传递路径分析方法
- 格式:docx
- 大小:11.24 KB
- 文档页数:1
传递路径分析探究振动噪声问题的根源LMS b传递路径分析提供了基于工程试验方法的系统级振动噪声解决方案,对关键零部件进行工程分析。
作为一个全面理解振动噪声问题的方法,TPA有助于对振动噪声问题进行故障诊断,并对每个关键零部件进行性能目标设定。
在一个由多个子结构组成的复杂结构(诸如汽车、飞机或船舶)中,某一特定位置的振动噪声现象往往是由一个远处的振动源所引起的。
例如,能量可以通过不同的路径从汽车发动机传入驾驶室内:通过发动机悬置、排气系统连接点,甚至间接地通过传动轴和底盘悬架传入到驾驶室内。
进气和排气系统的空气传播也会对振动噪声问题有一定的影响。
强大的传递路径分析技术能够解决这类振动噪声问题,它可以帮助工程师在设计早期检测到问题产生的根源。
LMS b提供高效的解决方案,以识别振动噪声问题及其产生的根本原因,并能够快速地评价设计修改。
从故障诊断到根源分析传递路径分析(TPA)是用于识别和评价能量从激励源到某个接收位置的各个结构传播和声传播的传递路径。
一旦对这些激励源及传递路径建模并量化后,系统优化就成为一个相对容易的设计工作。
传递路径分析用于定量分析不同的激振源及其传递路径,并且计算出其中哪些是重要的,哪些对噪声问题有贡献,哪些会互相抵消。
激励源-路径-响应:系统级的方法LMS b传递路径分析是基于激励源-路径-响应的系统解决方案。
所有的振动噪声问题都是始于一个激励源,然后通过空气传播或结构传播传递到一个可被人感知的响应位置。
通过分析激励源及传递路径对响应的影响,并可以通过对其中的某几个因素进行调整,来解决振动噪声问题。
传递路径分析的目标是计算从源到响应的各条路径的矢量贡献量,识别出传递路径中各零部件的NVH特性,并通过对其调整来解决特定的问题。
最终,TPA通过合理选择各个零部件的特性以避免振动噪声问题,从而有助于产品优化设计。
完整的解决方案LMS b传递路径分析软件包包含各种分析功能,以帮助试验部门最大程度地节省时间和资源,是市场上最为广泛使用的TPA解决方案。
Transfer Path Analysis Procedures传递路径分析(TPA)的过程1 试验前准备传递路径分析(TPA)可用于发动机和路面噪声的分析。
首先检查问题是什么。
简单地测量一下目标点的振动和噪声,理解问题的本质。
然后选择振源(通常是发动机的悬置),鉴别所有可能的从振源到驾驶员的能量传递路径。
传递路径分析是在系统边界点进行的(如发动机悬置,或悬架的支座)。
1.1 数据要求开始试验前准备一个系统试验图,列出所有测量点。
建议使用下列命名规则:body:点号:方向――车身一侧的测量都用部件名“body”engi:点号:方向――发动机一侧的测量都用部件名“engi”susp:点号:方向――悬架一侧的测量都用部件名“susp”在发动机支点位置的振源和车身两侧使用同样的点号,但部件名不同。
在目标位置的测量,请使用不同的部件名,如“seat:0000“+Z”或对于方向盘“ster:9999:+X”。
这样在大型试验中容易找到目标数据。
麦克风信号可以用方向“S”。
所有数据可以保存在Cada-X的一个或多个不同项目中。
把运行数据,频响函数和悬置刚度放在不同的试验中。
1.2 正确实施传递路径分析生成大量的数据,在开始测量之前制定一个好计划非常重要。
所有的传递路径问题都可能是不一样的。
本文档给出了在货车或箱式车上作典型的发动机和路面的传递路径分析的实施过程。
因为不可能写出精确的试验指导书,所以为了得到好的结果,理解测量得到的信息并尝试不同的方法是很重要的。
另外,有两本TPA理论和实践手册,在线帮助也提供了软件操作过程。
2 运行数据测量2.1 数据要求:悬置刚度方法:所有支座两侧的加速度,目标信号逆矩阵方法:所有支座车身一侧的加速度,加上车身上等量的附加点。
附加点不应靠近力作用点,但也不要太远。
大约离力作用点20至40厘米是合适的做法。
2.2 准备将麦克风和加速度计安装到车上。
在振源上放一个参考加速度计(可以是一个方向)。
混合传递路径分析(TPA)方法的准确性验证唐贵基;陈卓群【摘要】分析了混合TPA的计算方法,即将传统TPA方法,与有限元模型仿真计算所得传递函数相结合,以达到减少计算工作量、缩短实验周期。
论文针对某车型传动系统扭振引起的车内轰鸣问题,搭建混合传递路径分析模型,在准确识别副车架与车身耦结合处载荷力的基础上,确认贡献量较大的传递路径,并将各传递路径对目标点的声压贡献量进行矢量叠加,拟合出车内目标点声压谱图。
