微专题8 利用常见几何模型求解立体几何问题(3)(原卷版)
- 格式:docx
- 大小:233.11 KB
- 文档页数:2
(名师选题)2023年人教版高中数学第八章立体几何初步题型总结及解题方法单选题1、已知球O的体积为36π,则该球的表面积为()A.6πB.9πC.12πD.36π答案:D分析:根据球的体积公式求出半径,即可求出表面积.设球的体积为R,则由题可得43πR3=36π,解得R=3,则该球的表面积为4π×32=36π.故选:D.2、如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120°,腰为3的等腰三角形,则该几何体的体积为()A.23B.24C.26D.27答案:D分析:作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.该几何体由直三棱柱AFD−BHC及直三棱柱DGC−AEB组成,作HM⊥CB于M,如图,因为CH=BH=3,∠CHB=120∘,所以CM=BM=3√32,HM=32,因为重叠后的底面为正方形,所以AB=BC=3√3,在直棱柱AFD−BHC中,AB⊥平面BHC,则AB⊥HM, 由AB∩BC=B可得HM⊥平面ADCB,设重叠后的EG与FH交点为I,则V I−BCDA=13×3√3×3√3×32=272,V AFD−BHC=12×3√3×32×3√3=814则该几何体的体积为V=2V AFD−BHC−V I−BCDA=2×814−272=27.故选:D.3、如图1,已知PABC是直角梯形,AB∥PC,AB⊥BC,D在线段PC上,AD⊥PC.将△PAD沿AD折起,使平面PAD⊥平面ABCD,连接PB,PC,设PB的中点为N,如图2.对于图2,下列选项错误的是()A.平面PAB⊥平面PBC B.BC⊥平面PDCC.PD⊥AC D.PB=2AN答案:A分析:由已知利用平面与平面垂直的性质得到PD ⊥平面ABCD ,判定C 正确;进一步得到平面PCD ⊥平面ABCD ,结合BC ⊥CD 判定B 正确;再证明AB ⊥平面PAD ,得到△PAB 为直角三角形,判定D 正确;可证明平面PBC ⊥平面PDC ,若平面PAB ⊥平面PBC ,则平面PAB 与平面PDC 的交线⊥平面PBC ,矛盾,可判断A图1中AD ⊥PC ,则图2中PD ⊥AD ,又∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,∴PD ⊥平面ABCD ,则PD ⊥AC ,故选项C 正确;由PD ⊥平面ABCD ,PD ⊂平面PDC ,得平面PDC ⊥平面ABCD ,而平面PDC ∩平面ABCD =CD ,BC ⊂平面ABCD ,BC ⊥CD ,∴BC ⊥平面PDC ,故选项B 正确;∵AB ⊥AD ,平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD ,∴AB ⊥平面PAD ,则AB ⊥PA ,即△PAB 是以PB 为斜边的直角三角形,而N 为PB 的中点,则PB =2AN ,故选项D 正确.由于BC ⊥平面PDC ,又BC ⊂平面PBC∴平面PBC ⊥平面PDC若平面PAB ⊥平面PBC ,则平面PAB 与平面PDC 的交线⊥平面PBC由于AB//平面PDC ,则平面PAB 与平面PDC 的交线//AB显然AB 不与平面PBC 垂直,故A 错误故选:A4、在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A −BCD 中,AB ⊥平面BCD ,BC ⊥CD ,且AB =BC =CD =4,M 为AD 的中点,则异面直线BM 与CD 夹角的余弦值为( )A .√32B .√34C .√33D .√24答案:C分析:画出图形,取AC的中点N,连接MN,BN,可得MN//CD,则所求为∠BMN,易证△BMN是直角三角形,则可得BM,进而求解.如图,取AC的中点N,连接MN,BN,由题,AB=BC=CD=4,M为AD的中点,所以MN//CD,MN=2,则∠BMN为所求,由AB⊥平面BCD,则AB⊥CD,又BC⊥CD,AB∩BC=B,所以CD⊥平面ABC,则MN⊥平面ABC,所以△BMN是直角三角形,即∠MNB=90°,又BM=12AD=12√AB2+BD2=2√3,所以cos∠BMN=MNBM =2√3=√33,故选:C5、已知正方体ABCD−A1B1C1D1的棱长为2,点P在棱AD上,过点P作该正方体的截面,当截面平行于平面B1D1C且面积为√3时,线段AP的长为()A.√2B.1C.√3D.√32答案:A分析:过点P作DB,A1D的平行线,分别交棱AB,AA1于点Q,R,连接QR,BD,即可得到△PQR为截面,且为等边三角形,再根据截面面积求出PQ的长度,即可求出AP;解:如图,过点P作DB,A1D的平行线,分别交棱AB,AA1于点Q,R,连接QR,BD,因为BD//B1D1,所以PQ//B1D1,B1D1⊂面B1D1C,PQ⊄面B1D1C,所以PQ//面B1D1C因为A1D//B1C,所以PR//B1C,B1C⊂面B1D1C,PR⊄面B1D1C,所以PR//面B1D1C又PQ∩PR=P,PQ,PR⊂面PQR,所以面PQR//面B1D1C,则PQR为截面,易知△PQR是等边三角形,则12PQ2⋅√32=√3,解得PQ=2,∴AP=√22PQ=√2.故选:A.6、《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,四个面均为直角三角形的四面体称为“鳖臑”,如图在堑堵ABC−A1B1C1中,AC⊥BC,且AA1=AB=2.下列说法错误的是()A.四棱锥B−A1ACC1为“阳马”B.四面体A1C1CB为“鳖臑”C.四棱锥B−A1ACC1体积最大为23D.过A点分别作AE⊥A1B于点E,AF⊥A1C于点F,则EF⊥A1B答案:C分析:由新定义结合线面垂直的判定、性质、体积公式逐项判断即可得解.底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”.所以在堑堵ABC−A1B1C1中,AC⊥BC,侧棱AA1⊥平面ABC,在选项A中,因为AA1⊥BC,AC⊥BC,且AA1∩AC=A,则BC⊥平面AA1C1C,且AA1C1C为矩形,所以四棱锥B−A1ACC1为“阳马”,故A正确;在选项B中,由A1C1⊥BC,A1C1⊥C1C且C1C∩BC=C,所以A1C1⊥平面BB1C1C,所以A1C1⊥BC1,则△A1BC1为直角三角形,由BC⊥平面AA1C1C,得△A1BC,△CC1B为直角三角形,由“堑堵”的定义可得△A1C1C为直角三角形,所以四面体A1C1CB为“鳖臑”,故B正确; 在选项C中,在底面有4=AC2+BC2≥2AC⋅BC,即AC⋅BC≤2,当且仅当AC=BC时取等号,则V B−A1ACC1=13S A1ACC1×BC=13AA1×AC×BC=23AC×BC≤43,所以C不正确;在选项D中,由BC⊥平面AA1C1C,则BC⊥AF,AF⊥A1C且A1C∩BC=C,则AF⊥平面A1BC,所以AF⊥A1B,又AE⊥A1B且AF∩AE=A,则A1B⊥平面AEF,则A1B⊥EF,所以D正确. 故选:C.7、设α,β为两个不同的平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α,β垂直于同一平面C.α,β平行于同一条直线D.α内的任何直线都与β平行答案:D分析:根据面面平行、相交的知识确定正确选项.A选项,α内有无数条直线与β平行,α与β可能相交,A选项错误.B选项,α,β垂直于同一平面,α与β可能相交,B选项错误.C选项,α,β平行于同一条直线,α与β可能相交,C选项错误.D选项,α内的任何直线都与β平行,则α//β,D选项正确.故选:D8、下列命题中①空间中三个点可以确定一个平面.②直线和直线外的一点,可以确定一个平面.③如果三条直线两两相交,那么这三条直线可以确定一个平面.④如果三条直线两两平行,那么这三条直线可以确定一个平面.⑤如果两个平面有无数个公共点,那么这两个平面重合.真命题的个数为()A.1个B.2个C.3个D.4个答案:A分析:根据空间位置关系可直接判断各命题.命题①:空间中不共线三个点可以确定一个平面,错误;命题②:直线和直线外的一点,可以确定一个平面,正确;命题③:三条直线两两相交,若三条直线相交于一点,则无法确定一个平面,所以命题③错误;命题④:如果三条直线两两平行,那么这三条直线不能确定一个平面,所以命题④错误;命题⑤:两个平面有无数个公共点,则两平面可能相交,所以命题⑤错误;故选:A.9、正方体中,点P,O,R,S是其所在棱的中点,则PQ与RS是异面直线的图形是()A.B.C.D.答案:C分析:对于A,B,D,利用两平行线确定一个平面可以证明直线PQ与RS共面,对于C,利用异面直线的定义推理判断作答.对于A,在正方体ABCD−A1B1C1D1中,连接AC,A1C1,则AC//A1C1,如图,因为点P,Q,R,S是其所在棱的中点,则有PQ//AC,RS//A1C1,因此PQ//RS,则直线PQ与RS共面,A错误;对于B,在正方体ABCD−A1B1C1D1中,连接AC,QS,PR,如图,因为点P,Q,R,S是其所在棱的中点,有AP//CR且AP=CR,则四边形APRC为平行四边形,即有AC//PR,又QS//AC,因此QS//PR,直线PQ与RS共面,B错误;对于C,在正方体ABCD−A1B1C1D1中,如图,因为点P,Q,R,S是其所在棱的中点,有RS//BB1,而BB1⊂平面ABB1A1,RS⊄平面ABB1A1,则RS//平面ABB1A1,PQ⊂平面ABB1A1,则直线PQ与RS无公共点,又直线PQ与直线BB1相交,于是得直线PQ与RS不平行,则直线PQ与RS是异面直线,C正确;对于D,在正方体ABCD−A1B1C1D1中,连接A1B,D1C,PS,QR,如图,因为A1D1//BC且A1D1=BC,则四边形A1D1CB为平行四边形,有A1B//D1C,因为点P,Q,R,S是其所在棱的中点,有PS//A1B,QR//D1C,则PS//QR,直线PQ与RS共面,D错误.