度进行实验结果的分析,我们得出了金属板的尺寸和位置等测量结果。
六、实验总结通过本实验,我们了解了微波测量的基本原理和方法。
微波测量广泛应用于通信、测距、雷达、卫星等领域,具有重要的实际应用价值。
一、实验目的1. 理解微波测量技术的基本原理和实验方法;2. 掌握微波测量仪器的操作技能;3. 学会使用微波测量技术对微波元件的参数进行测试;4. 分析实验数据,得出实验结论。
二、实验原理微波测量技术是研究微波频率范围内的电磁场特性及其与微波元件相互作用的技术。
实验中,我们主要使用矢量网络分析仪(VNA)进行微波参数的测量。
矢量网络分析仪是一种高性能的微波测量仪器,能够测量微波元件的散射参数(S参数)、阻抗、导纳等参数。
其基本原理是:通过测量微波信号在两个端口之间的相互作用,得到微波元件的散射参数,进而分析出微波元件的特性。
三、实验仪器与设备1. 矢量网络分析仪(VNA)2. 微波元件(如微带传输线、微波谐振器等)3. 测试平台(如测试夹具、测试架等)4. 连接电缆四、实验步骤1. 连接测试平台,将微波元件放置在测试平台上;2. 连接VNA与测试平台,进行系统校准;3. 设置VNA的测量参数,如频率范围、扫描步进等;4. 启动VNA,进行微波参数测量;5. 记录实验数据;6. 分析实验数据,得出实验结论。
五、实验数据与分析1. 实验数据(1)微波谐振器的Q值测量:通过扫频功率传输法,测量微波谐振器的Q值,得到谐振频率、品质因数等参数;(2)微波定向耦合器的特性参数测量:通过测量输入至主线的功率与副线中正方向传输的功率之比,得到耦合度;通过测量副线中正方向传输的功率与反方向传输的功率之比,得到方向性;(3)微波功率分配器的传输特性测量:通过测量输入至主线的功率与输出至副线的功率之比,得到传输损耗。
2. 实验数据分析(1)根据微波谐振器的Q值测量结果,分析谐振器的频率选择性和能量损耗程度;(2)根据微波定向耦合器的特性参数测量结果,分析耦合器的性能指标,如耦合度、方向性等;(3)根据微波功率分配器的传输特性测量结果,分析功率分配器的传输损耗。
六、实验结论1. 通过实验,掌握了微波测量技术的基本原理和实验方法;2. 熟练掌握了矢量网络分析仪的操作技能;3. 通过实验数据,分析了微波元件的特性,为微波电路设计和优化提供了依据。
信息与通信工程学院电磁场与微波技术实验报告班级:姓名:学号序号:日期:1实验二:分支线匹配器一、实验目的掌握支节匹配器的工作原理;掌握微带线的基本概念和元件模型;掌握微带线分支线匹配器的设计和仿真。
二、实验原理支节匹配器支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。
单支节匹配器:调谐时,主要有两个可调参量:距离d 和分支线的长度l。
匹配的基本思想是选择d,使其在距离负载d 处向主线看去的导纳Y 是Y0 + jB 形式,即Y = Y0 +jB ,其中Y0 = 1/Z0。
并联开路或短路分支线的作用是抵消Y 的电纳部分,使总电纳为Y0,实现匹配,因此,并联开路或短路分支线提供的电纳为−jB ,根据该电纳值确定并联开路或短路分支线的长度l,这样就达到匹配条件。
双支节匹配器:通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(注意双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。
微带线微带线是有介质εr(εr > 1) 和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr,可以近似等效为均匀介质填充的传输线,等效介质电常数为εe ,介于1 和εr 之间,依赖于基片厚度H 和导体宽度W。
而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。
三、实验内容已知:输入阻抗Z in = 75 Ω 负载阻抗Z L = (64 + j35) Ω特性阻抗Z0 = 75 Ω介质基片εr = 2.55,H = 1mm,导体厚度T 远小于介质基片厚度H。
2假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1 = λ/4 ,两分支线之间的距离为d2 = λ/8。
画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。
电磁场与微波技术实验 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】实验三对称天线和天线阵的方向图实验目的:1、熟悉对称天线和天线阵的概念;2、熟悉不同长度对称天线的空间辐射方向图;3、理解天线阵的概念和空间辐射特性。
