等厚干涉实验—牛顿环和劈尖干涉
- 格式:docx
- 大小:36.75 KB
- 文档页数:1
实验名称:等厚干涉—牛顿环和劈尖姓名学号班级日期20年月日时段一、实验目的1. 观察等厚干涉现象,了解其特点。
2. 学习用等厚干涉测量物理量的两种方法。
3. 学习使用显微镜测量微小长度。
二、实验仪器及器件牛顿环装置,平板光学玻璃片,读数显微镜,钠光灯,待测细丝(请自带计算器)。
三、实验原理1.等厚干涉(简述原理、特点和应用)2. 牛顿环产生原理1. 用牛顿环测凸透镜的曲率半径。
实验装置如图所示,其中,M为读数显微镜镜头,P为显微镜上的小反射镜,L为牛顿环装置。
(1)借助室内灯光,用肉眼直接观察牛顿环,调节牛顿环装置上的三个螺丝钮,使牛顿环圆心位于透镜中心。
调节时,螺丝旋钮松紧要适合,即要保持稳定,又勿过紧使透镜变形。
(2)将显微镜镜筒调到读数标尺中央,并使入射光方向与显微镜移动方向垂直。
放入牛顿环装置,移动显微镜整体方位和P的角度,使视场尽可能明亮。
(3)调节显微镜目镜,使十字叉丝清晰。
显微镜物镜调焦,直到看清楚牛顿环并使叉丝与环纹间无视差(注意:物镜调焦时,镜筒应由下向上调以免碰伤物镜或被测物)。
移动牛顿环装置使叉丝对准牛顿环中心。
能在显微镜中看到清晰的牛顿环关键有三点:a.确保目测到的牛顿环在物镜的正下方;b.P反射镜角度合适,使S发出的钠黄光尽可能多地反射入物镜;c.物镜调焦合适。
(4)定性观察待测圆环是否均在显微镜读数范围之内并且清晰。
(5)定量测量:由于环中心有变形,应选择10级以上的条纹进行测量。
如取m-n=8,则分别测出第25级到第10级各级的直径,然后用逐差法处理数据,求出曲率半径R。
并给出完整的实验结果。
数据处理可以用EXCEL处理。
测量时应注意避免螺旋空程引入的误差,这要求在整个测量过程中,显微镜筒只能朝一个方向移动,不许来回移动。
特别在测量第25级条纹时,应使叉丝先越过25级条纹(比如第30级条纹)然后返回第25级条纹,并对第25级条纹的暗环中心位置开始读数并依次沿同一方向测完全部数据。
牛顿环和劈尖干涉牛顿环和劈尖干涉是分振幅法产生的等厚干涉现象,其特点是同一条干涉条纹所对应的两反射面间的厚度相等。
利用牛顿环和劈尖干涉现象,可用来测量光波波长、薄膜厚度、微小角度、曲面的曲率半径以及检验光学器件的表面质量(如球面度、平整度和光洁度等),还可以测微小长度的变化,因此等厚干涉现象在科学研究和工程技术中有着广泛的应用。
学习导航1实验原理1. 用牛顿环法测定透镜的曲率半径R将一块曲率半径很大的平凸透镜放在一块磨光的平板玻璃上,即构成一个上表面为球面,下表面为平面的空气薄膜(见图1),若用波长为λ的单色平行光垂直射入透镜平面时,由空气薄膜上下两表面反射的两束光在透镜凸表面附近相遇发生等厚干涉,其干涉图样是以接触点O 为中心的一系列明暗交替的同心圆环(中心处是一个暗斑),且同一圆环的薄膜厚度相等。
这些圆形干涉条纹是牛顿当年在制作天文望远镜时,偶然将一个望远镜物镜放在平板玻璃上发现的,故称为牛顿环。
设透镜的曲率半径为R ,形成k 级干涉暗纹的牛顿环半径为r k ,则有①λkR r k = (k=0,1,2,…) (1)①参阅马文蔚主编《物理学》第四版,第三册,高等教育出版社,1999年,P125-127。
图1 牛顿环干涉入射上式表明,当波长λ已知时,测出即可算出R ,但是,由于玻璃的弹性形变以及接触处难免有尘埃等微粒,使得玻璃中心接触处并非一个几何点,而是一个较大的暗斑(或明斑,为什么?)。