故选:C10、小明同学用两个全等的六边形木板和六根长度相同的木棍搭成一个直六棱柱ABCDEF−A1B1C1D1E1F1,由于木棍和木板之间没有固定好,第二天他发现这个直六棱柱变成了斜六棱柱ABCDEF−A1B1C1D1E1F1,如图所示.设直棱柱的体积和侧面积分别为V1和S1,斜棱柱的体积和侧面积分别为V2和S2,则().A.V1S1>V2S2B.V1S1<V2S2C.V1S1=V2S2D.V1S1与V2S2的大小关系无法确定答案:A分析:根据柱体体积、表面积的求法,分别表示出V1S1和V2S2,分析即可得答案.设底面面积为S,底面周长为C,则V1=S⋅AA1,S1=C⋅AA1,所以V1S1=SC,设斜棱柱的高为ℎ,则V2=S⋅ℎ,S2=AB×ℎAB+BC×ℎBC+CD×ℎCD+DE×ℎDE+EF×ℎEF+FA×ℎFA >(AB+BC+CD+DE+EF+FA)×ℎ=Cℎ,所以V2S2<SℎCℎ=SC=V1S1.故选:A11、一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设BC的中点为M,GH的中点为N,下列结论正确的是()A.MN//平面ABE B.MN//平面ADEC.MN//平面BDH D.MN//平面CDE答案:C解析:根据题意,得到正方体的直观图及其各点的标记字母,取FH的中点O,连接ON,BO,可以证明MN‖BO,利用BO与平面ABE的关系可以判定MN与平面ABE的关系,进而对选择支A作出判定;根据MN与平面BCF的关系,利用面面平行的性质可以判定MN与平面ADE的关系,进而对选择支B作出判定;利用线面平行的判定定理可以证明MN与平面BDE的平行关系,进而判定C;利用M,N在平面CDEF的两侧,可以判定MN与平面CDE的关系,进而对D作出判定.根据题意,得到正方体的直观图及其各点的标记字母如图所示,取FH的中点O,连接ON,BO,易知ON与BM平行且相等,∴四边形ONMB为平行四边形,∴MN‖BO,∵BO与平面ABE(即平面ABFE)相交,故MN与平面ABE相交,故A错误;∵平面ADE‖平面BCF,MN∩平面BCF=M,∴MN与平面ADE相交,故B错误;∵BO⊂平面BDHF,即BO‖平面BDH,MN‖BO,MN⊄平面BDHF,∴MN‖平面BDH,故C正确;显然M,N在平面CDEF的两侧,所以MN与平面CDEF相交,故D错误.故选:C.小提示:本题考查从面面平行的判定与性质,涉及正方体的性质,面面平行,线面平行的性质,属于小综合题,关键是正确将正方体的表面展开图还原,得到正方体的直观图及其各顶点的标记字母,并利用平行四边形的判定与性质找到MN的平行线BO.12、牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,该方法不直接给出球体的体积,而是先计算牟合方盖的体积.刘徽通过计算,“牟合方盖”的体积与球的体积关系为V 牟V 球=4π,并且推理出了“牟合方盖”的八分之一的体积计算公式,即V 牟8=r 3−V 方盖差,从而计算出V 球=43πr 3.如果记所有棱长都为r 的正四棱锥的体积为V ,则V 方差盖:V =( )A .√22B .1C .√2D .2√2答案:C分析:计算出V 方盖差,V ,即可得出结论. 由题意,V 方盖差=r 3−18V 牟=r 3−18×4π×43×π×r 3=13r 3, 所有棱长都为r 的正四棱锥的体积为V 正=13×r ×r ×r −(√2r 2)=√26r 3, ∴ V 方盖差V 正=13r 3√2r 36=√2,故选:C .双空题13、如图,长方体ABCD −A 1B 1C 1D 1.(1)直线AA 1∩平面ABCD =______;(2)直线BC ∩平面BCC 1B 1=______.答案: A BC ##CB 分析:根据几何特征,即可判断直线与平面的位置关系,即可得解.根据长方体可知,直线AA 1∩平面ABCD =A ,直线BC∩平面BCC1B1=BC.所以答案是:A,BC.14、已知三棱锥S−ABC的四个顶点都在球O的球面上,且SA,SB,SC两两垂直,SA=3,SB=4,SC=5,则该三棱锥的体积为______,球O的表面积为______.答案: 10 50π分析:由条件可得V S−ABC=V C−SAB=13×S△SAB×SC可得出体积,将三棱锥S−ABC补成长方体,则三棱锥S−ABC与该长方体的外接球相同,可得(2R)2=32+42+52=50,从而得出答案.由SA,SB,SC两两垂直,则以△SAB为底面,则SC为三棱锥S−ABC的高,则V S−ABC=V C−SAB=13×S△SAB×SC=13×12×3×4×5=10;将三棱锥S−ABC补成长方体如图所示,则三棱锥S−ABC的外接球与该长方体的外接球相同,所以外接球的直径长等于长方体的对角线的长,所以(2R)2=32+42+52=50,即R2=252,所以外接球的表面积为:S=4πR2=4π×252=50π,所以答案是:10 ;50π.小提示:关键点点睛:解答本题第二空的关键在于将几何体补形为长方体,利用长方体的外接球去分析求解.此外,对棱长度相等的三棱锥也可以放置于长方体或正方体中去分析外接球;若三棱锥中一条棱垂直于底面,且底面形状非直角三角形,则可以将几何体补形为三棱柱,借助三棱柱的外接球去分析.15、如图,试用适当的符号表示下列点、直线和平面之间的关系:(1)点C与平面β:______;(2)直线AB与平面α:______.答案:C∉βAB∩α=B分析:(1)(2)由点、线、面的位置关系判断点面关系、线面关系.(1)由图,C∈CD,CD∩β=D且CD⊄β,故C∉β;(2)由图,B∈AB,B∈α且AB⊄α,则AB∩α=B.所以答案是:C∉β,AB∩α=B16、某学校开展手工艺品展示活动,小明同学用塑料制作了如图所示的手工艺品,其外部为一个底面边长为6的正三棱柱,内部为一个球,球的表面与三棱柱的各面均相切,则该内切球的表面积为___________,三棱柱的顶点到球的表面的最短距离为___________.答案:12π√15−√3分析:过侧棱的中点作正三棱柱的截面,即可得到球心为△MNG的中心,在正△MNG中求出内切圆的半径即内切球的半径,从而求出球的表面积,再求出三棱柱的顶点到球心的距离,即可求出球面上的点到顶点的距离的最小值;解:依题意如图过侧棱的中点作正三棱柱的截面,则球心为△MNG的中心,因为MN=6,所以△MNG内切圆的半径r=OH=13MH=13√MN2−HN2=√3,即内切球的半径R=√3,所以内切球的表面积S=4πR2=12π,又正三棱柱的高AA1=2R=2√3,OH=2√3,所以AO=√OM2+AM2=√(2√3)2+(√3)2=√15,所以OM=23所以A到球面上的点的距离最小值为AO−R=√15−√3;所以答案是:12π;√15−√317、半正多面体(semiregularsolid)亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.以正方体每条棱的中点为顶点构造一个半正多面体,如图,它由八个正三角形和六个正方形构成,若它的所有棱长都为1,则该半正多面体外接球的表面积为___________;若该半正多面体可以在一个正四面体内任意转动,则该正四面体体积最小值为___________.答案: 4π 8√3分析:首先找到外接球的球心,再利用勾股定理计算即可;若该半正多面体可以在一个正四面体内任意转动,则该半正多面体的外接球是正四面体的内切球时,该正四面体体积最小,然后根据正四面体内切球的相关计算求解即可.由题意知,该半正多面体的外接球的球心是正方体的中心,正方体棱长为√2,所以该半正多面体外接球的半径R =√(√22)2+(√22)2=1,故其表面积为4π. 若该半正多面体可以在一个正四面体内任意转动,则该半正多面体的外接球是正四面体的内切球时,该正四面体体积最小.此时,设正四面体的棱长为a ,则正四面体的高为√63a ,考查轴截面,则有(√63a −1)2=12+(√33a)2,解得a =2√6,所以V min =13⋅√34⋅(2√6)2⋅(√63⋅2√6)=8√3. 所以答案是: 4π; 8√3.小提示:关键点点睛:本题第②空的关键点是探究出结论:若该半正多面体可以在一个正四面体内任意转动,则该半正多面体的外接球是正四面体的内切球时,该正四面体体积最小.解答题18、如图的长方体ABCD−A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCFE把这个长方体分成两部分后,各部分的几何体还是棱柱吗?若是棱柱指出它们的底面与侧棱. 答案:(1)答案见解析;(2)答案见解析.解析:(1)根据棱柱的定义判断;(2)根据棱柱的定义判断.(1)这个长方体是棱柱,是四棱柱,因为它满足棱柱的定义.(2)截面BCFE右侧部分是三棱柱,它的底面是△BEB1与ΔCFC1,侧棱是EF、B1C1、BC,截面左侧部分是四棱柱,它的底面是四边形ABEA1与四边形DCFD1,侧棱是AD、BC、EF、A1D1.19、四面体ABCD如图所示,过棱AB的中点E作平行于AD,BC的平面,分别交四面体的棱BD,DC,CA于点F,G,H.证明:E、F、G、H四点共面且四边形EFGH是平行四边形.答案:证明见解析分析:根据线面平行的性质定理,分别证得EH∥BC,FG∥BC,则得EH∥FG,从而可证得E、F、G、H四点共面,同理可证得EF∥HG,再根据平行四边形的判定定理可得结论因为BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面EFGH∩平面ABC=EH,所以BC∥FG,BC∥EH,所以EH∥FG,所以E、F、G、H四点共面,同理可证得EF∥AD,HG∥AD,所以EF∥HG,所以四边形EFGH是平行四边形.20、所有棱长均相等的三棱锥称为正四面体,如图,在正四面体A—BCD中,求证:AB⊥CD.答案:见解析分析:取CD的中点为M,连接AM,BM,根据线面垂直可得AB⊥CD.取CD的中点为M,连接AM,BM,因为四面体A−BCD为正四面体,故△ACD为等边三角形,故AM⊥CD,同理BM⊥CD,而AM∩BM=M,故CD⊥平面ABM,因为AB⊂平面ABM,故CD⊥AB.。
