微波测量实验指导书
- 格式:pdf
- 大小:369.09 KB
- 文档页数:40
微波技术实验指导书微波技术实验指导书实验一微波测量系统的了解与使用实验性质:验证性实验级别:选做开课单位:信息与通信工程学院学时:2学时一、实验目的:1.了解微波测量线系统的组成,认识各种微波器件。
2.学会测量设备的使用。
二、实验器材:1.3厘米固态信号源2.隔离器3.可变衰减器4.测量线5.选频放大器6.各种微波器件三、实验内容:1.了解微波测试系统2. 学习使用测量线四、基本原理:图1.1 微波测试系统组成1.信号源信号源是为电子测量提供符合一定技术要求的电信号的设备,微波信号源是对各种相应测量设备或其它电子设备提供微波信号。
常用微波信号源可分为:简易信号发生器、功率信号发生器、标准信号发生器和扫频信号发生器。
本实验采用DH1121A型3cm固态信号源。
2.选频放大器当信号源加有1000Hz左右的方波调幅时,用得最多的检波放大指示方案是“选频放大器”法。
它是将检波输出的方波经选频放大器选出1000Hz基波进行高倍数放大,然后再整为直流,用直流电表指示。
它具有极高的灵敏度和极低的噪声电平。
表头一般具有等刻度及分贝刻度。
要求有良好的接地和屏蔽。
选频放大器也叫测量放大器。
3.测量线3厘米波导测量线由开槽波导、不调谐探头和滑架组成。
开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场的变化信息。
4.可变衰减器为了固定传输系统内传输功率的功率电平,传输系统内必须接入衰减器,对微波产生一定的衰减,衰减量固定不变的称为固定衰减器,可在一定范围内调节的称为可变衰减器。
衰减器有吸收衰减器、截止衰减器和极化衰减器三种型式。
实验中采用的吸收式衰减器,是利用置入其中的吸收片所引起的通过波的损耗而得到衰减的。
一般可调吸收式衰减器的衰减量可在0到30-50分贝之间连续调节,其相应的衰减量可在调节机构的度盘上读出(直读式),或者从所附的校正曲线上查得。
五、实验步骤:1.了解微波测试系统1.1观看如图装置的的微波测试系统。
(规范版)微波测量实验报告微波测量实验报告引言:微的用途极为广泛,已经成为我们日常生活中不可缺少的一项技术。
微通常是指波长从1米(300MHZ)到1毫米(300GHZ)范围内的电磁波,其低频段与超短波波段相衔接,高频端与远红外相邻,由于它比一般无线电波的波长要短的多,故把这一波段的无线电波称为微,可划分为分米波、厘米波和毫米波。
微的基本特性明显,如波长极短、频率极高、具有穿透性、似光性等。
基本特性明显使得微被广泛应用于各类领域。
微技术不仅在国防、通讯、工农业生产的各个方面有着广泛的应用,而且在当代尖端科学研究中也是一种重要手段,如高能粒子加速器、受控热核反应、射电天文与气象观测、分子生物学研究、等离子体参量测量、遥感技术等方面。
近年来,微技术与各类学科交叉衍生出各类微边缘学科,如微超导、微化学、微生物学、微医学等,在各自领域都得到了长足的发展。
微技术是一门独特的现代科学技术,其重要地位不言而喻,因此掌握它的基本知识和实验方法变得尤为重要。
一、实验目的:1、了解微传输系统的组成部分2、了解微工作状态及传输特性3、掌握微的基本测量:频率、功率、驻波比和波导波长二、实验原理:1.微的传输特性.在微波段中,为了避免导线辐射损耗和趋肤效应等的影响,一般采用波导作为微传输线。
微在波导中传输具有横电波(TE波)、横磁波(TM 波)和横电波与横磁波的混合波三种形式。
微实验中使用的标准矩形波导管,通常采用的传输波型是TE10波。
波导中存在入射波和反射波,描述波导管中匹配和反射程度的物理量是驻波比或反射系数。
依据终端负载的不同,波导管具有三种工作状态:(1)当终端接"匹配负载"时,反射波不存在,波导中呈行波状态;(2)当终端接"短路片"、开路或接纯电抗性负载时,终端全反射,波导中呈纯驻波状态;(3)一般情况下,终端是部分反射,波导中传输的既不是行波,也不是纯驻波,而是呈混波状态。