所以牛顿环的圆心难以定位,且绝对干涉级次无法确定。
实验中将采用以下方法来测定曲率半径R 。
k r 分别测量两个暗环的直径和,由式(1)可得 m D n D (2) λR j m D m )(42+=(3)λR j n D n )(42+=式中j 表示由于中心暗斑的影响而引入的干涉级数的修正值,m 和n 为实际观察到的圆环序数。
式(2)减式(3)得2λ−−=)(422n m D D R nm ) (4)可见上式中R 只与牛顿环的级次差(n m −有关,这样就回避了对绝对干涉级次k 的确定和牛顿环半径直接测量的问题。
一、选择题1. 在等厚干涉实验中,设牛顿环的空气薄层厚度为e,则当2eA:为入射光波长的整数倍时产生暗条纹,为入射光半波长的奇数倍时产生明条纹 B:为入射光波长的整数倍时产生暗条纹,为入射光波长的奇数倍时产生明条纹 C:为入射光波长的整数倍时产生明条纹,为入射光半波长的奇数倍时产生暗条纹 D:为入射光波长的整数倍时产生明条纹,为入射光波长的奇数倍时产生暗条纹请选择:A2.两束光在空间相遇产生干涉的条件是A:频率相等B:振动方向相同C:相位差恒定,且满足一定条件D:abc都是请选择:D3.牛顿环实验中,读数显微镜的视场中亮度不均匀,其原因是A:显微镜的物镜有问题B:反光玻璃片放反了C:入射单色光方向不正D:显微镜的目镜有问题请选择:C4.牛顿环是一种A:不等间距的衍射条纹B:等倾干涉条纹C:等间距的干涉条纹D:等厚干涉条纹请选择:D5.牛顿环实验中,单向测量的目的是为了消除A:视差B:读数显微镜测微鼓轮的仪器误差C:测微螺距间隙引起的回程误差D:ABC都不是请选择:C6.劈尖干涉实验中,若测得20个劈尖干涉条纹间隔L1,劈尖条纹的总长为L,则其包含的干涉暗条纹总数为A:20L/L1 B:20L1/L C:L/(20L1) D:L1/(20L)请选择:A7.牛顿环实验中有如下步骤:①调节读数显微镜的反光片和纳光灯的位置,使其视场明亮均匀②调节目镜使叉丝像清晰③将牛顿环放于载物台,由下向上调节镜筒,得到清晰的干涉条纹④调节牛顿环的位置和叉丝方向,使牛顿环中某环在纵向叉丝沿主尺方向移动时始终于横向叉丝相切⑤测量。
则正确的实验顺序是A:a b c d e B:b c a d e C:a b d c e D:d a c b e请选择:A8.在牛顿环实验中,读数显微镜的调节要求是A:叉丝清晰B:显微镜内视场均匀明亮C:图象清晰D:abc都是请选择:D9.牛顿环实验中,若已知凸透镜的曲率半径R,选出下列说法中正确的()A:可通过它测单色光的波长B:可通过它测平板玻璃的厚度C:可用之测牛顿环中平板玻璃的折射率D:可用它测凸透镜的折射率请选择:A10.牛顿环实验中,暗环半径边缘与平板玻璃的垂直距离为e=kλ/2,暗环半径满足r^2=kRλ,其成立的条件是A:R>e D:R>>e请选择:D11.牛顿环装置的平面玻璃上表面是标准平面,而平凸透镜的凸表面加工后发现某处有擦伤(凹痕),用这一装置观察反射的牛顿环时,对应擦伤的干涉条纹应向_____弯曲A:环外B:环心C:环心和环外都有D:以上都不对请选择:B二、判断题1. 牛顿环和劈尖分别属于等厚干涉和等倾干涉。
牛顿环和劈尖干涉实验报告
实验目的:
1.观察和研究牛顿环和劈尖干涉现象。
2.通过实验验证光的波动性和干涉现象。
实验原理:
1.牛顿环实验:当一块平行玻璃板接触在光源上方的凸透镜或光源上并与凸透镜或光源的平面接触很好且空间之间没有气泡时,光线会形成彩色的环,称为牛顿环。