分析得到的目标点噪声情况与试验测得结果能够很好的吻合,重现了问题频段的频谱特征,证明了混合TPA方法的准确性。
%The method for hybrid transfer path analysis (TPA) was introduced. This method combined the traditional TPA method with the transfer functions from the finite element modeling so as to reduce the computer-time consuming and save the cost of the testing. Aiming at the interior booming problem induced by torsional vibration of vehicle’s drive sys-tems, the hybrid TPA model was established for analyzing the transmission path of vibration. On the basis of accurately rec-ognizing the load force at the joint between the auxiliary frame andt he vehicle’s body, the transfer paths which have large contribution to the vibration transmission were confirmed. The vector superposition for sound pressure contribution from each transfer path to the target points was done. And the sound pressure spectrum diagrams at the target points inside the ve-hicle were obtained by curve’s fitting. The sound pressure spectrum diagrams from this method can agree well with the re-sults directly measured in the test. And the accuracy of this method was verified.【期刊名称】《噪声与振动控制》【年(卷),期】2015(000)002【总页数】4页(P184-187)【关键词】振动与波;混合TPA;载荷识别;逆矩阵法;声传递向量;贡献量分析【作者】唐贵基;陈卓群【作者单位】华北电力大学能源动力与机械工程学院,河北保定 071003;华北电力大学能源动力与机械工程学院,河北保定 071003【正文语种】中文【中图分类】O422.6汽车作为一个复杂的机械系统,在运行当中会受到多种振动噪声源的激励,各激励通过不同的路径,经过衰减、传递到各个响应点。
传递路径分析法(TPA)进行车内噪声优化的应用研究作者:李传兵摘要:本文基于传递路径分析方法并使用LMS 公司的相关软件,对开发中的某车型的车内轰鸣噪声问题进行了分析,找出了对车内轰鸣声贡献最大的传递路径,并通过有针对性地结构改进,有效地消除了该转速下的轰鸣声问题。
关键词:NVH 传递路径分析法(TPA,Transfer path analysis)贡献量分析车内振动噪声可以看成是由多个激励经过多条传递路径到达目标点叠加而成的,如果能准确地判断出各主要激励源和传递路径的贡献量,并针对贡献量大的激励源和传递路径作相应的优化改进,则NVH 改进工作效率能得到大大的提高。
为此,在汽车的NVH 性能分析中,常常将汽车简化为由激励源(振动源、噪声源)、传递路径和响应点组成的动态系统。
能同时考虑激励源和传递路径的传递路径分析法在汽车NVH 性能开发中得到了广泛关注,各专业公司都纷纷开发专门的商业化测试分析系统,LMS 的TPA 分析软件无疑是其中的杰出代表,已成为在汽车领域应用最广泛的商业系统之一。
传递路径分析方法可以用于结构传播噪声和空气传播噪声问题的诊断、分析和优化,本文将以某车型的结构传播噪声优化为例,详细阐述LMS 传递路径分析方法的实际应用过程和效果。