实验原理:天线阵就是将若干个单元天线按一定方式排列而成的天线系统。
排列方式可以是直线阵、平面阵和立体阵。
实际的天线阵多用相似元组成。
所谓相似元,是指各阵元的类型、尺寸相同,架设方位相同。
天线阵的辐射场是各单元天线辐射场的矢量和。
只要调整好各单元天线辐射场之间的相位差,就可以得到所需要的、更强的方向性方向图乘积定理f(θ,φ)=f1(θ,φ)×fa(θ,φ) 上式表明,天线阵的方向函数可以由两项相乘而得。
第一项f1(θ,φ)称为元因子(Primary Pattern),它与单元天线的结构及架设方位有关;第二项fa(θ,φ)称为阵因子(Array Pattern),取决于天线之间的电流比以及相对位置,与单元天线无关。
方向函数(或方向图)等于单元天线的方向函数(或方向图)与阵因子(或方向图)的乘积,这就是方向图乘积定理。
已知对称振子以波腹电流归算的方向函数为实验步骤:1、对称天线的二维极坐标空间辐射方向图(1)建立对称天线二维极坐标空间辐射方向函数的数学模型(2)利用matlab软件进行仿真(3)观察并分析仿真图中不同长度对称天线的空间辐射特性E面方向函数:2、天线阵—端射阵和边射阵(1)建立端射阵和边射阵空间辐射方向函数的数学模型(2)利用matlab软件进行仿真(3)观察并分析仿真图中两种天线阵的空间辐射特性实验报告要求:(1)抓仿真程序结果图(2)理论分析与讨论1、对称天线方向图 01)clc clearlambda=1;%自由空间的波长L0=1; %改变L0值,得到不同长度对称阵子的方向图L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数 theta0=[::360]; theta=theta0*pi/180;for i=1:length(theta0) fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 02)clc clearlambda=1;%自由空间的波长902700L=λ时对称阵子天线的方向图902700L=λ时对称阵子天线的方向图L0=1/4; %改变L0值,得到不同长度对称阵子的方向图 L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数 theta0=[::360]; theta=theta0*pi/180; for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 3)clc clearlambda=1;%自由空间的波长L0=1/2; %改变L0值,得到不同长度对称阵子的方向图 L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λk=2*pi/lambda;%自由空间的相移常数 theta0=[::360]; theta=theta0*pi/180; for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i)));902700L=λ时对称阵子天线的方向图endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 4)clc clearlambda=1;%自由空间的波长 L0=3/4; %改变L0值,得到不同长度对称阵子的方向图 L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数 theta0=[::360]; theta=theta0*pi/180; for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 5)clc clearlambda=1;%自由空间的波长902700L=λ时对称阵子天线的方向图900L=λ时对称阵子天线的方向图L0=3/2; %改变L0值,得到不同长度对称阵子的方向图 L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数 theta0=[::360]; theta=theta0*pi/180; for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 6)clc clearlambda=1;%自由空间的波长L0=2; %改变L0值,得到不同长度对称阵子的方向图L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λk=2*pi/lambda;%自由空间的相移常数 