电磁场、微波测量实验指导书(电子专业适用)范懿、许明妍编班级:111044C班学号:111044309姓名:贾二超中国民航大学电子信息工程学院二零一三年十二月实验一 电磁波参量的测量一、实验目的(1)在学习均匀平面电磁波特性的基础上,观察电磁波传播特性如E 、 H 和 S 互相垂直。
(2)熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波的相位常数β 和波速υ。
(3)了解电磁波的其他参量,如波阻抗η等。
二、实验仪器 (1) DH1211型3cm 固态源1台(2) DH926A 型电磁 波综合测试仪1套 (3) XF-01选频放大器1台 (4)PX-16型频率计三、实验原理两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同,它们相互干涉的结果,在传播路径上形成驻波分布。
通过测定驻波场节点的分布,求得波长λ的值,由2πβλ=、f υλ=得到电磁波的主要参数:β、υ。
设0r P 入射波为:0j i i E E e βγ-=当入射波以入射角θ向介质板斜投射时,在分界面上产生反射波r E 和折射波i E 。
设入射波为垂直极化波,用R ⊥表示介质板的反射系数,用0T ⊥和T ε⊥表示由空气进入介质板和由介质板进入空气的折射系数。
可动板2r P 和固定板1r P 都是金属板,其电场反射系数为-1,则3r P 处的相干波分别为:110j r i E R T T E e φε-⊥⊥⊥=- 1131()r r L L L φββ=+= 220j r i E R T T E e φε-⊥⊥⊥=- 22331()()r r r r L L L L L φββ=+=++其中,21L L L ∆=-因为1L 是固定值,2L 则随可动板位移L 而变化。
当2r P 移动L 值时,使3r P 具有最大输出指示时,则有1r E 和2r E 为同相叠加;当2r P 移动L 值,使3r P 具有零值输出指示时,必有1r E 和2r E 反相。
微波技术基础实验指导书电子信息工程学院微波技术基础实验课程组编2013.02实验一 微波测量系统的认识与调试一、实验目的与要求应用所学微波技术的有关理论知识,理解微波测量系统的工作原理,掌握调整和使用微波信号源的方法,学会使用微波测量系统测量微波信号电场的振幅。
了解有关微波仪器仪表,微波元器件的结构、原理和使用方法。
二、实验内容1.掌握下列仪器仪表的工作原理和使用方法三厘米标准信号发生器(YM1123)、三厘米波导测量线(TC26)、选频放大器(YM3892)。
2.了解下列微波元器件的原理、结构和使用方法波导同轴转换器(BD20-9)、E-H 面阻抗双路调配器(BD20-8)、测量线(TC26)和可变短路器(BD20-6)等。
三、实验原理本实验的微波测试系统的组成框图如图一所示图 1它主要由微波信号源、波导同轴转换器、E-H 面阻抗双路调配器、测量线和选频放大器主要部分组成。
下面分别叙述各部分的功能和工作原理,其它一些微波元器件我们将在以后的实验中一一介绍。
1.微波信号源(YM1123)1.1基本功能1.1.1提供频率在7.5~12.5GHz 范围连续可调的微波信号。
1.1.2该信号源可提供“等幅”的微波信号,也可工作在“脉冲”调制状态。
本系统实验中指示器为选频放大器时,信号源工作在1KHz “”方波调制输出方式。
信号源波导同轴转换器 单螺钉调配器 功率探头数字功率计 微波频率计 E-H 面调配器魔T定向耦合器 H 面弯波导 晶体检波器 测量线 选频放大器 可变衰减器1.2工作原理1.2.1本信号源采用体效应振荡器作为微波振荡源。
体效应振荡器采用砷化镓体效应二极管作为微波振荡管。
振荡系统是一个同轴型的单回路谐振腔。
微波振荡频率的范围变化是通过调谐S型非接触抗流式活塞的位置来实现的,是由电容耦合引出的功率输出。
1.2.2本信号源采用截止式衰减器调节信号源输出功率的强弱。
截止式衰减器用截止波导组成,其电场源沿轴线方向的幅度是按指数规律衰减。