一、(结构)传递路径分析法基本原理假设汽车受m 个激励力作用,每一激励力都有x、y、z 三个方向分量,每一激励力分量都对应着n 个特定的传递路径,那么这个激励力分量和对应的某个传递路径就产生一个系统响应分量。
以车内噪声声压作为系统响应,在线性系统的假设基础上,这个由于结构力输入产生的声压则可以表示为:上式中,(ω) mnk H 是传递函数,(ω) nk F 是激励力。
由上式所知,激励力和频响函数是TPA 分析的输入量,因此进行TPA 分析需要做的工作主要为:激励力获取:获取激励力的方法有多种,有直接测量法、复刚度计算法以及矩阵求逆法,这些方法各有优缺点和适应性,需要根据实际情况来选用。
基于工况传递路径分析的汽车路噪优化方法研究廖毅;罗德洋;余义;王田修;程果【摘要】为了克服传统传递路径分析方法工作量大、效率低的问题,将工况传递路径分析(OTPA)运用于路噪优化,形成基于工况传递路径分析的路噪优化方法.首先推导了工况传递路径的基本原理,并将重相干性分析与奇异值分解用于工况传递路径分析以保证其计算准确性;其次,将工况传递路径分析应用于路噪优化,形成系统的分析方法;最后将该方法运用于解决某电动车路噪问题,快速排查出主要原因并提出有效的优化方案,成功将声压级峰值降低了1.9 dB(A)以上,验证了该方法的可行性与实用性.【期刊名称】《汽车技术》【年(卷),期】2019(000)008【总页数】4页(P46-49)【关键词】路噪;工况传递路径;重相干性分析;奇异值分解【作者】廖毅;罗德洋;余义;王田修;程果【作者单位】上汽通用五菱汽车股份有限公司,柳州 545000;上汽通用五菱汽车股份有限公司,柳州 545000;上汽通用五菱汽车股份有限公司,柳州 545000;上汽通用五菱汽车股份有限公司,柳州 545000;上汽通用五菱汽车股份有限公司,柳州545000【正文语种】中文【中图分类】U467;TB531 前言汽车的振动与噪声主要包括风噪、动力及传动系统噪声和路噪。
相比于传统汽车,纯电动汽车没有发动机噪声,故在低频噪声中路噪所占比例最高,因此,电动汽车对路噪控制的要求比传统汽车更高。
国内外学者运用传递路径分析(Transfer Path Analysis,TPA)方法对路噪进行了研究。
余雄鹰等人[1-4]运用TPA方法建立了路噪传递路径模型,解决了路噪问题,但利用TPA分析路噪需拆卸零件,改变了整车状态的边界条件且工作量大,在实际工程上难以实施[2]。
为解决以上问题,伍先俊等人[5]对工况传递路径分析(Operational Transfer Path Analysis,OTPA)的理论进行了推导并成功解决了车内噪声问题;仲典等人[6-7]运用OTPA方法辨识车内噪声源,并且将重相干性分析与奇异值分解应用于OTPA,提高了工况传递路径模型的精度。
工况载荷下传递路径分析方法郭世辉;刘振国;臧秀敏;范一凡;周丹丹【摘要】阐述传递路径分析(TPA)基本原理,通过对比几种主要载荷识别方法优劣,提出综合利用试验和仿真手段进行载荷识别方法。
运用该方法进行车内噪声分析,并通过对比试验结果证明方法可行性。
在此基础上进行工况载荷下整车TPA分析,根据分析结果对车辆进行优化,取得显著效果。
%The fundamental theory of TPA (Transfer Path Analysis) was introduced. Several main methods of load identification were compared and their advantages and disadvantages were analyzed. And a synthesis method was developed for load identification. Using this method, the vehicle noise was simulated. The result was compared with the testing result and the feasibility of this method was verified. On this basis, The TPA analysis of vehicles under loading conditions was carried out. According to the TPA results, the vehicle was optimized and its NVH was significantly improved.