theta0=[::360]; theta=theta0*pi/180; for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i)));902700L=λ时对称阵子天线的方向图endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 分析对称振子天线的方向图(以上图形)可以看出:①l <λ时,随着振子长度的增加,其方向图波瓣变尖锐,其最大辐射方向在q =90o ,无副瓣;②当l >λ时,开始出现副瓣, 但最大辐射方向仍在q =90o 的方向上; ③当l >0.625l λ时,最大辐射方向将偏离q =90o 的方向;(当l >λ,出现反向电流,场为反向叠加);④当l =l λ时,天线上的反向电流与正向电流相同,故在q =90o 上场将完全抵消,其总场为零,但在q =60o 的方向上,由于场的行程差引起的相位差和电流的相位差互相抵消,从而形成场的最大值。
电磁波与电磁场第三次实验报告实验八 直线电荷与共面圆弧电荷之间的相互作用力分析一、实验目的1、掌握MATLAB 仿真的基本流程与步骤;2、掌握静电场的基本分析方法与基本性质;3、理解矢量积分法在静电场分析中的应用;4、了解数值分析手段在电磁场分析中的应用。
二、实验原理如图所示,一无限长直线电荷旁边有一共面的圆弧,直线电荷的线密度为λ(0λ>),圆弧均匀带电q (0q >),半径为a ,张角为α,弧心O 到直线的距离为d 。
分析圆弧所受的电场力。
分析与讨论: 基本分析过程:圆弧长为2C a α=,电荷的线密度为'/q c λ=,在圆弧上取一长为dl ad θ=弧元,带电量为d d d 2qq l λθα'==,直线电荷在弧元处产生的电场强度方向沿着x 轴正向,大小为022π()cos k E d x d a λλεθ==++aO x d λθd l 2αd FqAB C电荷元所受的电场力为:d d d (cos )k q F E q d a λθαθ==+,圆弧所受的电场力为:02d cos k qF d a αλθαθ=+⎰ (1)如果0d = ,则02d cos k q F a αλθαθ=⎰,根据积分公式可得21sin ln cos k q F a λααα+= 但/2a π≠,否则圆弧接触直线电荷。
(2)如果d a =,则2002d 2d 1cos 2cos (/2)k q k q F a a ααλθλθαθαθ==+⎰⎰积分得2t a n 2k q F a λαα=但a π≠,否则圆弧接触直线电荷。
(3)如果d a =-,则积分得到F →-∞,这是圆弧与直线电荷接触的情况。
d a =-的距离称为奇点。
以上仅为简单的分析,讨论了几种特殊情况,下面来分析一般情况:2d cos k qF d a αλθαθ=+⎰ 设22d 2121arctan(tan )arctanh(tan )1cos 121211k k S k k k k k θθθθ--===+++--⎰ 取/k a d =,可得圆弧所受的电场力:2241arctan(tan )2k q d a F d a d a λαα-=+-或2241arctanh(tan )2k qa d F a d a d λαα-=+- 当d a <-时,圆弧所受力方向向左,上面两式都要取负号。
北京邮电大学电磁场与微波测量实验报告学院:电子工程学院班级:2011211206组员:报告撰写人:学号:实验三.微波驻波比的测量由于微波的波长很短,传输线上的电压、电流既是时间的函数,又是位置的函数,使得电磁场的能量分布于整个微波电路而形成“分布参数”,导致微波的传输与普通无线电波完全不同。
微波系统的测量参量是功率、波长和驻波参量,这也是和低频电路不同的。
电压驻波系数的大小往往是衡量一个微波元件性能优劣的主要指标。
驻波测量也是微波测量中最基本和最重要的内容之一,通过驻波测量不仅可以直接得知驻波系数值,而且还可以间接求得衰减器、相移量、谐振腔品质因数,介电常数。
一、实验目的(1)了解波导测量系统,熟悉基本微波元件的作用。
(2)掌握驻波测量线的正确使用和用驻波测量线校准晶体检波器特性的方法。
(3)掌握大、中、小电压驻波系数的测量原理和方法。
二、实验原理驻波测量是微波测量中最基本和最重要的内容之一,通过驻波测量可以测出阻抗、波长、相位和Q值等其他参量。
在传输线中若存在驻波,将使能量不能有效地传给负载,因而增加损耗。
在大功率情况下,由于驻波存在可能发生击穿现象。
此外,驻波存在还会影响微波信号发生器输出功率和频率的稳定度。
因此,驻波测量非常重要。
电压驻波比测量驻波测量是微波测量中最基本和最重要的内容之一,通过驻波测量可以测出阻抗、波长、相位和Q值等其他参量。
在测量时,通常测量电压驻波系数,及波导中电场最大值和最小值之比,即ρ=。
测量驻波比的方法与仪器种类很多,有直接法,等指示度法,功率衰减法等。
我们这次实验中主要用直接法和等指示度法来熟悉驻波测量线的使用。