高中数学解题技巧之立体几何问题立体几何是高中数学中的一大难点,也是学生们普遍感到困惑的部分。
在解决立体几何问题时,我们需要掌握一些技巧和方法,以便更好地应对各种类型的题目。
本文将针对立体几何问题的解题技巧进行详细分析和说明,帮助高中学生和他们的父母更好地应对这类题目。
一、平面图形与立体图形的转化在解决立体几何问题时,我们常常需要将平面图形与立体图形进行转化。
例如,已知一个长方体的表面积,求其体积。
我们可以通过将长方体展开成一个平面图形,计算该平面图形的面积,然后再将面积转化为体积。
这样的转化可以帮助我们更好地理解和解决问题。
举例来说,如图1所示,已知一个长方体的长、宽、高分别为a、b、c,求其体积。
(图1)解题思路:我们可以将长方体展开成一个平面图形,如图2所示。
(图2)可以看出,展开后的平面图形是一个长方形,其长和宽分别为b和c,根据长方形的面积公式,可得展开后的平面图形的面积为bc。
因此,长方体的体积就是展开后的平面图形的面积乘以长方体的高,即体积为bc×a。
通过这个例子,我们可以看到,将立体图形转化为平面图形可以帮助我们更好地理解问题,同时也方便我们运用平面几何的知识解决立体几何问题。
二、平行关系的利用在解决立体几何问题时,我们经常会遇到平行关系。
利用平行关系可以简化问题,减少计算量,提高解题效率。
举例来说,如图3所示,已知一个长方体,求其对角线的长度。
(图3)解题思路:我们可以通过利用长方体的平行关系来求解。
根据长方体的性质,可以知道对角线与长方体的某两条边平行。
如图4所示,我们可以选择长方体的一条边和与之平行的对角线作为一条平行四边形的对角线。
(图4)根据平行四边形的性质,对角线互相平分。
因此,我们可以将长方体的对角线分成两段,每段的长度等于平行四边形的对角线的长度的一半。
如图5所示,我们可以得到长方体的对角线的长度为√(a²+b²+c²)。
(图5)通过这个例子,我们可以看到,利用平行关系可以简化问题,减少计算量,提高解题效率。
专题8.8 立体几何综合问题【考纲解读与核心素养】1.会解决简单的立体几何问题.2.会用向量方法证明直线、平面位置关系的有关命题.3.会用向量方法求解两异面直线所成角、直线与平面所成角、二面角的问题. 4.培养学生的直观想象、数学运算、数学建模、逻辑推理、数学抽象等核心数学素养. 5. 高考预测:(1)立体几何中的动态问题. (2)立体几何中的探索性问题. (3)平面图形的翻折问题. (4)立体几何与传统文化(5)利用空间向量证明平行或垂直是高考的热点,内容以解答题中的一问为主,主要围绕考查空间直角坐标系的建立、空间向量的坐标运算能力和分析解决问题的能力命制试题,以多面体为载体、证明线面(面面)的平行(垂直)关系是主要命题方向.空间的角与距离的计算(特别是角的计算)是高考热点,一般以大题的条件或一小问形式呈现,考查用向量方法解决立体几何问题,将空间几何元素之间的位置关系转化为数量关系,并通过计算解决立体几何问题.距离问题往往在与有关面积、体积的计算中加以考查.此类问题往往属于“证算并重”题,即第一问用几何法证明平行关系或垂直关系,第二问则通过建立空间直角坐标系,利用空间向量方法进一步求角或距离.【典例剖析】高频考点一 :立体几何中的动态问题【典例1】(2020·四川南充·高三其他(理))已知三条射线OA ,OB ,OC 两两所成的角都是60°.点M在OA 上,点N 在BOC ∠内运动,MN OM ==N 的轨迹长度为( ) A .2π B .3πC .4πD .5π【总结提升】1.立体几何中的动态问题主要包括:空间动点轨迹的判断,求轨迹的长度及动角的范围等.2.一般是根据线、面垂直,线、面平行的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹. 【变式探究】(2020·河北新华·石家庄二中高三月考(理))如图,正方体1111ABCD A B C D -中,P 为底面ABCD 上的动点,1PE A C ⊥于E ,且,PA PE =则点P 的轨迹是( )A .线段B .圆C .椭圆的一部分D .抛物线的一部分高频考点二 : 立体几何中的探索性问题【典例2】(2019·天津耀华中学高考模拟(理))如图,在四棱锥中,底面是直角梯形,侧棱底面垂直于和,是棱的中点.(Ⅰ)求证:平面; (Ⅱ)求二面角的正弦值;(Ⅲ)在线段上是否存在一点使得与平面所成角的正弦值为若存在,请求出的值,若不存在,请说明理由.【典例3】(2020·全国)如图,AC 是O 的直径,点B 是O 上与A ,C 不重合的动点,PO ⊥平面ABC .(1)当点B 在什么位置时,平面OBP ⊥平面PAC ,并证明之; (2)请判断,当点B 在O 上运动时,会不会使得BC AP ⊥,若存在这样的点B ,请确定点B 的位置,若不存在,请说明理由.【典例4】(2020·全国高二课时练习)如图,在三棱柱111ABC A B C -中,1BB ⊥平面ABC ,AB BC ⊥,12AA AB BC ===.(1)求证:1BC ⊥平面11A B C ;(2)求异面直线1B C 与1A B 所成角的大小; (3)点M 在线段1B C 上,且11((0,1))B MB Cλλ=∈,点N 在线段1A B 上,若MN ∥平面11A ACC ,求11A N A B 的值(用含λ的代数式表示). 【规律方法】求解立体几何中探索问题的策略 1.条件探索性问题(1)先猜后证,即先观察与尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明其充分性; (3)把几何问题转化为代数问题,探索命题成立的条件.如本例(2)先根据题意猜测点的位置.再结合证明.一般探索点存在问题,点多为中点或三等分点中的一个. 2.结论探索性问题首先假设结论存在,然后在这个假设下进行推理论证,如果通过推理得到了合乎情理的结论,就肯定假设,如果得到了矛盾的结论,就否定假设. 【变式探究】1.(2020·四川泸县五中高二开学考试(理))如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,平面11A DB ⊥平面ABCD ,1AD =,12AA .过顶点D ,1B 的平面与棱BC ,11A D 分别交于M ,N 两点.(Ⅰ)求证:1AD DB ⊥;(Ⅱ)求证:四边形1DMB N 是平行四边形;(Ⅲ)若1A D CD ⊥,试判断二面角1D MB C --的大小能否为45︒?说明理由.2.(2020·江西上高二中高二月考(理))如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CM CP的值;若不存在,说明理由.3.(2020·浦东新·上海师大附中高二期中)设四边形ABCD 为矩形,点P 为平面ABCD 外一点,且PA ⊥平面ABCD ,若1==PA AB ,2BC =.(1)求PC 与平面PAD 所成角的正切值;(2)在BC 边上是否存在一点G ,使得点D 到平面PAG 的距离为2,若存在,求出BG 的值,若不存在,请说明理由;(3)若点E 是PD 的中点,在PAB △内确定一点H ,使CH EH +的值最小,并求此时HB 的值. 【总结提升】与空间角有关的探索性问题的解题策略与空间角有关的探索性问题主要为与两异面直线所成的角、直线与平面所成的角和二面角有关的存在性问题,常利用空间向量法求解.求解时,一般把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等问题,并注意准确理解和熟练应用夹角公式.其步骤是:(1)假设存在(或结论成立);(2)建立空间直角坐标系,设(求)出相关空间点的坐标;(3)构建有关向量;(4)结合空间向量,利用线面角或二面角的公式求解;(5)作出判断. 高频考点三 : 平面图形的翻折问题【典例5】(2019·湖南怀化·高三二模(理))已知正方形ABCD ,E F ,分别是AB CD ,的中点,将ADE ∆沿DE 折起,如图所示,记二面角A DE C --的大小为()0θθπ<<(1)证明:BF ADE ∥平面(2)若ACD ∆为正三角形,试判断点A 在平面BCDE 内的身影G 是否在直线EF 上,证明你的结论,并求角θ的正弦值. 【特别提醒】解决空间图形的翻折问题时,要从如下几个角度掌握变化规律:注意:掌握翻折过程中的特殊位置①翻折的起始位置;②翻折过程中,直线和平面的平行和垂直的特殊位置. 【变式探究】(2020·江苏兴化一中高一期中)如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF 的位置关系,并给出证明; ()2求二面角M EF D --的余弦值.高频考点四 : 立体几何与传统文化【典例6】(2014·湖北高考真题(文))《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A .227B .258C .15750D .355113【总结提升】近几年高考命题关于这部分内容的考查,主要是以传统文化、数学文化、现代生活为背景,考查立体几何的基础知识,涉及三视图、面积体积计算、几何体的几何特征等.【变式探究】(2020·应城市第一高级中学高二期中)胡夫金字塔的形状为四棱锥,1859年,英国作家约翰·泰勒(JohnTaylor ,1781-1846)在其《大金字塔》一书中提出:古埃及人在建造胡夫金字塔时利用黄金比例15 1.6182⎛⎫ ⎝≈ +⎪⎪⎭,泰勒还引用了古希腊历史学家希罗多德的记载:胡夫金字塔的每一个侧面的面积都等于金字塔高的平方.如图,若2h as =,则由勾股定理,22as s a =-,即210s s a a⎛⎫--= ⎪⎝⎭,因此可求得s a 为黄金数,已知四棱锥底面是边长约为856英尺的正方形(2856)a =,顶点P 的投影在底面中心O ,H 为BC 中点,根据以上信息,PH 的长度(单位:英尺)约为( ).A .611.6B .481.4C .692.5D .512.4。