电磁场、微波测量实验指导书(电子专业适用)实验一 电磁波参量的测量一、实验目的(1)在学习均匀平面电磁波特性的基础上,观察电磁波传播特性如E 、 H 和 S 互相垂直。
(2)熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波的相位常数β 和波速υ。
(3)了解电磁波的其他参量,如波阻抗η等。
二、实验仪器 (1) DH1211型3cm 固态源1台(2) DH926A 型电磁 波综合测试仪1套 (3) XF-01选频放大器1台 (4)PX-16型频率计三、实验原理两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同,它们相互干涉的结果,在传播路径上形成驻波分布。
通过测定驻波场节点的分布,求得波长λ的值,由2πβλ=、f υλ=得到电磁波的主要参数:β、υ。
设0r P 入射波为:0j i i E E e βγ-=当入射波以入射角θ向介质板斜投射时,在分界面上产生反射波r E 和折射波i E 。
设入射波为垂直极化波,用R ⊥表示介质板的反射系数,用0T ⊥和T ε⊥表示由空气进入介质板和由介质板进入空气的折射系数。
可动板2r P 和固定板1r P 都是金属板,其电场反射系数为-1,则3r P 处的相干波分别为:110j r i E R T T E e φε-⊥⊥⊥=- 1131()r r L L L φββ=+= 220j r i E R T T E e φε-⊥⊥⊥=- 22331()()r r r r L L L L L φββ=+=++ 其中,21L L L ∆=-因为1L 是固定值,2L 则随可动板位移L 而变化。
当2r P 移动L 值时,使3r P 具有最大输出指示时,则有1r E 和2r E 为同相叠加;当2r P 移动L 值,使3r P 具有零值输出指示时,必有1r E 和2r E 反相。
故可采用改变2r P 的位置,使3r P 输出最大或零指示重复出现。
微波技术基础实验指导书实验一微波测量系统的了解与使用实验性质:验证性实验级别:选做开课单位:信息与通信工程学院学时:2学时一、实验目的:1.了解微波测量线系统的组成,认识各种微波器件。
2.学会测量设备的使用。
二、实验器材:1.3厘米固态信号源2.隔离器3.可变衰减器4.测量线5.选频放大器6.各种微波器件三、实验内容:1.了解微波测试系统2.学习使用测量线四、基本原理:图1。
1 微波测试系统组成1.信号源信号源是为电子测量提供符合一定技术要求的电信号的设备,微波信号源是对各种相应测量设备或其它电子设备提供微波信号。
常用微波信号源可分为:简易信号发生器、功率信号发生器、标准信号发生器和扫频信号发生器。
本实验采用DH1121A型3cm固态信号源。
2.选频放大器当信号源加有1000Hz左右的方波调幅时,用得最多的检波放大指示方案是“选频放大器”法。
它是将检波输出的方波经选频放大器选出1000Hz基波进行高倍数放大,然后再整为直流,用直流电表指示。
它具有极高的灵敏度和极低的噪声电平。
表头一般具有等刻度及分贝刻度。
要求有良好的接地和屏蔽。
选频放大器也叫测量放大器。
3.测量线3厘米波导测量线由开槽波导、不调谐探头和滑架组成。
开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场的变化信息。
4.可变衰减器为了固定传输系统内传输功率的功率电平,传输系统内必须接入衰减器,对微波产生一定的衰减,衰减量固定不变的称为固定衰减器,可在一定范围内调节的称为可变衰减器。
衰减器有吸收衰减器、截止衰减器和极化衰减器三种型式。
实验中采用的吸收式衰减器,是利用置入其中的吸收片所引起的通过波的损耗而得到衰减的。
一般可调吸收式衰减器的衰减量可在0到30-50分贝之间连续调节,其相应的衰减量可在调节机构的度盘上读出(直读式),或者从所附的校正曲线上查得。
五、实验步骤:1.了解微波测试系统1.1观看如图装置的的微波测试系统。
实验一 系统设备简介、频率测量一、 实验目的:1通过实验使得学生熟悉、了解实验所用设备及附件的性能、用途等。
2 掌握用频率计测量频率的方法。