【期刊名称】《噪声与振动控制》【年(卷),期】2016(036)002【总页数】4页(P104-107)【关键词】振动与波;载荷识别;TPA;NVH【作者】郭世辉;刘振国;臧秀敏;范一凡;周丹丹【作者单位】长城汽车股份有限公司技术中心,保定 071000; 河北省汽车工程技术研究中心,保定 071000;长城汽车股份有限公司技术中心,保定 071000; 河北省汽车工程技术研究中心,保定 071000;三川电力设备股份有限公司,保定071000;长城汽车股份有限公司技术中心,保定 071000; 河北省汽车工程技术研究中心,保定 071000;长城汽车股份有限公司技术中心,保定 071000; 河北省汽车工程技术研究中心,保定 071000【正文语种】中文【中图分类】O422.6随着汽车工业发展和人们对汽车舒适性要求提高,车辆的NVH性能已经成为衡量汽车综合性能的关键因素之一。
传递路径分析在车内噪声分析中的应用车内噪声是一种常见的问题,它会对驾驶员和乘客的健康和舒适感造成负面影响。
因此,对车辆噪声进行分析和控制是至关重要的。
路径分析是一种被广泛应用于车内噪声控制的方法。
路径分析是一种通过分析声波在车辆内部传播路径的方法,以识别和控制噪音来源的传播路径。
它基于传递函数和声学模型,使用从源到接收器的声学能量传播路径来确定主要的声响路径,并计算噪声传递路径的声学转换系数。
通过这种方式,可以找到主要的噪音源,同时可以为降低车内噪声提供具体而有针对性的方案。
应用路径分析进行车内噪声控制有很多好处。
首先,它可以帮助在早期阶段识别可能的噪音来源,并设计出针对性的措施。
事实上,通过在车的设计和制造过程中使用路径分析技术,可以为未来的噪声控制提供基础。
其次,路径分析还可以帮助优化噪声控制的设计。
通过分析噪声源的路径,可以识别出对减少噪音最有效的控制方案。
这有助于减少噪音控制的成本和设计时间。
最后,路径分析还可以提高车辆内部舒适感。
通过使用路径分析技术来确定主要噪音源和传播路径,可以寻找最好的消音材料,并根据这些信息来定制噪音控制系统。
这可以有效降低车内噪声,提高驾驶员和乘客的舒适度。
在实现路径分析方案时,需要使用专业的软件来模拟声学传播路径。
这些软件可以模拟不同路径上的噪声传递效果,并帮助确定最有效的噪声控制方案。
综上所述,路径分析技术对于车内噪声控制非常重要。
通过对声波传播路径的深入分析,可以确定噪声来源和传播路径,并根据这些信息制定具体和有效的控制方案。
这样做不仅可以提高驾驶员和乘客的舒适度,还可以降低车内噪音对健康的不良影响。
在实际的应用中,路径分析技术通常需要组合多种方法进行,比如声学测量、模拟试验、数值模拟等。
其中,声学测量是最为重要的一步,通过采用有关仪器对精确志的数据进行采集,为后续分析提供依据。
模拟试验则可以通过对车辆外形、驾驶方式等进行模拟,来获得最为接近实际情况的数据。
传递路径分析探究振动噪声问题地根源LMS b传递路径分析提供了基于工程试验方法地系统级振动噪声解决方案,对关键零部件进行工程分析.作为一个全面理解振动噪声问题地方法,TPA有助于对振动噪声问题进行故障诊断,并对每个关键零部件进行性能目标设定.在一个由多个子结构组成地复杂结构(诸如汽车、飞机或船舶)中,某一特定位置地振动噪声现象往往是由一个远处地振动源所引起地.例如,能量可以通过不同地路径从汽车发动机传入驾驶室内:通过发动机悬置、排气系统连接点,甚至间接地通过传动轴和底盘悬架传入到驾驶室内.进气和排气系统地空气传播也会对振动噪声问题有一定地影响.强大地传递路径分析技术能够解决这类振动噪声问题,它可以帮助工程师在设计早期检测到问题产生地根源.LMS b提供高效地解决方案,以识别振动噪声问题及其产生地根本原因,并能够快速地评价设计修改.从故障诊断到根源分析传递路径分析(TPA)是用于识别和评价能量从激励源到某个接收位置地各个结构传播和声传播地传递路径.一旦对这些激励源及传递路径建模并量化后,系统优化就成为一个相对容易地设计工作.传递路径分析用于定量分析不同地激振源及其传递路径,并且计算出其中哪些是重要地,哪些对噪声问题有贡献,哪些会互相抵消.激励源-路径-响应:系统级地方法LMS b传递路径分析是基于激励源-路径-响应地系统解决方案.