(1)直接法直接测量沿线驻波的最大点与最小点场强,从而求得驻波系数的方法称为直接法。
若驻波腹点和节点处电表读数分别为,则电压驻波系数ρ:ρ==当驻波系数1.5<ρ<5时直接读出,即可。
在我们的实验中,由于选频放大器直接读出来的是电压而不是电流,所以我们直接读出和也可以。
电磁场与微波实验报告电磁场与微波实验报告引言:电磁场是物质世界中一种重要的物理现象,它在我们的日常生活中无处不在。
微波则是一种特殊波长的电磁波,广泛应用于通信、烹饪等领域。
本次实验旨在通过探究电磁场与微波的关系,加深对电磁场的理解,并验证微波的特性。
实验目的:1. 了解电磁场的基本概念和特性;2. 探究电磁场与微波的关系;3. 验证微波的特性。
实验材料:1. 微波炉;2. 金属网格;3. 纸片;4. 木棒;5. 电磁场探测器。
实验步骤:1. 将纸片放置在微波炉的底部,然后打开微波炉并设定一定的时间;2. 观察纸片在微波炉中的变化,并记录下来;3. 在微波炉中放置金属网格,然后再次打开微波炉并设定一定的时间;4. 观察金属网格在微波炉中的变化,并记录下来;5. 使用木棒在微波炉中进行搅拌,并观察木棒的变化;6. 使用电磁场探测器测量微波炉中的电磁场强度,并记录下来。
实验结果与分析:1. 纸片在微波炉中变热、变焦;通过观察纸片在微波炉中的变化,我们可以看到纸片在微波炉中变得热乎乎的,并且在一定时间后出现了焦黑的现象。
这说明微波炉中的微波能够加热物体,使其发生物理变化。
2. 金属网格在微波炉中产生火花;当我们将金属网格放置在微波炉中时,观察到金属网格上出现了明亮的火花。
这是因为金属具有良好的导电性,当微波炉中的微波与金属网格相互作用时,产生了电流,从而导致了火花的产生。
3. 木棒在微波炉中没有明显变化;与纸片和金属网格不同,木棒在微波炉中并没有出现明显的变化。
这是因为木材是绝缘体,无法导电,微波无法对其产生明显的作用。
4. 微波炉中的电磁场强度较高;通过使用电磁场探测器测量微波炉中的电磁场强度,我们可以发现微波炉中的电磁场强度相当高。
这也是微波炉能够迅速加热食物的原因之一。
结论:通过本次实验,我们深入了解了电磁场的基本概念和特性,并验证了微波的特性。
微波能够加热物体,使其发生物理变化;金属具有良好的导电性,当微波与金属相互作用时会产生火花;木材是绝缘体,无法导电,因此在微波炉中没有明显变化。
电磁场与微波实验实验电磁场与微波实验一(一)动画演示:电磁波在矩形波导、平行双线、同轴线中的传播特性(二)自由空间电磁波波长的测量和矩形波导截止特性的研究一.实验目的1. 了解电磁波综合测试仪的结构,掌握其工作原理。
2. 在学习均匀平面电磁波特性的基础上,观察与了解电磁波传播特性。
3. 熟悉并利用相干波原理,测量自由空间内电磁波波长,并确定相位常数。
4. 研究电磁波在矩形波导中的截止特性。
二.实验原理1. 自由空间电磁波波长测量两路等幅、同频率的均匀平面电磁波,在自由空间内以相同或相反方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。
本实验利用相干波原理,使得接收喇叭处的两路电磁波分别为:Er1=T0??c??0ijΦ1,Er2=T0??c??0ijΦ2。
其中Φ1=KL1,Φ2=KL2。
通过移动一个活动金属板B,改变两路光线的光程差,看最后的合成光的强度变化。
当=??2(2??+1)时接受指示为0,则B0值。
一般测试4~5个接受零值,再求22πλ??出测量波长的平均值。
测量移动的距离即可获得自由空间电磁波波长λ值,再根据??=波的传播常数。
2. 矩形波导的截止特性研究得到电磁实验通过观察电磁波通过开缝金属板及开孔金属板的效果来研究矩形波导的截止特性。
将发射喇叭和接收喇叭调整到同一轴线上,在两个喇叭中间安装开缝金属板和开孔金属板,金属板的法线与喇叭轴线一致。
当发射喇叭的电磁波照射到开缝金属板时,开缝金属板对于电磁波来说,相当于多个矩形波导并列的口面。
设缝宽为a,相当于波导的宽边。
点磁场方向平行于缝隙。
根据矩形波导理论,当满足工作波长λ<2a时,波能通过缝隙传播;当λ>2a时,出现截止衰减,电磁波被反射。
a越小,截止衰减越明显,反射越大,同样,对于开孔金属板,当孔径a满足2>a时,不用极化方向的电磁波截止衰减,被反射。
实验中,分别观察不同尺不同方向的开缝金属板及开孔金属板对电磁波的反射与透射效果。
电磁场与波实验报告电磁场与波实验报告引言:电磁场与波是物理学中重要的研究对象,对于我们理解光、电、磁等现象具有重要意义。
为了更好地探究电磁场与波的性质,我们进行了一系列实验,下面将对实验过程和结果进行详细报告。
实验一:电磁感应现象实验目的:通过实验观察电磁感应现象,验证法拉第电磁感应定律。
实验装置:实验装置由一根导线、一个磁铁和一个电流表组成。