高考理科数学一轮复习:题型全归纳与高效训练突破专题8.7高考解答题热点题型---立体几何目录一、题型综述 (1)二题型全归纳 (1)题型一空间点、线、面的位置关系及空. (1)题型二平面图形的折叠问题 (7)题型三立体几何中的探索性问题 (10)三、高效训练突破 (15)一、题型综述立体几何是每年高考的重要内容,基本上都是一道客观题和一道解答题,客观题主要考查考生的空间想象能力及简单的计算能力.解答题主要采用证明与计算相结合的模式,即首先利用定义、定理、公理等证明空间线线、线面、面面的平行或垂直关系,再利用空间向量进行空间角的计算求解.重在考查考生的逻辑推理及计算能力,试题难度一般不大,属中档题,且主要有以下几种常见的热点题型.二题型全归纳题型一空间点、线、面的位置关系及空.1证明点共面或线共面的常用方法(1)直接法:证明直线平行或相交,从而证明线共面.(2)纳入平面法:先确定一个平面,再证明有关点、线在此平面内..(3)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.2.证明空间点共线问题的方法(1)公理法:一般转化为证明这些点是某两个平面的公共点,再根据公理3证明这些点都在这两个平面的交线上(2)纳入直线法:选择其中两点确定一条直线,然后证明其余点也在该直线上.3.证明线共点问题的常用方法先证其中两条直线交于一点,再证其他直线经过该点.4.求异面直线所成角的方法(1)几何法①作:利用定义转化为平面角,对于异面直线所成的角,可固定一条,平移一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.①证:证明作出的角为所求角.①求:把这个平面角置于一个三角形中,通过解三角形求空间角.(2)向量法建立空间直角坐标系,利用公式|cos θ|=|m ·n ||m ||n |求出异面直线的方向向量的夹角.若向量夹角是锐角或直角,则该角即为异面直线所成角;若向量夹角是钝角,则异面直线所成的角为该角的补角.【例1】如图,AE ①平面ABCD ,CF ①AE ,AD ①BC ,AD ①AB ,AB =AD =1,AE =BC =2.(1)求证:BF ①平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;(3)若二面角E -BD -F 的余弦值为13,求线段CF 的长. 【解题思路】由条件知AB ,AD ,AE 两两垂直,可以A 为坐标原点建立空间直角坐标系,用空间向量解决.(1)寻找平面ADE 的法向量,证明BF →与此法向量垂直,即得线面平行.(2)CE →与平面BDE 的法向量所成角的余弦值的绝对值,即为直线CE 和平面BDE 所成角的正弦值;(3)设CF =h ,用h 表示二面角E -BD -F 的余弦值,通过解方程得到线段长.【规范解答】 (1)证明:以A 为坐标原点,AB 所在的直线为x 轴,AD 所在的直线为y 轴,AE 所在的直线为z 轴,建立如图所示的空间直角坐标系.则A (0,0,0),B (1,0,0),设F (1,2,h ).依题意,AB →=(1,0,0)是平面ADE 的一个法向量,又BF →=(0,2,h ),可得BF →·AB →=0,又直线BF ①平面ADE ,所以BF ①平面ADE .(2)依题意,D (0,1,0),E (0,0,2),C (1,2,0),则BD →=(-1,1,0),BE →=(-1,0,2),CE →=(-1,-2,2).设n =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧ n ·BD →=0,n ·BE →=0,即⎩⎪⎨⎪⎧-x +y =0,-x +2z =0,不妨令z =1,可得n =(2,2,1). 因此有cos 〈CE →,n 〉=CE →·n |CE →||n |=-49. 所以直线CE 与平面BDE 所成角的正弦值为49. (3)设m =(x 1,y 1,z 1)为平面BDF 的法向量,则⎩⎪⎨⎪⎧ m ·BD →=0,m ·BF →=0,即⎩⎪⎨⎪⎧-x 1+y 1=0,2y 1+hz 1=0, 不妨令y 1=1,可得m =⎝⎛⎭⎫1,1,-2h . 由题意,有|cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪4-2h 3 2+4h2=13, 解得h =87.经检验,符合题意. 所以线段CF 的长为87. 【例2】.如图,在三棱锥P ABC 中,P A ①底面ABC ,①BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ①平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 【解析】:如图,以A 为原点,分别以AB →,AC →,AP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE →=(0,2,0),DB →=(2,0,-2).设n =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0. 不妨设z =1,可取n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0.因为MN ①平面BDE ,所以MN ①平面BDE .(2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ),进而可得NH →=(-1,-2,h ),BE →=(-2,2,2).由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12. 所以,线段AH 的长为85或12. 【例3】如图,在几何体ACD -A 1B 1C 1D 1中,四边形ADD 1A 1与四边形CDD 1C 1均为矩形,平面ADD 1A 1①平面CDD 1C 1,B 1A 1①平面ADD 1A 1,AD =CD =1,AA 1=A 1B 1=2,E 为棱AA 1的中点.(1)证明:B 1C 1①平面CC 1E ;(2)求直线B 1C 1与平面B 1CE 所成角的正弦值.【解析】(1)证明:因为B 1A 1①平面ADD 1A 1,所以B 1A 1①DD 1,又DD 1①D 1A 1,B 1A 1∩D 1A 1=A 1,所以DD 1①平面A 1B 1C 1D 1,又DD 1①CC 1,所以CC 1①平面A 1B 1C 1D 1.因为B 1C 1①平面A 1B 1C 1D 1,所以CC 1①B 1C 1.因为平面ADD 1A 1①平面CDD 1C 1,平面ADD 1A 1∩平面CDD 1C 1=DD 1,C 1D 1①DD 1,所以C 1D 1①平面ADD 1A 1.经计算可得B 1E =5,B 1C 1=2,EC 1=3,从而B 1E 2=B 1C 21+EC 21,所以在①B 1EC 1中,B 1C 1①C 1E .又CC 1,C 1E ①平面CC 1E ,CC 1∩C 1E =C 1,所以B 1C 1①平面CC 1E .(2)如图,以点A 为坐标原点,建立空间直角坐标系,依题意得A (0,0,0),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0),则CE →=(-1,1,-1),B 1C →=(1,-2,-1).设平面B 1CE 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0,消去x 得y +2z =0, 不妨设z =1,可得m =(-3,-2,1)为平面B 1CE 的一个法向量,易得B 1C 1→=(1,0,-1),设直线B 1C 1与平面B 1CE 所成角为θ,则sin θ=|cos 〈m ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪m ·B 1C 1→|m |·|B 1C 1→|=⎪⎪⎪⎪⎪⎪-414×2=277,故直线B 1C 1与平面B 1CE 所成角的正弦值为277. 题型二 平面图形的折叠问题【解法】解决平面图形翻折问题的关键是抓住“折痕”,准确把握平面图形翻折前后的两个“不变”.(1)与折痕垂直的线段,翻折前后垂直关系不改变;(2)与折痕平行的线段,翻折前后平行关系不改变.【例1】如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把①DFC 折起,使点C 到达点P 的位置,且PF ①BF .(1)证明:平面PEF ①平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【解题思路】(1)①翻折前后的不变关系,四边形ABFE 是矩形.①证明BF ①平面PEF .①证明平面PEF ①平面ABFD .(2)解法一:①建系:借助第(1)问,过P 作平面ABFD 的垂线为z 轴,垂足为原点,EF 所在直线为y 轴,建系.①求直线DP 的方向向量和平面ABFD 的法向量.①由公式计算所求角的正弦值.解法二:①作:过P 作PH ①EF 交EF 于点H ,连接DH .①证:证明PH ①平面ABFD ,得①PDH 为直线DP 与平面ABFD 所成角.①算:在Rt①PDH 中,PD 的长度是正方形ABCD 的边长,①PHD =90°,易知要求sin①PDH ,关键是求PH ;由此想到判断①PEF 的形状,进一步想到证明PF ①平面PED .【规范解答】(1)证明:由已知可得,BF ①PF ,BF ①EF ,又PF ∩EF =F ,所以BF ①平面PEF .又BF ①平面ABFD ,所以平面PEF ①平面ABFD .(2)解法一:作PH ①EF ,垂足为H .由(1)得,PH ①平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,建立如图所示的空间直角坐标系Hxyz ,设正方形ABCD 的边长为2.由(1)可得,DE ①PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ①PF .