这是由于平行玻璃板和凸透镜或光源形成的薄膜导致光的干涉现象。
2.劈尖干涉实验:通过将一束单色光通过劈尖上的狭缝后,使光线呈现出明暗交替的条纹模式。
这是由于光的波动性导致光的干涉现象。
实验步骤:
1.牛顿环实验:
a)将凸透镜或光源放置在平台上,并调整到合适的高度。
b)在平行玻璃板上放置一滴水或一小滴云母溶液,并将平行玻璃板轻轻放在凸透镜或光源上方。
c)观察并记录形成的彩色环的数量和颜色。
根据环的半径和波长,可以计算出平行玻璃板的折射率。
2.劈尖干涉实验:
a)将劈尖放置在光源前方,并保持其垂直于光线。
b)使用狭缝光源发出一束单色光线并通过劈尖上的狭缝。
c)在屏幕上观察并记录明暗交替的条纹模式。
根据条纹的间距
和波长,可以计算出光的波长或劈尖的缝宽。
实验结果:
1.牛顿环实验:观察到形成的彩色环的数量和颜色。
2.劈尖干涉实验:观察到明暗交替的条纹模式,并记录条纹的间距。
实验结论:
1.牛顿环实验:根据计算得到的彩色环的半径和波长,可以计算出平行玻璃板的折射率。
2.劈尖干涉实验:根据条纹的间距和波长计算,可以得出光的波长或劈尖的缝宽。
通过以上两个实验,我们验证了光的波动性和干涉现象,并通过计算得到了相关参数。
等厚干涉实验—牛顿环和劈尖干涉要观察到光的干涉图象,如何获得相干光就成了重要的问题,利用普通光源获得相干光的方法是把由光源上同一点发的光设法分成两部分,然后再使这两部分叠如起来。
由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,所以它们将满足相干条件而成为相干光。
获得相干光方法有两种。
一种叫分波阵面法,另一种叫分振幅法。
1.实验目的(1)通过对等厚干涉图象观察和测量,加深对光的波动性的认识。
(2)掌握读数显微镜的基本调节和测量操作。
(3)掌握用牛顿环法测量透镜的曲率半径和用劈尖干涉法测量玻璃丝微小直径的实验方法(4)学习用图解法和逐差法处理数据。
2.实验仪器读数显微镜,牛顿环,钠光灯3.实验原理我们所讨论的等厚干涉就属于分振幅干涉现象。
分振幅干涉就是利用透明薄膜上下表面对入射光的反射、折射,将入射能量(也可说振幅)分成若干部分,然后相遇而产生干涉。
分振幅干涉分两类称等厚干涉,一类称等倾干涉。
用一束单色平行光照射透明薄膜,薄膜上表面反射光与下表面反射光来自于同一入射光,满足相干条件。
当入射光入射角不变,薄膜厚度不同发生变化,那么不同厚度处可满足不同的干涉明暗条件,出现干涉明暗条纹,相同厚度处一定满足同样的干涉条件,因此同一干涉条纹下对应同样的薄膜厚度。
这种干涉称为等厚干涉,相应干涉条纹称为等厚干涉条纹。
等厚干涉现象在光学加工中有着广泛应用,牛顿环和劈尖干涉就属于等厚干涉。
下面分别讨论其原理及应用:(1)用牛顿环法测定透镜球面的曲率半径牛顿环装置是由一块曲率半径较大的平凸玻璃透镜和一块光学平玻璃片(又称“平晶”)相接触而组成的。
相互接触的透镜凸面与Rer (a ) (b)图9-1 牛顿环装置和干涉图样平玻璃片平面之间的空气间隙,构成一个空气薄膜间隙,空气膜的厚度从中心接触点到边缘逐渐增加。
如图9-1(a )所示。
当单色光垂直地照射于牛顿环装置时(如图9-1),如果从反射光的方向观察,就可以看到透镜与平板玻璃接触处有一个暗点,周围环绕着一簇同心的明暗相间的内疏外密圆环,这些圆环就叫做牛顿环,如图9-1(b )所示.在平凸透镜和平板玻璃之间有一层很薄的空气层,通过透镜的单色光一部分在透镜和空气层的交界面上反射,一部分通过空气层在平板玻璃上表面上反射,这两部分反射光符合相干条件,它们在平面透镜的凸面上相遇时就会产生干涉现象。