实验步骤:1. 将导线绕在一个纸芯上,形成一个线圈。
2. 将磁铁靠近线圈,观察电流表的指示情况。
实验结果:当磁铁靠近线圈时,电流表指针发生偏转,表明在导线中产生了电流。
当磁铁远离线圈时,电流方向相反。
这一现象验证了法拉第电磁感应定律,即磁场的变化会引起导线中的电流。
实验二:电磁波的传播实验目的:通过实验观察电磁波的传播特性,验证电磁波的存在。
实验装置:实验装置由一个发射器和一个接收器组成。
实验步骤:1. 将发射器放置在一定距离内,接通电源。
2. 在接收器处设置一个示波器,调节示波器的参数。
3. 观察示波器上的波形变化。
实验结果:当发射器工作时,示波器上出现了一定频率的波形。
通过调节示波器参数,我们可以观察到电磁波的传播特性,包括波长、频率等。
这一实验结果验证了电磁波的存在,并且进一步揭示了电磁波的传播特性。
实验三:电磁波的干涉实验目的:通过实验观察电磁波的干涉现象,验证电磁波的波动性质。
实验装置:实验装置由一个光源、一个狭缝、一个屏幕和一个检测器组成。
实验步骤:1. 将光源置于一定位置,使其照射到狭缝上。
2. 在屏幕上观察到干涉条纹的出现。
3. 使用检测器测量干涉条纹的强度。
实验结果:在屏幕上观察到了明暗相间的干涉条纹,这表明电磁波具有波动性质。
通过检测器的测量,我们可以进一步研究干涉条纹的强度分布规律。
这一实验结果验证了电磁波的波动性质,并且揭示了电磁波的干涉现象。
结论:通过以上实验,我们验证了电磁感应定律、电磁波的存在以及电磁波的波动性质。
电磁场与波是物理学中重要的研究对象,对于我们理解光、电、磁等现象具有重要意义。
北京邮电大学电磁场与微波测量实验3.3.4 滤波器的特性及其测量学院:电子工程学院班级:2011211207组员:执笔:目录1实验步骤 (3)2带通滤波器的幅频特性曲线 (3)3.实验数据 (4)4.数据分析 (4)5.实验总结 (4)传输特性测量1实验步骤(1)按下图所示链接测试系统(2)设置微波信号发生器输出指定频率和功率的单载波信号(如880MHz、-20dBm)(3)将输入和输出电缆短接。
用频谱分析仪测量并记录滤波器的输入信号电平(4)接入被测滤波器。
设置频率分析仪的中心频率为滤波器的标称中心频率(如880MHz),扫描带宽大于滤波器的标称带宽(如80MHz),适当调整参考电平使频谱图显示在合适位置。
(5)按照一定的步进(如1MHz),用手动旋钮(或自动扫频)在指定的频率范围内(如840~920MHz)调整微波信号发生器的输出频率,在频谱分析仪上观察扫描带宽是否合适(保证频谱分析仪可以显示全部通带和一定的阻带),根据观测结果适当调整频谱分析仪的扫描带宽。
(6)设置频谱分析仪的轨迹为最大值保持功能(Trace→Trace Type→Max Hold)(7)按照一定的步进(如0.1MHz),用手动旋钮在指定的频率范围内(根据调整后的扫描频带确定)调整微波信号发生器的输出频率,在频谱分析仪上显示出滤波器的幅频特性曲线。
(8)根据频谱分析仪显示的幅频特性曲线,测量并计算滤波器的中心频率、3dB 带宽、插入损耗、带内波动、裙带带宽、带外抑制度等指标,记录测试数据。
(9)将滤波器的输入和输出端口互换,重复以上测量。
观察幅频特性曲线的变化并进行分析。
2带通滤波器的幅频特性曲线3实验数据4数据分析从表格中的数据可以看出,端口交换前后3dB带宽、插入损耗、裙带带宽以及带外抑制度都有微小变化,带内波动也受到影响,但总体来说端口交换对带通滤波器的幅频特性影响较小。
5实验总结该实验只要求我们做滤波器的传输特性测量实验,通过该实验,我们对滤波器的传输特性有了形象的了解。
微波的测量实验报告微波的测量实验报告引言:微波技术是一门应用广泛的电磁波技术,它在通信、雷达、医疗等领域发挥着重要作用。
本实验旨在通过测量微波信号的传输特性和功率传输特性,探索微波的性质和应用。
实验一:微波信号的传输特性在实验一中,我们使用了一台微波信号发生器、一根微波传输线和一台微波功率计。
首先,我们将微波信号发生器的输出端连接到微波传输线的输入端,然后将微波传输线的输出端连接到微波功率计。
接下来,我们调节微波信号发生器的频率,并通过微波功率计测量微波信号的功率。
实验结果表明,微波信号的传输特性与频率密切相关。
当微波信号的频率增加时,传输线上的功率损耗也会增加。
这是因为微波信号在传输过程中会受到传输线的阻抗匹配、衰减和反射等因素的影响。
因此,在实际应用中,我们需要根据传输线的特性和工作频率来选择合适的传输线,以确保信号传输的稳定和可靠。
实验二:微波功率传输特性在实验二中,我们使用了一台微波信号发生器、一根微波传输线、一台微波功率计和一个负载。
首先,我们将微波信号发生器的输出端连接到微波传输线的输入端,然后将微波传输线的输出端连接到负载。
接下来,我们调节微波信号发生器的功率,并通过微波功率计测量微波信号在传输线和负载上的功率。