所以PH =32,EH =32,则H (0,0,0),P ⎝⎛⎭⎫0,0,32, D ⎝⎛⎭⎫-1,-32,0,DP →=⎝⎛⎭⎫1,32,32,HP →=⎝⎛⎭⎫0,0,32为平面ABFD 的一个法向量. 设DP 与平面ABFD 所成角为θ,则sin θ=|HP →·DP →||HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34. 解法二:因为PF ①BF ,BF ①ED ,所以PF ①ED ,又PF ①PD ,ED ∩PD =D ,所以PF ①平面PED ,所以PF ①PE ,设AB =4,则EF =4,PF =2,所以PE =23,过P 作PH ①EF 交EF 于点H ,因为平面PEF ①平面ABFD ,所以PH ①平面ABFD ,连接DH ,则①PDH 即为直线DP 与平面ABFD 所成的角,因为PE ·PF =EF ·PH ,所以PH =23×24=3, 因为PD =4,所以sin①PDH =PH PD =34, 所以DP 与平面ABFD 所成角的正弦值为34. 题型三 立体几何中的探索性问题【技巧要点】对命题条件的探索的三种途径途径一:先猜后证,即先观察与尝试给出条件再证明.途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.途径三:将几何问题转化为代数问题【例1】(2020·湖北“四地七校”联考)在四棱锥P -ABCD 中,底面ABCD 是边长为22的正方形,平面P AC ①底面ABCD ,P A =PC =2 2.(1)求证:PB =PD ;(2)若点M ,N 分别是棱P A ,PC 的中点,平面DMN 与棱PB 的交点为点Q ,则在线段BC 上是否存在一点H ,使得DQ ①PH ?若存在,求BH 的长;若不存在,请说明理由.【解题思路】 (1)要证PB =PD ,想到在①PBD 中,证明BD 边上的中线垂直于BD ,联系题目条件想到用面面垂直的性质证明线面垂直.(2)借助第(1)问的垂直关系建立空间直角坐标系,求平面DMN 的法向量n ,分别依据P ,B ,Q 共线和B ,C ,H 共线,设PQ →=λPB →和BH →=tBC →,利用垂直关系列方程先求λ再求t ,确定点H 的位置.【规范解答】 (1)证明:记AC ∩BD =O ,连接PO ,①底面ABCD 为正方形,①OA =OC =OB =OD =2.①P A =PC ,①PO ①AC ,①平面P AC ①底面ABCD ,且平面P AC ∩底面ABCD =AC ,PO ①平面P AC ,①PO ①底面ABCD .①BD ①底面ABCD ,①PO ①BD .①PB =PD .(2)存在.以O 为坐标原点,射线OB ,OC ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系如图所示,由(1)可知OP =2.可得P (0,0,2),A (0,-2,0),B (2,0,0),C (0,2,0),D (-2,0,0),可得M (0,-1,1),N (0,1,1),DM →=(2,-1,1),MN →=(0,2,0).设平面DMN 的法向量n =(x ,y ,z ),①DM →·n =0,MN →·n =0,①⎩⎪⎨⎪⎧2x -y +z =0,2y =0. 令x =1,可得n =(1,0,-2).记PQ →=λPB →=(2λ,0,-2λ),可得Q (2λ,0,2-2λ),DQ →=(2λ+2,0,2-2λ),DQ →·n =0,可得2λ+2-4+4λ=0,解得λ=13. 可得DQ →=⎝⎛⎭⎫83,0,43. 记BH →=tBC →=(-2t,2t,0),可得H (2-2t,2t,0),PH →=(2-2t,2t ,-2),若DQ ①PH ,则DQ →·PH →=0,83(2-2t )+43×(-2)=0,解得t =12. 故BH = 2.故在线段BC 上存在一点H ,使得DQ ①PH ,此时BH= 2.【例2】如图,在四棱锥PABCD中,P A①平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD①平面P AC;(2)若①ABC=60°,求证:平面P AB①平面P AE;(3)棱PB上是否存在点F,使得CF①平面P AE?说明理由.【解】(1)证明:因为P A①平面ABCD,所以P A①BD.因为底面ABCD为菱形,所以BD①A C.又P A∩AC=A,所以BD①平面P A C.(2)证明:因为P A①平面ABCD,AE①平面ABCD,所以P A①AE.因为底面ABCD为菱形,①ABC=60°,且E为CD的中点,所以AE①CD,所以AB①AE.又AB∩P A=A,所以AE ①平面P AB .因为AE ①平面P AE ,所以平面P AB ①平面P AE .(3)棱PB 上存在点F ,使得CF ①平面P AE .取F 为PB 的中点,取G 为P A 的中点,连接CF ,FG ,EG .则FG ①AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点,所以CE ①AB ,且CE =12AB . 所以FG ①CE ,且FG =CE .所以四边形CEGF 为平行四边形.所以CF ①EG .因为CF ①平面P AE ,EG ①平面P AE ,所以CF ①平面P AE .【例3】图1是由矩形ADEB ,Rt①ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,①FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ①平面BCGE ;(2)求图2中的二面角B -CG -A 的大小.【解析】:(1)证明:由已知得AD ①BE ,CG ①BE ,所以AD ①CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ①BE ,AB ①BC ,故AB ①平面BCGE .又因为AB ①平面ABC , 所以平面ABC ①平面BCGE .(2)作EH ①BC ,垂足为H .因为EH ①平面BCGE ,平面BCGE ①平面ABC ,所以EH ①平面ABC .由已知,菱形BCGE 的边长为2,①EBC =60°,可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CG →·n =0AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取为m =(0,1,0),所以cos n ,m =n ·m |n ||m |=32. 因此二面角B CG A 的大小为30°.三、高效训练突破1.(2020·深圳模拟)已知四棱锥PABCD,底面ABCD为菱形,PD=PB,H为PC上的点,过AH的平面分别交PB,PD于点M,N,且BD①平面AMHN.(1)证明:MN①PC;(2)当H为PC的中点,P A=PC=3AB,P A与平面ABCD所成的角为60°,求AD与平面AMHN所成角的正弦值.【解析】(1)证明:连接AC、BD且AC∩BD=O,连接PO.因为ABCD为菱形,所以BD①AC,因为PD=PB,所以PO①BD,因为AC∩PO=O且AC、PO①平面P AC,所以BD①平面P AC,因为PC①平面P AC,所以BD①PC,因为BD①平面AMHN,且平面AMHN∩平面PBD=MN,所以BD①MN,MN①平面P AC,所以MN①P C.(2)由(1)知BD ①AC 且PO ①BD ,因为P A =PC ,且O 为AC 的中点,所以PO ①AC ,所以PO ①平面ABCD ,所以P A 与平面ABCD 所成的角为①P AO ,所以①P AO =60°,所以AO =12P A ,PO =32P A , 因为P A =3AB ,所以BO =36P A . 以OA →,OD →,OP →分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设P A =2,所以O (0,0,0),A (1,0,0),B (0,-33,0),C (-1,0,0),D (0,33,0),P (0,0,3),H (-12,0,32), 所以BD →=(0,233,0),AH →=(-32,0,32),AD →=(-1,33,0). 设平面AMHN 的法向量为n =(x ,y ,z ),所以⎩⎪⎨⎪⎧n ·BD →=0,n ·AH →=0,即⎩⎨⎧233y =0,-32x +32z =0, 令x =2,则y =0,z =23,所以n =(2,0,23),设AD 与平面AMHN 所成角为θ,所以sin θ=|cos 〈n ,AD →〉|=|n ·AD →|n ||AD →||=34. 所以AD 与平面AMHN 所成角的正弦值为34. 2.(2020·河南联考)如图所示,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,平面P AD ①平面ABCD ,①P AD 是边长为4的等边三角形,BC ①PB ,E 是AD 的中点.(1)求证:BE ①PD ;(2)若直线AB 与平面P AD 所成角的正弦值为154,求平面P AD 与平面PBC 所成的锐二面角的余弦值. 【解析】:(1)证明:因为①P AD 是等边三角形,E 是AD 的中点,所以PE ①AD .又平面P AD ①平面ABCD ,平面P AD ∩平面ABCD =AD ,PE ①平面P AD ,所以PE ①平面ABCD ,所以PE ①BC ,PE ①BE .又BC ①PB ,PB ∩PE =P ,所以BC ①平面PBE ,所以BC ①BE .又BC ①AD ,所以AD ①BE .又AD ∩PE =E 且AD ,PE ①平面P AD ,所以BE ①平面P AD ,所以BE ①PD .(2)由(1)得BE ①平面P AD ,所以①BAE 就是直线AB 与平面P AD 所成的角.因为直线AB 与平面P AD 所成角的正弦值为154, 即sin①BAE =154 ,所以cos①BAE =14. 所以cos①BAE =AE AB =2AB =14,解得AB =8,则BE =AB 2-AE 2=215.