所有地振动噪声问题都是始于一个激励源,然后通过空气传播或结构传播传递到一个可被人感知地响应位置.通过分析激励源及传递路径对响应地影响,并可以通过对其中地某几个因素进行调整,来解决振动噪声问题.传递路径分析地目标是计算从源到响应地各条路径地矢量贡献量,识别出传递路径中各零部件地NVH特性,并通过对其调整来解决特定地问题.最终,TPA通过合理选择各个零部件地特性以避免振动噪声问题,从而有助于产品优化设计.完整地解决方案LMS b传递路径分析软件包包含各种分析功能,以帮助试验部门最大程度地节省时间和资源,是市场上最为广泛使用地TPA解决方案.LMS b可以通过各个可能地角度来帮助客户解决问题——从简单系统到复杂结构.LMS b TPA综合了一系列TPA技术,包括LMS b单参考传递路径分析、空气声定量分析、LMS b多参考点传递路径分析、LMS b OPAX传递路径分析方法以及LMS b时域传递路径分析等.管理海量数据LMS b传递路径分析软件可以对整个测试任务中地所有数据进行快捷高效地管理.根据数据中内嵌地试验描述信息,如分析函数类型、测点位置标识、各个传递函数以及工况数据,将在传递路径模型中自动完成排序和定义.这个自动处理功能可以保证排除数据处理过程中地人为操作失误,并保证数据处理地高效性.相似地处理过程可以同时运用于各种不同地工况.对于发动机传递路径分析,工程师一般更倾向于对在升速、降速过程中最重要地阶次进行分析,此外,也完全支持对各种其它形式地频谱数据进行分析(谱、自功率谱图、1/3倍频程谱等).LMS b传递路径分析易于操作并且高效.工程师们得益于其引导型地工作流程界面及强大地数据管理功能,能够在各阶段对数据进行检查,从而减少数据转换和操作失误.另外,还有一些其它增强性软件功能,如活动图片,可以使团队中地任何人都能从各种可能地角度对数据进行深入细致地分析研究,以充分理解TPA分析结果.清晰地结果诠释LMS b传递路径分析帮助用户完成数据处理,并且快速有效地进行结果解释.庞大地TPA结果能够容易、清晰地组织起来,对于每一个工况和传递路径,工作载荷都能够被获取并储存.为了能够快速识别出多个路径中相对重要地路径,通过彩色视图,可显示出不同转速或频率下各个路径贡献量地幅值.LMS解决方案能够帮助用户从客观和主观两方面分析车内声学响应,识别出其中地故障频谱成分,甚至可以识别掩蔽地频谱成分.对于那些有问题地频率成分,采用工况数据和试验室数据相结合地方法,以确定不同源和路径对其地贡献量.一旦这些激励源与传递路径被识别出来并建立模型后,优化系统就成为了一个相对简单而直接地设计工作.各种TPA技术可以进一步扩展,以支持“如果…,那么…”模式地系统优化功能.对载荷和(或)传递路径进行交互式地修改,可实时地对其效果进行直观地评估.只要通过点击鼠标就可以对各种修改方案进行相互比对,这样大大增强目标设定地流程.多年工程经验地凝聚LMS b解决方案多年来一直处于市场领先地位,可以最大限度地保证数据质量并避免操作失误,它还提供了足够地工程应用灵活性,来调整流程以满足每个问题地特殊需要.在最终地贡献量分析中,通过使用4维图表显示,进行多维度地检查.LMS b传递路径分析是基于大量地工程实践经验基础上开发出来地,已经被广泛应用于工程实践中,以帮助工程师解决关键地振动噪声问题.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.xHAQX。
传递路径分析方法
传递路径分析用于评估激励与目标位置之间结构传播和空气传播不同路径的贡献。
假设系统是线性时不变的,每条路径的贡献量可以由该路径的激励载荷和频响函数的乘积计算获得,目标点的响应水平可以通过各条路径的贡献量叠加得到,某条路径对于目标点的影响程度便可以采用贡献量形式表达出来,这就是传递路径分析最核心的理论,目前各种传递路径分析的方法都是基于这个理论。
P为目标点噪声响应总和,Hi和Hk分别为非耦合的声振传递函数及声声传递函数,fi 为振动源作用到机械系统的结构载荷,Qk为声源作用到机械系统的声学载荷。
经典TPA方法是一种研究振动噪声十分有效的方法,在进行经典TPA分析时,需要进行传递函数测试、工作载荷的识别,最后进行响应点的贡献量分析。
其中,传递函数测试需要拆除激励源,工作量非常繁琐且测试时间较长,一般在项目后期快速诊断NVH问题时,经典TPA分析方法可实施度并不高。
为了提高工作效率,常采用工况下传递路径分析方法(OTPA)快速诊断与识别相关的NVH问题。