实验结果表明,微波功率的传输特性与功率和负载的阻抗匹配程度密切相关。
当功率和负载的阻抗匹配较好时,微波功率能够有效地传输到负载上,并且功率损耗较小。
然而,当功率和负载的阻抗不匹配时,微波功率会发生反射和衰减,导致功率损耗增加。
因此,在微波电路设计中,我们需要注意功率和负载的阻抗匹配问题,以提高功率传输效率。
实验三:微波的应用微波技术在通信、雷达、医疗等领域有着广泛的应用。
在通信领域,微波信号可以传输大量的数据,并且具有较高的传输速率和稳定性。
在雷达领域,微波信号可以用于探测和测量目标物体的距离、速度和方位。
在医疗领域,微波信号可以用于医学成像和治疗,如MRI和微波消融术等。
微波的测量实验报告微波的测量实验报告引言:微波技术在现代通信、雷达、无线电频谱分析等领域中起着重要的作用。
测量微波信号的参数是了解和分析微波系统性能的基础。
本实验旨在通过一系列测量,探究微波的特性和性能,并分析测量结果的准确性和可靠性。
实验一:微波信号的频率测量在本实验中,我们使用频率计来测量微波信号的频率。
首先,将微波信号源与频率计连接,并设置频率计的测量范围。
然后,调节微波信号源的频率,记录频率计的测量结果。
通过多次测量,我们可以得到微波信号的频率范围和频率分布情况。
实验结果显示,微波信号的频率在特定范围内波动较小,表明微波信号源的频率稳定性较好。
同时,我们还发现微波信号的频率分布呈正态分布,符合统计规律。
这些结果对于微波系统的设计和优化具有重要的参考价值。
实验二:微波信号的功率测量微波信号的功率是衡量其强度和传输性能的重要指标。
在本实验中,我们使用功率计来测量微波信号的功率。
首先,将微波信号源与功率计连接,并设置功率计的测量范围。
然后,调节微波信号源的输出功率,记录功率计的测量结果。
通过多次测量,我们可以得到微波信号的功率范围和功率分布情况。
实验结果显示,微波信号的功率与微波信号源的输出功率呈线性关系,即功率随输出功率的增加而增加。
同时,我们还发现微波信号的功率分布呈正态分布,表明微波信号的功率稳定性较好。
这些结果对于微波系统的功率控制和传输性能的优化具有重要的参考价值。
实验三:微波信号的衰减测量在微波传输过程中,由于信号传播介质和传输线的损耗,信号的强度会逐渐减弱。
在本实验中,我们使用衰减器来模拟微波信号的衰减情况,并使用功率计测量衰减后的微波信号的功率。
通过调节衰减器的衰减量,我们可以探究微波信号的衰减规律和衰减程度。
实验结果显示,微波信号的衰减与衰减器的衰减量呈线性关系,即衰减随衰减量的增加而增加。
同时,我们还发现微波信号的衰减程度与传输介质和传输线的特性有关,不同介质和线路的衰减程度不同。
电磁场与微波技术实验报告
部门: xxx
时间: xxx
整理范文,仅供参考,可下载自行编辑
华北电力大学
实验报告
|
|
实验名称仿真实验一:Smith圆图的仿真
课程名称电磁场与微波技术
|
|
专业班级:学生姓名:
学号:成绩:
指导教师:实验日期:
验证性、综合性实验报告应含的主要内容:
一、实验目的及要求
二、所用仪器、设备
三、实验原理
四、实验方法与步骤
五、实验结果与数据处理
六、讨论与结论<对实验现象、实验故障及处理方法、实验中存在的问题
等进行分析和讨论,对实验的进一步想法或改进意见)b5E2RGbCAP
七、所附实验输出的结果或数据
设计性实验报告应含的主要内容:
一、设计要求
二、选择的方案
三、所用仪器、设备
四、实验方法与步骤
五、实验结果与数据处理
六、结论<依据“设计要求”)
七、所附实验输出的结果或数据
* 封面左侧印痕处装订
为半径的圆。
那么不同的反射系数出,这是一个直线方程,表明在复平面上等反射系数幅角线是由将。
我们把前面所讲的四种轨迹画在一张极坐标图上,
文件下的Sch1,在右侧空白处建立电路图,如下图所New Item>Analyses>Add linear Analysis。
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
电磁场与微波测量实验报告(三)————————————————————————————————作者:————————————————————————————————日期:2电磁场与微波测量实验报告(三)学院:班级:组员一:学号:组员二:学号:实验一:微波测量系统的使用和信号源波长功率的测量一,实验目的(1)学习微波的基本知识;(2)了解微波在波导中传播的特点,掌握微波基本测量技术;(3)学习用微波作为观测手段来研究物理现象。
二,实验原理本实验接触到的基本仪器室驻波测量线系统,用于驻波中电磁场分布情况的测量。
该系统由以下几个部分组成:检波指示器1,波导测量线装置2,晶体检波器微波测量中,为指示波导(或同轴线)中电磁场强度的大小,是将它经过晶体二极管检波变成低频信号或直流电流,用直流电流表的电流来读数的。