实验学生:学号:实验地点: 一、实验室名称:、实验项目名称:牛顿环测曲面半径和劈尖干涉 三、实验学时: 四、实验原理:1、等厚干涉如图1所示,在C 点产生干涉,光线11'和22'的光程差为 △ =2d+入12式中是因为光由光疏媒质入射到光密媒质上反射时,有一相位突 变引起的附加光程差。
当光程差 △ =2d+ ”2=(2k+1) ”2, 即d=k ”2时 产生暗条纹; 当光程差 △ =2d+ ”2=2k ”2, 即d=(k — 1/2) ”2时 产生明条纹; 因此,在空气薄膜厚度相同处产生同一级的干涉条纹,叫等厚干涉条2、用牛顿环测透镜的曲率半径将一个曲率半径较大的平凸透镜的凸面置于一块光学平板玻璃上则报告指导教师: 实验时间:可组成牛顿环装置。
如图2所示。
这两束反射光在AOB表面上的某一点E 相遇,从而产生E点的干涉。
由于AOB 表面是球面,所产生的条纹是明暗相间的圆环,所以称为牛顿环,如图3所示。
图33、劈尖干涉将两块光学平玻璃重叠在一起,在一端插入一薄纸片,则在两玻璃板间形成一空气劈尖,如图4所示。
K级干涉暗条纹对应的薄膜厚度为d=k "2 k=0时,d=0, 即在两玻璃板接触处为零级暗条纹;若在薄纸处呈现k=N级条纹,则薄纸片厚度为d'N "2 若劈尖总长为L,再测出相邻两条纹之间的距离为△ x,则暗条纹总数为N =L/A x, 即d'L "2 △ x。
五、实验目的:深入理解光的等厚干涉及其应用,学会使用移测显微镜六、实验容:1、用牛顿环测透镜的曲率半径2、用劈尖干涉法测薄纸片的厚度图2一L 一 |七、实验器材(设备、元器件):牛顿环装置,移测显微镜,两块光学平玻璃板,薄纸片,钠光灯及电源。
八、实验步骤:1.用牛顿环测透镜的曲率半径(1)在日光下,用手轻调牛顿环仪上的三个螺钉,使牛顿环位于其中心。
螺钉不要调得太紧(会压坏玻璃),也不要调得太松(牛顿环不稳定,容易移动,无法准确进行测量)。
一、选择题1. 在等厚干涉实验中,设牛顿环的空气薄层厚度为e,则当2eA:为入射光波长的整数倍时产生暗条纹,为入射光半波长的奇数倍时产生明条纹 B:为入射光波长的整数倍时产生暗条纹,为入射光波长的奇数倍时产生明条纹 C:为入射光波长的整数倍时产生明条纹,为入射光半波长的奇数倍时产生暗条纹 D:为入射光波长的整数倍时产生明条纹,为入射光波长的奇数倍时产生暗条纹请选择:A2.两束光在空间相遇产生干涉的条件是A:频率相等B:振动方向相同C:相位差恒定,且满足一定条件D:abc都是请选择:D3.牛顿环实验中,读数显微镜的视场中亮度不均匀,其原因是A:显微镜的物镜有问题B:反光玻璃片放反了C:入射单色光方向不正D:显微镜的目镜有问题请选择:C4.牛顿环是一种A:不等间距的衍射条纹B:等倾干涉条纹C:等间距的干涉条纹D:等厚干涉条纹请选择:D5.牛顿环实验中,单向测量的目的是为了消除A:视差B:读数显微镜测微鼓轮的仪器误差C:测微螺距间隙引起的回程误差D:ABC都不是请选择:C6.劈尖干涉实验中,若测得20个劈尖干涉条纹间隔L1,劈尖条纹的总长为L,则其包含的干涉暗条纹总数为A:20L/L1 B:20L1/L C:L/(20L1) D:L1/(20L)请选择:A7.牛顿环实验中有如下步骤:①调节读数显微镜的反光片和纳光灯的位置,使其视场明亮均匀②调节目镜使叉丝像清晰③将牛顿环放于载物台,由下向上调节镜筒,得到清晰的干涉条纹④调节牛顿环的位置和叉丝方向,使牛顿环中某环在纵向叉丝沿主尺方向移动时始终于横向叉丝相切⑤测量。