由(1)得EA ,EB ,EP 两两垂直,所以以E 为坐标原点,EA ,EB ,EP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则点P (0,0,23),A (2,0,0),D (-2,0,0),B (0,215,0),C (-4,215,0),所以PB →=(0,215,-23),PC →=(-4,215,-23).设平面PBC 的法向量为m =(x ,y ,z ),由⎩⎪⎨⎪⎧PB →·m =0,PC →·m =0,得⎩⎨⎧215y -23z =0,-4x +215y -23z =0, 解得⎩⎨⎧x =0,z =5y . 令y =1,可得平面PBC 的一个法向量为m =(0,1,5).易知平面P AD 的一个法向量为n =(0,1,0),设平面P AD 与平面PBC 所成的锐二面角的大小为θ,则cos θ=⎪⎪⎪⎪m ·n |m ||n |=⎪⎪⎪⎪⎪⎪(0,1,5)·(0,1,0)6×1=66. 所以平面P AD 与平面PBC 所成的锐二面角的余弦值为66. 3.(2020·云南师范大学附属中学3月月考)如图,在直三棱柱ABC A 1B 1C 1中,①ABC 是边长为2的正三角形,AA 1=26,D 是CC 1的中点,E 是A 1B 1的中点.(1)证明:DE ①平面A 1BC;(2)求点A 到平面A 1BC 的距离.【解析】 (1)证明:如图取A 1B 的中点F ,连接FC ,FE .因为E ,F 分别是A 1B 1,A 1B 的中点,所以EF ①BB 1,且EF =12BB 1. 又在平行四边形BB 1C 1C 中,D 是CC 1的中点,所以CD ①BB 1,且CD =12BB 1,所以CD ①EF ,且CD =EF . 所以四边形CFED 是平行四边形,所以DE ①CF .因为DE ①/平面A 1BC ,CF ①平面A 1BC ,所以DE ①平面A 1BC .(2)法一:(等体积法)因为BC =AC =AB =2,AA 1=26,三棱柱ABC A 1B 1C 1为直三棱柱,所以V 三棱锥A 1-ABC =13S ①ABC ×AA 1=13×34×22×26=2 2. 又在①A 1BC 中,A 1B =A 1C =27,BC =2,BC 边上的高h = A 1B 2-⎝⎛⎭⎫12BC 2=33, 所以S ①A 1BC =12BC ·h =3 3. 设点A 到平面A 1BC 的距离为d ,则V 三棱锥A -A 1BC =13S ①A 1BC ×d =13×33×d =3d . 因为V 三棱锥A 1-ABC =V 三棱锥A -A 1BC ,所以22=3d ,解得d =263, 所以点A 到平面A 1BC 的距离为263. 法二:(向量法)由题意知,三棱柱ABC A 1B 1C 1是正三棱柱.取AB 的中点O ,连接OC ,OE .因为AC =BC ,所以CO ①AB .又平面ABC ①平面ABB 1A 1,平面ABC ∩平面ABB 1A 1=AB ,所以CO ①平面ABB 1A 1.因为O 为AB 的中点,E 为A 1B 1的中点,所以OE ①AB ,所以OC ,OA ,OE 两两垂直.如图,以O 为坐标原点,以OA ,OE ,OC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,3),A (1,0,0),A 1(1,26,0),B (-1,0,0).则BA 1→=(2,26,0),BC →=(1,0,3).设平面A 1BC 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ①BA 1→,n ①BC →,可得⎩⎪⎨⎪⎧n ·BA 1→=2x +26y =0,n ·BC →=x +3z =0,整理得⎩⎨⎧x +6y =0,x +3z =0,令x =6,则y =-1,z =- 2. 所以n =(6,-1,-2)为平面A 1BC 的一个法向量.而BA →=(2,0,0),所以点A 到平面A 1BC 的距离d =|BA →·n ||n |=6×26+1+2=263. 4.(2020·湖北十堰4月调研)如图,在三棱锥P -ABC 中,M 为AC 的中点,P A ①PC ,AB ①BC ,AB =BC ,PB =2,AC =2,①P AC =30°.(1)证明:BM ①平面P AC ;(2)求二面角B -P A -C 的余弦值.【答案】:见解析(1)证明:因为P A ①PC ,AB ①BC ,所以MP =MB =12AC =1,又MP 2+MB 2=BP 2,所以MP ①MB .因为AB =BC ,M 为AC 的中点,所以BM ①AC , 又AC ∩MP =M ,所以BM ①平面P AC .(2)法一:取MC 的中点O ,连接PO ,取BC 的中点E ,连接EO ,则OE ①BM ,从而OE ①AC . 因为P A ①PC ,①P AC =30°,所以MP =MC =PC =1. 又O 为MC 的中点,所以PO ①AC .由(1)知BM ①平面P AC ,OP ①平面P AC ,所以BM ①PO . 又BM ∩AC =M ,所以PO ①平面ABC .以O 为坐标原点,OA ,OE ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示, 由题意知A ⎝⎛⎭⎫32,0,0,B ⎝⎛⎭⎫12,1,0,P ⎝⎛⎭⎫0,0,32,BP →=⎝⎛⎭⎫-12,-1,32,BA →=(1,-1,0), 设平面APB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BP→=-12x -y +32z =0,n ·BA →=x -y =0,令x =1,得n =(1,1,3)为平面APB 的一个法向量,易得平面P AC 的一个法向量为π=(0,1,0),cos 〈n ,π〉=55, 由图知二面角B -P A -C 为锐角,所以二面角B -P A -C 的余弦值为55. 法二:取P A 的中点H ,连接HM ,HB ,因为M 为AC 的中点,所以HM ①PC ,又P A ①PC ,所以HM ①P A .由(1)知BM ①平面P AC ,则BH ①P A , 所以①BHM 为二面角B -P A -C 的平面角.因为AC =2,P A ①PC ,①P AC =30°,所以HM =12PC =12.又BM =1,则BH =BM 2+HM 2=52, 所以cos①BHM =HM BH =55,即二面角B -P A -C 的余弦值为55.5.(2020·合肥模拟)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ①平面ABCD ,DE ①平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ①平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值. 【答案】:见解析(1)证明:连接AC ,交BD 于点N ,连接MN , 则N 为AC 的中点,又M 为AE 的中点,所以MN ①EC . 因为MN ①平面EFC ,EC ①平面EFC , 所以MN ①平面EFC .因为BF ,DE 都垂直底面ABCD ,所以BF ①DE . 因为BF =DE ,所以四边形BDEF 为平行四边形,所以BD ①EF .因为BD ①平面EFC ,EF ①平面EFC , 所以BD ①平面EFC .又MN ∩BD =N ,所以平面BDM ①平面EFC . (2)因为DE ①平面ABCD ,四边形ABCD 是正方形,所以DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D xyz .设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4), 所以DB →=(2,2,0),DM →=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB →=0,n ·DM →=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量. 因为AE →=(-2,0,4),设直线AE 与平面BDM 所成的角为θ,则 sin θ=|cos 〈n ·AE →〉|=⎪⎪⎪⎪⎪⎪n ·AE →|n |·|AE →|=4515, 所以直线AE 与平面BDM 所成角的正弦值为4515.6.(2020·河南郑州三测)如图①,①ABC 中,AB =BC =2,①ABC =90°,E ,F 分别为边AB ,AC 的中点,以EF 为折痕把①AEF 折起,使点A 到达点P 的位置(如图①),且PB =BE .(1)证明:EF ①平面PBE ;(2)设N 为线段PF 上的动点(包含端点),求直线BN 与平面PCF 所成角的正弦值的最大值. 【解析】:(1)证明:因为E ,F 分别为边AB ,AC 的中点,所以EF ①BC . 因为①ABC =90°,所以EF ①BE ,EF ①PE ,又BE ∩PE =E ,所以EF ①平面PBE . (2)取BE 的中点O ,连接PO ,因为PB =BE =PE ,所以PO ①BE .由(1)知EF ①平面PBE ,EF ①平面BCFE ,所以平面PBE ①平面BCFE . 又PO ①平面PBE ,平面PBE ∩平面BCFE =BE ,所以PO ①平面BCFE .过点O 作OM ①BC 交CF 于点M ,分别以OB ,OM ,OP 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B ⎝⎛⎭⎫12,0,0,P ⎝⎛⎭⎫0,0,32,C ⎝⎛⎭⎫12,2,0, F ⎝⎛⎭⎫-12,1,0,PC →=⎝⎛⎭⎫12,2,-32, PF →=⎝⎛⎭⎫-12,1,-32,由N 为线段PF 上一动点,得PN →=λPF →(0≤λ≤1),则可得N ⎝⎛⎭⎫-λ2,λ,32(1-λ),BN →=⎝⎛⎭⎫-λ+12,λ,32(1-λ).