3,波导管本实验所使用的波导管型号为BJ-100。
4,隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。
5,衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。
衰减器起调节系统中微波功率从以及去耦合的作用。
6,谐振式频率计(波长表)电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。
当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。
7,匹配负载波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。
8,环形器它是使微波能量按一定顺序传输的铁氧体器件。
主要结构为波导Y 型接头,在接头中心放一铁氧体圆柱(或三角形铁氧体块),在接头外面有“U”形永磁铁,它提供恒定磁场H0。
9,单螺调配器插入矩形波导中的一个深度可以调节的螺钉,并沿着矩形波导宽壁中心的无辐射缝作纵向移动,通过调节探针的位置使负载与传输线达到匹配状态。
调匹配过程的实质,就是使调配器产生一个反射波,其幅度和失配元件产生的反射波幅度相等而相位相反,从而抵消失配元件在系统中引起的反射而达到匹配。
10,微波源提供所需微波信号,频率范围在8.6-9.6GHz内可调,工作方式有等幅、方波、外调制等,实验时根据需要加以选择。
11,选频放大器用于测量微弱低频信号,信号经升压、放大,选出1kHz附近的信号,经整流平滑后输出级输出直流电平,由对数放大器展宽供给指示电路检测。
三,实验内容和实验步骤1.观察测量系统的微波仪器连接装置,衰减器,波长计,波导测量线的结构形式。
2.熟悉信号源的使用先将信号源的工作方式选为:等幅位置,将衰减至于较大位置,输出端接相应指示器,观察输出;再将信号源的工作方式选为:方波位置,将衰减至于较大位置,输出端接相应指示器,观察输出;3.熟悉选频放大器的使用;4.熟悉谐振腔波长计的使用方法;微波的频率测量是微波测量的基本内容之一。
其测量方法有两种:(1)谐振腔法;(2)频率比较法。
本实验采用谐振腔法。
由于波长和平率直接满足关系,所以频率和波长的测量是等效的。
吸收式波长计的谐振腔,其只有一个输入端和能量传输线路相连,调谐过程可以从能量传输线路接收端指示器读数的降低可以判断出来;本实验采用了吸收式波长计测量信号源频率,为了确定谐振频率,用波长表测出微波信号源的频率。
具体做法是:旋转波长表的测微头,当波长表与被测频率谐振时,将出现波峰。
反映在建波指示器上的指示是一跌落点,此时,读出波长表测微头的读数,再从波长表频率与刻度曲线上查出对应的频率;5.按实验书框图连接微波实验系统;6.微调单旋调配器,事腔偏离匹配状态(出于匹配状态时,电流会达到一个最小值),检波电流计上有一定示数(大于最小值);7.调节波长计使检波电流计再次出现最小值的时候,读出此处波长计的刻度值;8.按照波长计的刻度值去查找“波长计-频率刻度对照表”,就可以得到对应的信号源频率值;9.改变信号频率,从8.6G开始测到9.6G,每隔0.1G测量一次,记录在数据表格中。
四,实验结果和分析表格数据结果如下图所示:信号源频率波长表读数查表得到频率信号源误差误差(%)8.6 12.63 8.59 0.01 0.1168.7 11.33 8.681 0.019 0.2188.8 10.01 8.784 0.016 0.1828.9 8.91 8.88 0.02 0.2249.0 7.95 8.983 0.017 0.1899.1 6.73 9.101 0.001 0.0119.2 6.09 9.175 0.025 0.2729.3 5.33 9.269 0.031 0.3339.4 4.58 9.369 0.031 0.3339.5 3.93 9.462 0.038 0.49.6 3.32 9.556 0.044 0.458误差分析:1.f0为信号源频率值;f1为查表得到频率;f=|f0-f1|为信号源误差。
本实验的数据如表格中所示:f=|f0-f1|的误差很小在可控范围0.009~0.044内,所以认为实验成功。
2.产生误差的原因为:①仪器测量自身产生的误差:毕竟是用了很久的仪器,而且连接的器件也很多,所以误差在所难免;②人为误差:在读数据时需要几个人的配合,调节波长表的测微头,观察电流表指针变化是两个人,可能会使数据有误差,加之在读数上也会有人为误差;实验二:波导波长的测量一,实验内容波导波长的测量【方法一】两点法实验原理如下图所示:图1按上图连接测量系统,可变电抗可以采用短路片,在测量线中入射波与反射波的叠加为接近纯驻波图形,只要测得驻波相邻节点得位置L1、L2,由公式即可求得波导波长。