则正确的实验顺序是A:a b c d e B:b c a d e C:a b d c e D:d a c b e请选择:A8.在牛顿环实验中,读数显微镜的调节要求是A:叉丝清晰B:显微镜内视场均匀明亮C:图象清晰D:abc都是请选择:D9.牛顿环实验中,若已知凸透镜的曲率半径R,选出下列说法中正确的()A:可通过它测单色光的波长B:可通过它测平板玻璃的厚度C:可用之测牛顿环中平板玻璃的折射率D:可用它测凸透镜的折射率请选择:A10.牛顿环实验中,暗环半径边缘与平板玻璃的垂直距离为e=kλ/2,暗环半径满足r^2=kRλ,其成立的条件是A:R>e D:R>>e请选择:D11.牛顿环装置的平面玻璃上表面是标准平面,而平凸透镜的凸表面加工后发现某处有擦伤(凹痕),用这一装置观察反射的牛顿环时,对应擦伤的干涉条纹应向_____弯曲A:环外B:环心C:环心和环外都有D:以上都不对请选择:B二、判断题1. 牛顿环和劈尖分别属于等厚干涉和等倾干涉。
等厚干涉实验—牛顿环和劈尖干涉要观察到光的干涉图象,如何获得相干光就成了重要的问题,利用普通光源获得相干光的方法是把由光源上同一点发的光设法分成两部分,然后再使这两部分叠如起来。
由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,所以它们将满足相干条件而成为相干光。
获得相干光方法有两种。
一种叫分波阵面法,另一种叫分振幅法。
1.实验目的(1)通过对等厚干涉图象观察和测量,加深对光的波动性的认识。
(2)掌握读数显微镜的基本调节和测量操作。
(3)掌握用牛顿环法测量透镜的曲率半径和用劈尖干涉法测量玻璃丝微小直径的实验方法 (4)学习用图解法和逐差法处理数据。
2.实验仪器读数显微镜,牛顿环,钠光灯3.实验原理我们所讨论的等厚干涉就属于分振幅干涉现象。
分振幅干涉就是利用透明薄膜上下表面对入射光的反射、折射,将入射能量(也可说振幅)分成若干部分,然后相遇而产生干涉。
分振幅干涉分两类称等厚干涉,一类称等倾干涉。
用一束单色平行光照射透明薄膜,薄膜上表面反射光与下表面反射光来自于同一入射光,满足相干条件。
当入射光入射角不变,薄膜厚度不同发生变化,那么不同厚度处可满足不同的干涉明暗条件,出现干涉明暗条纹,相同厚度处一定满足同样的干涉条件,因此同一干涉条纹下对应同样的薄膜厚度。
这种干涉称为等厚干涉,相应干涉条纹称为等厚干涉条纹。
等厚干涉现象在光学加工中有着广泛应用,牛顿环和劈尖干涉就属于等厚干涉。
下面分别讨论其原理及应用:(1)用牛顿环法测定透镜球面的曲率半径牛顿环装置是由一块曲率半径较大的平凸玻璃透镜和一块光学平玻璃片(又称“平晶”)相接触而组成的。
相互接触的透镜凸面与平玻璃片平面之间的空气间隙,构成一个空气薄膜间隙,空气膜的厚度从中心接触点到边缘逐渐增加。
如图9-1(a )所示。
Rer(a ) (b)图9-1 牛顿环装置和干涉图样当单色光垂直地照射于牛顿环装置时(如图9-1),如果从反射光的方向观察,就可以看到透镜与平板玻璃接触处有一个暗点,周围环绕着一簇同心的明暗相间的内疏外密圆环,这些圆环就叫做牛顿环,如图9-1(b )所示.在平凸透镜和平板玻璃之间有一层很薄的空气层,通过透镜的单色光一部分在透镜和空气层的交界面上反射,一部分通过空气层在平板玻璃上表面上反射,这两部分反射光符合相干条件,它们在平面透镜的凸面上相遇时就会产生干涉现象。
等厚干涉牛顿环劈尖实验报告
一、实验目的