设平面PCF 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧PC →·m =0,PF →·m =0,即⎩⎨⎧12x +2y -32z =0,-12x +y -32z =0,取y =1,则x =-1,z =3,所以m =(-1,1,3)为平面PCF 的一个法向量.设直线BN 与平面PCF 所成的角为θ, 则sin θ=|cos 〈BN →,m 〉|=|BN →·m ||BN →|·|m |=25·2λ2-λ+1=25·2⎝⎛⎭⎫λ-142+78≤25·78=47035(当且仅当λ=14时取等号),所以直线BN 与平面PCF 所成角的正弦值的最大值为47035.7.(2020·山东淄博三模)如图①,已知正方形ABCD 的边长为4,E ,F 分别为AD ,BC 的中点,将正方形ABCD 沿EF 折成如图①所示的二面角,且二面角的大小为60°,点M 在线段AB 上(包含端点),连接AD .(1)若M 为AB 的中点,直线MF 与平面ADE 的交点为O ,试确定点O 的位置,并证明直线OD ①平面EMC ; (2)是否存在点M ,使得直线DE 与平面EMC 所成的角为60°?若存在,求此时二面角M EC F 的余弦值;若不存在,说明理由. 【答案】见解析【解析】:(1)因为直线MF ①平面ABFE ,故点O 在平面ABFE 内,也在平面ADE 内, 所以点O 在平面ABFE 与平面ADE的交线(即直线AE )上(如图所示).因为AO ①BF ,M 为AB 的中点,所以①OAM ①①FBM ,所以OM =MF ,AO =BF ,所以AO =2. 故点O 在EA 的延长线上且与点A 间的距离为2. 连接DF ,交EC 于点N ,因为四边形CDEF 为矩形, 所以N 是EC 的中点.连接MN ,则MN 为①DOF 的中位线,所以MN ①OD ,又MN ①平面EMC ,OD ①/ 平面EMC ,所以直线OD ①平面EMC . (2)由已知可得EF ①AE ,EF ①DE ,又AE ∩DE =E ,所以EF ①平面ADE .所以平面ABFE ①平面ADE ,易知①ADE 为等边三角形,取AE 的中点H ,则易得DH ①平面ABFE ,以H 为坐标原点,建立如图所示的空间直角坐标系,则E (-1,0,0),D (0,0,3),C (0,4,3),F (-1,4,0),所以ED →=(1,0,3),EC →=(1,4,3). 设M (1,t ,0)(0≤t ≤4),则EM →=(2,t ,0),设平面EMC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·EM →=0,m ·EC →=0①⎩⎨⎧2x +ty =0,x +4y +3z =0,取y =-2,则x =t ,z =8-t 3,所以m =⎝ ⎛⎭⎪⎫t ,-2,8-t 3为平面EMC 的一个法向量.要使直线DE 与平面EMC 所成的角为60°,则82t 2+4+(8-t )23=32,所以23t 2-4t +19=32,整理得t 2-4t +3=0, 解得t=1或t =3,所以存在点M ,使得直线DE 与平面EMC 所成的角为60°,取ED 的中点Q ,连接QA ,则QA →为平面CEF 的法向量, 易得Q ⎝⎛⎭⎫-12,0,32,A (1,0,0),所以QA →=⎝⎛⎭⎫32,0,-32.设二面角M -EC -F 的大小为θ, 则|cos θ|=|QA →·m ||QA →|·|m |=|2t -4|3t 2+4+(8-t )23=|t -2|t2-4t +19. 因为当t =2时,cos θ=0,平面EMC ①平面CDEF ,所以当t =1时,cos θ=-14,θ为钝角;当t =3时,cos θ=14,θ为锐角.综上,二面角M -EC -F 的余弦值为±14.。
专题08 立体几何解答题常考全归类【命题规律】空间向量是将空间几何问题坐标化的工具,是常考的重点,立体几何解答题的基本模式是论证推理与计算相结合,以某个空间几何体为依托,分步设问,逐层加深.解决这类题目的原则是建系求点、坐标运算、几何结论.作为求解空间角的有力工具,通常在解答题中进行考查,属于中等难度.【核心考点目录】核心考点一:非常规空间几何体为载体核心考点二:立体几何探索性问题核心考点三:立体几何折叠问题核心考点四:立体几何作图问题核心考点五:立体几何建系繁琐问题核心考点六:两角相等(构造全等)的立体几何问题核心考点七:利用传统方法找几何关系建系核心考点八:空间中的点不好求核心考点九:创新定义【真题回归】1.(2022·天津·统考高考真题)直三棱柱111ABC A B C 中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.2.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.3.(2022·浙江·统考高考真题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.4.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.5.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.6.(2022·全国·统考高考真题)在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.7.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C 中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.8.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C 的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【方法技巧与总结】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的.(3)计算:在证明的基础上计算得出结果.简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin h l,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°.4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【核心考点】核心考点一:非常规空间几何体为载体【规律方法】关键找出三条两两互相垂直的直线建立空间直角坐标系.【典型例题】例1.(2022·陕西安康·统考一模)如图,已知AB 为圆锥SO 底面的直径,点C 在圆锥底面的圆周上,2BS AB ==,6BAC π∠=,BE 平分SBA ∠,D 是SC 上一点,且平面DBE ⊥平面SAB .(1)求证:SA BD ⊥;(2)求二面角E BD C --的正弦值.例2.(2022·安徽·校联考二模)如图,将长方形11OAAO (及其内部)绕1OO 旋转一周形成圆柱,其中11,2OA O O ==,劣弧11A B 的长为,6AB π为圆O 的直径.(1)在弧AB 上是否存在点C (1,C B 在平面11OAAO 的同侧),使1BC AB ⊥,若存在,确定其位置,若不存在,说明理由;(2)求平面11A O B 与平面11B O B 夹角的余弦值.例3.(2022·山东东营·胜利一中校考模拟预测)如图,,AB CD 分别是圆台上、下底面的直径,且AB CD ,点E 是下底面圆周上一点,AB =(1)证明:不存在点E 使平面AEC ⊥平面ADE ;(2)若4DE CE ==,求二面角D AE B --的余泫值.例4.(2022·河北·统考模拟预测)如图,在圆台1OO 中,上底面圆1O 的半径为2,下底面圆O 的半径为4,过1OO 的平面截圆台得截面为11ABB A ,M 是弧AB 的中点,MN 为母线,cos NMB ∠=(1)证明:1AB ⊥平面1AOM ; (2)求二面角M NB A --的正弦值.核心考点二:立体几何探索性问题【规律方法】与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或二面角满足特定要求时的存在性问题.处理原则:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断.【典型例题】例5.(2022·上海虹口·统考一模)如图,在三棱柱111ABC A B C 中,底面ABC 是以AC 为斜边的等腰直角三角形,侧面11AAC C 为菱形,点1A 在底面上的投影为AC 的中点D ,且2AB =.(1)求证:1BD CC ⊥;(2)求点C 到侧面11AA B B 的距离;(3)在线段11A B 上是否存在点E ,使得直线DE 与侧面11AA B B 请求出1A E 的长;若不存在,请说明理由.例6.(2022春·山东·高三山东省实验中学校考阶段练习)如图,在三棱柱111ABC A B C 中,1AB C 为等边三角形,四边形11AA B B 为菱形,AC BC ⊥,4AC =,3BC =.(1)求证:11AB AC ⊥;(2)线段1CC 上是否存在一点E ,使得平面1AB E 与平面ABC 的夹角的余弦值为14?若存在,求出点E 的位置;若不存在,请说明理由.例7.(2022春·黑龙江绥化·高三海伦市第一中学校考期中)如图1,在矩形ABCD 中,AB =2,BC =1,E 是DC 的中点,将DAE 沿AE 折起,使得点D 到达点P 的位置,且PB =PC ,如图2所示.F 是棱PB 上的一点.(1)若F 是棱PB 的中点,求证://CF 平面P AE ;(2)是否存在点F ,使得二面角F AE C --?若存在,则求出PF FB 的值;若不存在,请说明理由.例8.(2022·广东韶关·统考一模)已知矩形ABCD 中,4AB =,2BC =,E 是CD 的中点,如图所示,沿BE 将BCE 翻折至BFE △,使得平面BFE ⊥平面ABCD .