两点法确定波节点位置将测量线终端短路后,波导内形成驻波状态。
调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置(读得对应的游标卡尺上的刻度值T1和T2),就可求得波导波长为:=2|T’min– T min|由于在电压波节点附近,电场(及对应的晶体检波电流)非常小,导致测量线探针移动“足够长”的距离,选频放大器表头指针都在零处“不动”(实际上是眼睛未察觉出指针有微小移动或指针因惰性未移动),因而很难准确确定电压波节点位置,具体测法如下:把小探针位置调至电压波节点附近,尽量加大选频放大器的灵敏度(减小衰减量),使波节点附近电流变化对位置非常敏感(即小探针位置稍有变化,选频放大器表头指示值就有明显变化)。
记取同一电压波节点两侧电流值相同时小探针所处的两个不同位置,则其平均值即为理论节点位置:T min(T1+T2)(1a)最后可得=2|T’min– T min| (1b)两点法确定波节点位置示意图图2【方法二】间接法矩形波导中的H10波,自由波长λ0和波导波长λg满足公式:其中:λg=3108/f ,a=2.286cm通过实验测出波长,然后利用仪器提供的对照表确定波的频率,利用公式λ0 = 确定出λ0,再计算出波导波长λg,利用波长表进行波导波长测量要注意,测量信号波长完成后要将波长计从谐振点调开,以免信号衰减后影响后面的测量。
二,实验步骤(1)观察衰减器、空腔波长计、驻波测量线的结构形式、读数方法。
(2)按图一检查系统的连接装置及连接电缆和电缆头。
(3)开启信号源,预热仪器,并按操作规程调整信号工作频率及幅度,并调整调制频率。
注意:输出信号功率不能过大,以免信号过大烧坏检测器件及仪器,开启选频放大器电源,预热按说明书操作。
注意:分贝开关尽量不要放在60db位置,以免工作时因信号过大损坏表头。
(4)利用两点法进行测量,将波导测量线终端短路(同轴测量线终端开路),调测量放大器的衰减量和可变衰减器使探针位于波腹时,放大器指示电表接近满格,用公式1a,1b两点法测量波导波长。
(5)将驻波测量线探针插入适当深度(约1.0mm),将探针转移至两个波节点的中点位置,然后调节其调谐回路,使测量放大器指示最大。
(6)利用间接法来测量波导波长λg,首先,用波长计测量信号波长。
测三次取平均值,再按照公式二计算λg,测量完成后要将波长计从谐振点调开,以免信号衰减影响后面的测量。
校准晶体二极管检波器的检波特性(7)将探针沿测量线由左向右移动,按测量放大器指示每改变最大值刻度的10%,记录一次探针位置,给出u沿线的分布图形。
(8)设计表格,用驻波测量线校准晶体的检波特性。
(9)作出晶体检波器校准曲线图。
令d作为测量点与波节点的距离;do是波节点的实际位置,d0+d就是测量点的实际位置(10)再移动探针到驻波的波腹点,记录数据,分别找到波腹点相邻两边指示电表读数为波腹点50%对应的值,记录此刻探针位置d1和d2,根据公式求得晶体检波率n,和(8)所得的数值进行比较。
三,实验结果分析两点法测波长T181.9 107.9T2 87 103.1T min 84.45 105.5 由公式(1b)可求得λg=42.1所测量的波导波长:42.1 波节点d0的位置:82相对电场强度0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0d(理论值)测量值d0 0.54 1.08 1.66 2.23 2.84 3.48 4.21 5.01 6.09 8.53测量点实际位置d+d087 87.54 88.08 88.66 89.23 89.84 90.48 91.41 92.01 93.09 95.53U 3 4 5 6 8.5 12 19 24 33 43.5 61(1)作出测量线探针在不同位置下的读数分布曲线数据分析:由于此时波导中存在的是驻波,并且测量的位置是从波节到相邻的波腹,所以画出来的波形应该是正弦曲线的四分之一,由上图可以看出,实验结果基本符合,误差在允许范围内。
(2)给出检波晶体的校准曲线,求出晶体检波n;上图为对数坐标,横轴表示logE,纵轴表示logU分析:根据理论分析,上图应该是一条斜率为n的直线,而实际确实在前半段有所弯曲,而后半段近似于一条直线,故采用后半段计算斜率,经计算,直线的斜率约为2.1,所以晶体检波率为2.1。
第二种定标方式: = 2.15(3)两点法测波长如第一个表,λg = 42.1mm间接法测量波导波长λg = = 43.19mm比较两种方法测量出的波导波长,可以看出相差不大,说明实验结果比较准确,实验操作规范正确。
(4)做晶体检波特性的校准时,有哪些主要误差因素?怎样减少或避免?答:探针深入长度放在适当深度,当探针沿线移动时,应避免探针上下左右晃动。