本次实验旨在运用激光厚干涉仪和牛顿环劈尖,了解光波在牛顿环劈尖中的折射作用,从而证明劈尖的存在。
二、实验原理
1、牛顿环劈尖的概念
牛顿环劈尖(Newton's ring)是由牛顿发现的一种光电现象,也叫牛顿环。
它是由光
的入射口、出射口以及中间的物体所形成的闭环光路,由此形成的环形状的干涉图形叫牛
顿环。
一般当光通过闭环光路,通过重叠的方式产生干涉现象,形成牛顿环。
2、厚干涉
厚干涉又称原来层干涉,是使用衍射光斑阵列照射在去表面上形成的干涉图形,它反
映出物体厚度的信息。
据此,可以分析出该物体表面的厚度,它也可以用来研究表面形状
的变化。
三、实验仪器
激光厚干涉仪、牛顿环劈尖、活塞式调准器、激光源。
四、实验步骤
1、安装实验仪器:
将激光厚干涉仪、激光源和活塞式调准器置于室内,保持激光垂直实验台,并将牛顿
环劈尖调整成柱形玻璃以后,放置在实验台上。
2、调整激光和牛顿环劈尖:
使用活塞式调准器,调节激光的垂直方向,使其正好照射到牛顿环劈尖上,并用手调
节牛顿环劈尖,将劈尖调节至聚焦位置。
3、实验观察:
调节激光后,观察实验台上的屏幕,可以观察到环的清晰程度,清晰的环表明劈尖的
存在,从而证明牛顿环劈尖的存在。
五、实验结果
实验结束后,可以观察到清晰的牛顿环,证明了劈尖的存在。
教学章节: 实验23 等厚干涉及其应用——牛顿环、劈尖教学内容:1、介绍“等厚干涉及其应用——牛顿环、劈尖”实验的实验原理 2、介绍实验的操作要领、数据处理等3、指导学生进行实验操作、观察实验现象、测量并记录实验数据。
教学学时:3学时教学目的:1、使学生了解“等厚干涉及其应用——牛顿环、劈尖”的实验原理2、使学生学会读数显微镜的使用方法。
3、让学生观察和研究等厚干涉现象及其特点4、使学生掌握用干涉法测量平凸透镜的曲率半径和微小直径或厚度。
4、使学生学习利用逐差法处理实验数据。
教学重点、难点:1、光的干涉原理2、实验仪器的调节3、逐差法处理实验数据教学方法、方式:讲解、演示、学生操作教师指导。
教学过程:(引入、授课内容、小结、作业布置等)等厚干涉及其应用——牛顿环、劈尖一、引入牛顿环和劈尖干涉都是用分振幅方法产生的干涉。
其特点是同一条干涉条纹处两反射面间的厚度相等,故牛顿环和劈尖都属于等厚干涉。
它们广泛应用于科学研究和工业技术上,如检验光学元件表面的光洁度、平整度等;研究零件内应力和分布等。
本实验学会读数显微镜的使用方法,掌握用干涉法测量平凸透镜的曲率半径和微小直径或厚度。
二、实验原理⒈ 牛顿环 将一块曲率半径R 较大的平凸透镜的凸面置于一光学平玻璃板上,在透镜凸面和平玻璃板间就形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。
当以平行单色光垂直入射时,入射光将在此薄膜上下表面反射,产生具有一定光程差的两束相干光。
显然,它们的干涉图样是以接触点为中心的一系列明暗交替的同心园环——牛顿环。
其光路示意图见图所示。
由光路分析可知,与第K 级条纹对应的两束相干光的光程差为 22λδ+=K K e式中2λ是由于光从光疏媒质到光密媒质的交界面上反射时产生的半波损失引起的。
由图可知()222e R r R -+=化简后得到222e eR r -=如果空气薄膜厚度e 远小于透镜的曲率半径,即R e <<,则可略去二级小量e 2。
实验报告牛顿环与劈尖干涉实验名称:牛顿环与劈尖干涉实验实验目的:1.理解和掌握牛顿环和劈尖干涉的原理和方法;2.观察和测量牛顿环的形状和颜色变化,并分析其原理;3.观察和测量劈尖干涉的干涉条纹并分析其原理。