二、 实验所用设备及方框图(设备详细介绍见附录2)本实验所用设备及附件为YM1123信号发生器;YM3892选频放大器;波导/同轴转换器;PX16频率计;晶体检波器,其连接方框图如下:图 1三、频率测量的实验步骤:1按方框图连接好实验系统。
2 检查实验系统准确无误后,打开选频放大器,将增益开关置于40~60分贝档。
3 打开信号发生器,圆盘刻度置于100档,重复频率量程置于100处,设备右上角←、→置于档,这时即有了输出,输出功率的大小用衰减旋纽调节。
4 观察选频放大器,若指示太小,调节晶体检波器和选频放大器增益调节,原则上使选频放大器指针指示在满刻度的4/5上,调节频率计,找到频率计的吸收峰值,观察这时频率计的刻度值,此值即为所测的频率值。
5 关闭设备,整理好附件。
6 数据整理,写出实验报告。
实验二 波导波长的测量一、 实验目的1 掌握使用“中值法”测量最小值的方法。
2 掌握波导波长的测量方法。
3 熟练掌握微波成套设备的使用。
二、 实验原理波导波长是用驻波测量线进行测量的,驻波测量线可测出波导中心电场纵轴的分布情况,在矩形波导中:g λ=(1)其中c λ为截止波长,0λ为自由空间波长。
'''2222(()/2g D D D λ==+cλ=对截止波长:m=1,n=0; 2c a λ=我们知道相邻两个电场的最小点(或最大点)间的距离为半个波长。
如图所示:EE 121221E图 2测量波导波长时,利用测量线决定相邻两个电场的最小点(或最大点),就可以计算出波导波长g λ。
测量波导波长时,由于电场的最小值的变化比最大值尖锐,因此往往采用测量两个电场最小值的位置来计算,即:212()g D D λ=- (2)为了测量电场最小值的位置,常常采用中值读数法,具体方法为在最小值附近找出极小值,例如找到'1D 和''1D 来确定1D 的位置,找到''2D 和'2D 来确定2D 的位置,公式为 '''111()/2D D D =+ (3)'''222()/2D D D =+ (4) 三、 实验原理框图图 3四、 实验步骤:1 按方框图连接设备极其附件。
实验要求一、预习要求:实验前必须充分预习,完成指定的预习任务。
1.认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的计算。
2.复习实验中所用各仪器的使用方法及注意事项。
3.熟悉实验任务,完成各实验“预习要求”中指定的内容,写好预习报告。
二、实验要求:1.使用仪器前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。
2.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应立即关断电源,保持现场,报告指导教师。
找出原因、排除故障后,经指导教师同意再继续实验。
3.在进行微波测试时,终端尽量不要开口,以防止微波能量泄露。
4.实验过程中应仔细观察实验现象,认真纪录实验结果(数据、波形、现象)。
所纪录的实验结果经指导教师审阅签字后再拆除实验线路。
5.实验结束后,必须关断电源,并将仪器、设备、工具等按规定整理。
6.实验后每个同学必须按要求独立完成实验报告并按时上交。
实验一、微波传输线频率和波长的测量一、实验目的1.学会使用基本微波器件。
2.了解微波振荡源的基本工作特性和微波的传输特性。
3.学习利用吸收式测量频率和波长的方法;4.掌握用测量线来测量波长和频率的方法。
二、实验原理1.微波的传输特性为了避免导线辐射损耗和趋肤效应等的影响,采用标准矩形波导管为微波型。
波传输线,并用TE10波导管具有三种工作状态:①当终端接“匹配负载”时,反射波不存在,波导中呈行波状态;②当终端接“短路片”、开路或接纯电抗性负载时,终端全反射,波导中呈纯驻波状态;③一般情况下,终端是部分反射,波导中传输的既不是行波,也不是纯驻波,而是呈行驻波状态。
2.微波频率的测量用吸收式频率计PX16(直读式),测量范围8.2GHZ-12.4GHZ,误差≤±0.3%,当传输线中相当一部分功率进入频率计谐振腔内,而另一部分从耦合元件处反射回去。