实验器材:1.汞灯;2.凸透镜;3.牛顿环产生装置;4.分光镜;5.目镜;6.孔径片;7.毛玻璃;8.劈尖装置。
实验原理:1.牛顿环:当透明物体与平行光波相遇时,发生了光的干涉现象。
当顶点与透镜接触时,透过透镜的平行光波发生了干涉,形成了牛顿环。
2.劈尖干涉:光从狭缝中通过之后,会形成一系列同心圆环的干涉图案,这一现象被称为劈尖干涉。
两束光经过狭缝后相遇,由于光程不同而产生干涉。
实验步骤:牛顿环实验:1.将凸透镜固定在光源下方的牛顿环产生装置中;2.调整透镜的高度,使其与玻璃板的顶点接触;3.通过分光镜照明,从透镜的一侧观察牛顿环;4.用目镜逐渐靠近牛顿环,在视野最亮的地方读取孔径片的厚度,重复三次测量取平均值。
劈尖干涉实验:1.将劈尖装置放置在光源的一侧,使光通过劈尖装置形成干涉图案;2.通过调整劈尖装置和观察屏的距离,观察干涉图案的变化;3.使用目镜和微调节焦距,逐渐靠近干涉图案直到清晰可见,测量不同环的半径;4.测量两个相邻环之间的距离。
实验结果与分析:牛顿环实验:通过测量读数和计算,可以得到牛顿环的半径和孔径片的厚度之间的关系。
根据厚度和半径的关系,可以计算出透镜的曲率半径。
在实验中,我们可以观察到牛顿环半径随孔径片厚度的变化,并验证了光的相干性和干涉现象。
劈尖干涉实验:根据干涉条纹的半径和距离测量结果,可以计算出干涉过程中两光束的相位差和波长。
通过变化劈尖装置和观察屏的距离,可以调整干涉图案的亮暗程度和间距。
根据劈尖干涉的原理,我们可以观察到干涉条纹的明暗变化,并推测出两束光的相位差和波长。
实验总结:通过本次牛顿环和劈尖干涉实验,我们深入了解了光的干涉现象和干涉图案的变化规律。
通过测量和计算,我们成功验证了牛顿环和劈尖干涉的原理,并得到了相关的数据结果。
一、实验目的1. 观察牛顿环和劈尖干涉现象,了解等厚干涉的特点。
2. 利用牛顿环测定平凸透镜的曲率半径。
3. 利用劈尖干涉测定细丝直径或薄片厚度。
二、实验原理1. 牛顿环原理:牛顿环是由平凸透镜与平板玻璃之间的空气薄层形成的等厚干涉现象。
当单色光垂直入射时,在透镜表面发生反射,反射光在空气薄层上下表面发生干涉,形成明暗相间的同心圆环。
根据干涉条件,当空气薄层厚度满足一定条件时,出现明环或暗环。
2. 劈尖干涉原理:劈尖干涉是由两块平板玻璃之间形成的劈尖状空气薄层形成的等厚干涉现象。
当单色光垂直入射时,在空气薄层上下表面发生反射,反射光在空气薄层附近发生干涉,形成明暗相间的条纹。
根据干涉条件,当空气薄层厚度满足一定条件时,出现明条纹或暗条纹。
三、实验仪器与用具1. 牛顿环仪:包括平凸透镜、平板玻璃、金属框架、螺旋等。
2. 劈尖干涉仪:包括两块平板玻璃、细丝或薄片、读数显微镜等。
3. 钠灯:提供单色光源。
4. 移测显微镜:用于观察干涉条纹。
四、实验步骤1. 牛顿环实验:(1)将平凸透镜与平板玻璃叠合安装在金属框架中,调整螺旋使透镜与平板玻璃接触紧密。
(2)将牛顿环仪置于钠灯下,用移测显微镜观察牛顿环条纹。
(3)测量第m级暗环的半径r,根据公式R=λr/(2m)计算透镜的曲率半径R。
2. 劈尖干涉实验:(1)将细丝或薄片夹在两块平板玻璃之间,形成劈尖。
(2)将劈尖置于读数显微镜载物台上,调节显微镜使叉丝与劈尖干涉条纹重合。
(3)测量劈尖干涉条纹间距,根据公式d=λL/(2n)计算细丝直径或薄片厚度。
五、实验结果与分析1. 牛顿环实验结果:(1)测量第m级暗环的半径r,计算透镜的曲率半径R。