当调节频率计,使其自身空腔的固有频率与微波信号频率相同时产生谐振,用选频放大器测量,信号源须用内方波,重复频率为1KHZ 左右,谐振时可从选放上观察到信号幅度明显减少,以减幅最大位置为判断频率测量值的论据。
微波测量实验指导书之一:晶体定标与色散特性的测量实验一、晶体定标与色散特性的测量一、实验目的:1、掌握晶体检波器特性定标的方法。
2、观测波导系统的色散特性。
二、实验框图:三、实验原理:在微波测试系统中,微波能量通常是经过二极管检波后送到指示器(选频放大器、示波器),所以在选频放大器上指示的是检波电流值I (单位:µA ),而驻波分布特性指的是电场分布,因此利用检波电流来计算驻波比时,必须用实验法确定E 与I 的关系。
当加在二极管两端的电压为V 时,与流过晶体的检波电流有如下关系:I =KV n (1)式中,K 为常数,n为检波率。
而电压V 与探针所在处的电场E 是成比例的,所以有I =K ’E n (2)式中,K ’是比例常数.那么根据式(2)描出的曲线即为晶体定标曲线.利用终端短路法来进行晶体定标:当波导终端短路时,电场分布为:|E |=l gE m λπ2sin (3) 式中,Em 为电场强度幅值,g λ为波导波长,l 为距驻波节点的距离.由(2)(3)式可得 I =K n l gλπ2sin (4) 式中K 为常数,对(4)式取对数有:l gn K I λπ2sin lg lg lg += (5) 曲线I ~l g λπ2sin 即为晶体二极管的定标曲线,而曲线l gI λπ2sin lg ~lg 的斜率即为检波律n .若将I 与l g λπ2sin 标在全对数据坐标纸上,作出l gI λπ2sin lg ~lg 曲线,则曲线的斜率即为晶体检波率n.通常在检波功率电平较小(对调制波而言,输出电压不大于n 个毫伏,对连续波而言,输出电流不大于10µA )的条件下,可认为晶体检波特性是平方律的,即n =2. 色散特性指的是波导波长与频率的关系:波导中传播的电磁波的相速和群速均是频率的函数,波速频率的变化称为色散。
TE 波和TM 波都是色散型波,波导是色散型传输线。
由于色散会使电磁波群在传输地过程中产生失真、畸变,频率越宽,畸变越显著。
微波技术实验指导书实验一微波测量系统的了解与使用实验性质:验证性实验级别:选做开课单位:信息与通信工程学院学时:2学时一、实验目的:1.了解微波测量线系统的组成,认识各种微波器件。
2.学会测量设备的使用。
二、实验器材:1.3厘米固态信号源2.隔离器3.可变衰减器4.测量线5.选频放大器6.各种微波器件三、实验内容:1.了解微波测试系统2. 学习使用测量线四、基本原理:图1.1 微波测试系统组成1.信号源信号源是为电子测量提供符合一定技术要求的电信号的设备,微波信号源是对各种相应测量设备或其它电子设备提供微波信号。
常用微波信号源可分为:简易信号发生器、功率信号发生器、标准信号发生器和扫频信号发生器。
本实验采用DH1121A型3cm固态信号源。
2.选频放大器当信号源加有1000Hz左右的方波调幅时,用得最多的检波放大指示方案是“选频放大器”法。
它是将检波输出的方波经选频放大器选出1000Hz基波进行高倍数放大,然后再整为直流,用直流电表指示。
它具有极高的灵敏度和极低的噪声电平。
表头一般具有等刻度及分贝刻度。
要求有良好的接地和屏蔽。
选频放大器也叫测量放大器。
3.测量线3厘米波导测量线由开槽波导、不调谐探头和滑架组成。
开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场的变化信息。
4.可变衰减器为了固定传输系统内传输功率的功率电平,传输系统内必须接入衰减器,对微波产生一定的衰减,衰减量固定不变的称为固定衰减器,可在一定范围内调节的称为可变衰减器。
衰减器有吸收衰减器、截止衰减器和极化衰减器三种型式。
实验中采用的吸收式衰减器,是利用置入其中的吸收片所引起的通过波的损耗而得到衰减的。
一般可调吸收式衰减器的衰减量可在0到30-50分贝之间连续调节,其相应的衰减量可在调节机构的度盘上读出(直读式),或者从所附的校正曲线上查得。
五、实验步骤:1.了解微波测试系统1.1观看如图装置的的微波测试系统。
实验一微波常规测量系统的熟悉与调整一、实验目的1、了解常用微波常规测量系统的组成,认识常用微波元件,熟悉其特性、在系统中的作用及使用方法。
2、熟悉常用微波仪器的调整和使用方法。
二、实验原理1、实验系统简介图1-1 常规微波测量系统微波常规测量系统如图1-1所示。
系统中的仪器和主要元件作用如下:(1)、信号源:产生微波信号。
常用的简易信号发生器,包括速调管振荡器、速调管电源和调制器。
速调管振荡器产生并输出需要的连续或调制信号,速调管电源供给速调管振荡器所需各组稳压电源,调制器产生方波调制信号(重复频率一般为1000Hz ),对速调管振荡器进行方波调制。
标准信号发生器主要有速调管和体效应管两类,在包含上述功能的基础上增加了输出幅度调节器(可变衰减器)以及频率计等。
(2)、频率与功率监视部分:由正向接入的定向耦合器从主通道中耦合出一部分能量,通过对该部分信号的监测,确定其信号源的频率并监视输出功率的稳定性,标准信号源往往附有监测系统。
(3)、隔离器:是一种铁氧体器件,用于消除负载反射对信号源的影响。
理想的隔离器只允许信号由源向负载单方向通过(即对入射波衰减为零)。
而全部吸收由负方载向源的反射功率(即对反射波衰减为无穷大)。
利用其单向传输特性,既保证了信号的正常传输,又防止反射波进入信号源影响其输出功率和振荡频率的稳定。
实用的隔离器正向衰减为零点几分贝,反向衰减为几十分贝。
在没有隔离器时,可用固定衰减器代替。
此时,对正向、反向信号有同样衰减。
(4)、衰减器:分固定衰减器和可变衰减器两种。
为电平元件,用来调节输出功率的大小。
调整可变衰减器的衰减量,可以控制到达负载的功率,使指示器有适度的指示。
固定衰减器也可以用定向耦合器代替。
(5)、测量线:用来测量负载在传输线上造成的驻波分布,确定驻波系数、驻波最小点位置和波导波长等,以便计算各种待测参数。
(6)、指示器:指示检波电流的大小,对连续波信号、常用微安表、光点检流计等指示器。
微波的技术实验指导书(⼆)实验⼀三厘⽶波导测量系统⼀、系统结构框图图1-1 三厘⽶波导测量系统备注:三厘⽶隔离器⽤在精密测量中,⽽在⼀般测量中可以不加,因为在YM1123中有⼀个隔离器。
本章后续的六个实验均是基于该结构展开的,下⾯将对结构中的仪器进⾏⼀⼀介绍。
⼆、仪器、器件介绍本套系统主要⽤于测量微波在波导中传输时的⼀些基本参数,如波导波长、反射系数、阻抗及功率等。
主要⽤到的仪器为:YM1123微波信号发⽣器、波导测量线、⼩功率计、频率计、选频放⼤器、波导功率探头以及各种波导元件。
下⾯分别进⾏介绍:(⼀)YM1123微波信号发⽣器YM1123微波信号发⽣器是⼀款固态信号源,主要基于某些半导体材料(如砷化镓)的体效应来实现振荡的,具有功率⼤、稳定可靠等特性。
整体结构由⾼频部分、调制器部分、功率显⽰部分(对100uW的功率作相对指⽰)、频率显⽰部分及衰减显⽰部分、⼯作状态控制部分、电源部分六⼤件组成,其中⾼频部分负责产⽣7.5GH z~12.4GHz的微波信号,调制部分负责产⽣⼀系列脉冲信号,采⽤PIN调制器来实现微波信号的脉冲幅度调制。
其⾯板调节控制机构如下所⽰:1. ⾯板调节控制机构(1)电源开关位置。
(2)⼯作状态开关:按移动键可改变⼯作状态,指⽰灯也相应改变。
⼯作状态有:等幅(=,⽤于测量校准衰减器在100uW时0dB定标)、内调制(分⽅波和脉冲两种)、外调制(外输⼊脉冲信号,具有极性变换功能)及外整步。
(3)“调谐”旋钮调节可改变输出频率。
(4)“调零”旋钮调节可改变电表电⽓调零。
(5)“衰减调节”旋钮可控制输出功率⼤⼩。
反时针调节,信号输出增⼤,衰减显⽰减⼩;顺时针调节,信号输出减⼩,衰减显⽰增⼤。
(6)“衰减调零”为100uW基准0dB校准。
(7)“×1、×10”开关:调制信号重复频率开关。
(8)“重复频率”旋钮调节可改变调制信号重复频率。
(9)“脉宽”旋钮调节可改变调制信号脉冲宽度。