(2)分析实验误差,如测量误差、仪器误差等。
2. 劈尖干涉实验结果:(1)测量劈尖干涉条纹间距,计算细丝直径或薄片厚度。
(2)分析实验误差,如测量误差、仪器误差等。
六、实验结论1. 通过牛顿环实验,成功观察到等厚干涉现象,并利用干涉条件计算出透镜的曲率半径。
牛顿环和劈尖的等厚干涉〔引课:〕“牛顿环”是牛顿在1675年制作天文望远镜时,偶然将一个望远镜的物镜放在平板玻璃上发现的。
在物理课上,我们只是从理论上研究了薄膜干涉的原理,那么在实验课上我们通过什么方法获得等倾或等厚干涉的图像呢?用牛顿环实验和劈尖实验验证等厚干涉。
用迈克尔逊干涉仪验证等倾干涉。
〔正课:〕1. 理解牛顿环和劈尖干涉条纹的产生原理;2. 学习用等厚干涉法测量凸透镜的曲率半径;3. 学会用逐差法处理实验数据。
1. 牛顿环的产生把一块曲率半径相当大的平凸透镜A 的凸面放在一块光学平板玻璃B 上,那么在它们之间形成以O 为中心向四周逐渐增厚的空气薄膜,离O 点等距离处厚度相同。
当一束单色光垂直射入时,入射光在空气层上下两表面反射,且在上表面相遇产生干涉。
由于空气膜厚度相等处光程差相等(亦相位相同),通过读数显微镜观察到同相位点连接轨迹是以接触点为圆心的同心圆。
各明环(或暗环)处空气膜厚度相等故称为等厚干涉2. 曲率半径的计算设入射光是波长为λ的单色光,第k 级干涉条纹的半径为r ,该处空气膜的厚度为e ,上下表面反射光的光程差为由于空气的折射率近似为1,则产生明、暗环的干涉条件为 明条纹公式( k=1,2,3,……) 暗条纹公式(k=0,1,2,3,……)根据几何关系可知222)(e R r R -+=222e eR r -=R 为透镜的曲率半径。
由于R ≫e上式近似表示为代入明、暗环公式中,则明环半径( k=1,2,3,……)暗环半径R k r λ=2 ( k=1,2,3,……)解决方法:若我们用两个暗环或明环的半径1.将牛顿环装置放在读数显微镜的平台上,点亮钠光灯,并将物镜对准牛顿环装置中心。
2.调整反射镜,使水平入射的光线经反射后垂直入射,调至显微镜视场中亮度最大。
3.调节显微镜调焦手轮,使其自下而上缓慢移动,直到目镜中能够看到清晰的干涉条纹为止。
微微移动牛顿环装置,使叉丝交点与牛顿环中心大致重合,并使一根叉丝与标尺平行。
等厚干涉实验—牛顿环和劈尖干涉
等厚干涉实验,是由洪堡用他的牛顿环提出来的,它是细节最精确的光学实验中的一种,从1832年到今天依然使用着这种工具,用于测量光的波长。
与常见的牛顿环相比,劈尖干涉实验对更精确的波长测量更加具有优势,因此得到了广泛的应用。
等厚干涉实验由牛顿环和劈尖干涉组成。
牛顿环是带有镶边的圆形玻璃,其边缘处有两个凹痕,它们被锯齿状分割或尖锐的割边填充,形成镶边,这种特殊的凹痕可以将光线形成一个尖锐而密集的条状图案。
光线由镶边穿过时,产生干涉。
劈尖干涉则不依靠物理凹痕来实现,而是依靠使用两个平行的光纤,其中一根分成两端,由一个非激光的光源为源入射在第一根光纤上,然后从两端发出,分别穿过另外一端光纤,最后从E型探头出发,形成劈尖边缘,从而产生干涉。
等厚干涉实验的基本原理是,入射光有一定的空间图案,其条纹会与凹痕或劈尖边缘相互叠加,形成干涉。
在实际操作中,将该干涉实验用于波长测量时,只要将数据拟合到模型公式,便可以准确测量出光的波长。
等厚干涉实验的优势在于,操作简便,测量准确,同时具有较高的精度。
而缺点是,由于采用凹痕或劈尖边缘,光线会产生不可预测的多普勒效应,而且各种环境因素会对结果造成影响,所以并不能完全准确测量光的波长。