(1)证明:BF AE ⊥;(2)若(01)DP DB λλ=<<是否存在λ,使得PF 与平面DEF 求出λ的值;若不存在,请说明理由.核心考点三:立体几何折叠问题【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质.【典型例题】例9.(2022春·江苏南通·高三期中)已知梯形ABCD 中,//AD BC ,π2∠=∠=ABC BAD ,24AB BC AD ===,E ,F 分别是AB ,CD 上的点,//EF BC ,AE x =,G 是BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)当2x =时①求证:BD EG ⊥;②求二面角D BF C --的余弦值;(2)三棱锥D FBC -的体积是否可能等于几何体ABE FDC -体积的一半?并说明理由.例10.(2022春·辽宁·高三辽宁实验中学校考期中)如图1,在平面四边形ABCD 中,已知ABDC ,AB DC ∥,142AD DC CB AB ====,E 是AB 的中点.将△BCE 沿CE 翻折至△PCE ,使得2DP =,如图2所示.(1)证明:DP CE ⊥;(2)求直线DE 与平面P AD 所成角的正弦值.例11.(2022春·湖南长沙·高三宁乡一中校考期中)如图,平面五边形P ABCD 中,PAD 是边长为2的等边三角形,//AD BC ,AB =2BC =2,AB BC ⊥,将PAD 沿AD 翻折成四棱锥P -ABCD ,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且PC =(1)证明:AB FM ⊥;(2)当直线EF 与平面P AD 所成的角最大时,求平面ACE 与平面P AD 夹角的余弦值.例12.(2022·四川雅安·统考模拟预测)如图①,ABC 为边长为6的等边三角形,E ,F 分别为AB ,AC 上靠近A 的三等分点,现将AEF △沿EF 折起,使点A 翻折至点P 的位置,且二面角P EF C --的大小为120°(如图②).(1)在PC 上是否存在点H ,使得直线//FH 平面PBE ?若存在,确定点H 的位置;若不存在,说明理由. (2)求直线PC 与平面PBE 所成角的正弦值.核心考点四:立体几何作图问题 【规律方法】(1)利用公理和定理作截面图(2)利用直线与平面平行的性质定理作平行线 (3)利用平面与平面垂直作平面的垂线 【典型例题】例13.(2022·贵州·校联考模拟预测)如图,已知平行六面体1111ABCD A B C D -的底面ABCD 是菱形,112CD CC AC ===,3DCB π∠=且113cos cos 4C CD C CB ∠=∠=.(1)试在平面ABCD 内过点C 作直线l ,使得直线//l 平面1C BD ,说明作图方法,并证明:直线11//l B D ; (2)求点C 到平面1A BD 的距离.例14.(2022秋·河北石家庄·高一石家庄市第十五中学校考期中)如图为一块直四棱柱木料,其底面ABCD 满足:AB AD ⊥,AD BC ∥.(1)要经过平面11CC D D 内的一点P 和棱1BB 将木料锯开,在木料表面应该怎样画线?(借助尺规作图,并写出作图说明,无需证明)(2)若2AD AB ==,11BC AA ==,当点P 是矩形11CDD C 的中心时,求点1D 到平面1APB 的距离.例15.(2022·全国·高三专题练习)如图多面体ABCDEF 中,面FAB ⊥面ABCD ,FAB 为等边三角形,四边形ABCD 为正方形,//EF BC ,且332EF BC ==,H ,G 分别为CE ,CD 的中点.(1)求二面角C FH G --的余弦值;(2)作平面FHG 与平面ABCD 的交线,记该交线与直线AB 交点为P ,写出APAB的值(不需要说明理由,保留作图痕迹).例16.(2022·全国·高三专题练习)四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,23DAB π∠=.ACBD O =,且PO ⊥平面ABCD ,PO =点,F G 分别是线段.PB PD 上的中点,E 在PA 上.且3PA PE =.(Ⅰ)求证://BD 平面EFG ;(Ⅰ)求直线AB 与平面EFG 的成角的正弦值;(Ⅰ)请画出平面EFG 与四棱锥的表面的交线,并写出作图的步骤.核心考点五:立体几何建系繁琐问题 【规律方法】 利用传统方法解决 【典型例题】例17.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例18.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.例19.(2022春·福建南平·高三校考期中)在三棱柱111ABC A B C 中,AB AC ⊥,1B C ⊥平面ABC ,E 、F 分别是棱AC 、11A B 的中点.(1)设G 为11B C 的中点,求证://EF 平面11BCC B ;(2)若2AB AC ==,直线1BB 与平面1ACB 所成角的正切值为2,求多面体1B EFGC -的体积V .核心考点六:两角相等(构造全等)的立体几何问题 【规律方法】 构造垂直的全等关系 【典型例题】例20.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例21.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.核心考点七:利用传统方法找几何关系建系【规律方法】利用传统方法证明关系,然后通过几何关系建坐标系. 【典型例题】例22.如图:长为3的线段PQ 与边长为2的正方形ABCD 垂直相交于其中心()O PO OQ >. (1)若二面角P AB Q --的正切值为3-,试确定O 在线段PQ 的位置;(2)在(1)的前提下,以P ,A ,B ,C ,D ,Q 为顶点的几何体PABCDQ 是否存在内切球?若存在,试确定其内切球心的具体位置;若不存在,请说明理由.例23.在四棱锥P ABCD -中,E 为棱AD 的中点,PE ⊥平面ABCD ,//AD BC ,90ADC ∠=︒,2ED BC ==,3EB =,F 为棱PC 的中点.(Ⅰ)求证://PA 平面BEF ;(Ⅰ)若二面角F BE C --为60︒,求直线PB 与平面ABCD 所成角的正切值.例24.三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,侧面11BCC B 为矩形,123A AB π∠=,二面角1A BC A --的正切值为12. (Ⅰ)求侧棱1AA 的长;(Ⅰ)侧棱1CC 上是否存在点D ,使得直线AD 与平面1A BC ,若存在,判断点的位置并证明;若不存在,说明理由.核心考点八:空间中的点不好求 【规律方法】 方程组思想 【典型例题】例25.(2022·江苏南京·模拟预测)已知三棱台111ABC A B C 的体积为143,且π2ABC ∠=,1A C ⊥平面11BB C C . (1)证明:平面11A B C ⊥平面111A B C ;(2)若11AC B C =,11112A B B C ==,求二面角1B AA C --的正弦值.例26.(2022春·浙江·高三浙江省新昌中学校联考期中)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是边长为2的菱形,3DAB π∠=,平面11BDD B ⊥平面ABCD ,点1,O O 分别为11,B D BD 的中点,1111,,O B A AB O BO ∠∠=均为锐角.(1)求证:1AC BB ⊥;(2)若异面直线CD 与1AA ,四棱锥1A ABCD -的体积为1,求二面角1B AA C --的平面角的余弦值.例27.(2022春·辽宁沈阳·高三沈阳市第一二〇中学校考期中)如图,在几何体ABCDE 中,底面ABC 为以AC为斜边的等腰直角三角形.已知平面ABC ⊥平面ACD ,平面ABC ⊥平面,//BCE DE 平面,ABC AD DE ⊥.(1)证明;DE ⊥平面ACD ;(2)若22AC CD ==,设M 为棱BE 的中点,求当几何体ABCDE 的体积取最大值时,AM 与CD 所成角的余弦值.核心考点九:创新定义 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例28.(2022·安徽合肥·合肥一六八中学校考模拟预测)已知顶点为S 的圆锥面(以下简称圆锥S )与不经过顶点S 的平面α相交,记交线为C ,圆锥S 的轴线l 与平面α所成角θ是圆锥S 顶角(圆S 轴截面上两条母线所成角θ的一半,为探究曲线C 的形状,我们构建球T ,使球T 与圆锥S 和平面α都相切,记球T 与平面α的切点为F ,直线l 与平面α交点为A ,直线AF 与圆锥S 交点为O ,圆锥S 的母线OS 与球T 的切点为M ,OM a =,MS b =.(1)求证:平面SOA ⊥平面α,并指出a ,b ,θ关系式; (2)求证:曲线C 是抛物线.例29.(2022·全国·高三专题练习)类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线PA ,PB ,PC 构成的三面角-P ABC ,APC α∠=,BPC β∠=,APB γ∠=,二面角A PC B --的大小为θ,则cos cos cos sin sin cos γαβαβθ=+.(1)当α、π0,2β⎛⎫∈ ⎪⎝⎭时,证明以上三面角余弦定理;(2)如图2,四棱柱1111ABCD A B C D -中,平面11AA C C ⊥平面ABCD ,160A AC ∠=︒,45BAC ∠=︒, ①求1A AB ∠的余弦值;②在直线1CC 上是否存在点P ,使//BP 平面11DA C ?若存在,求出点P 的位置;若不存在,说明理由.例30.(2022·全国·校联考模拟预测)蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H ABC -,J CDE -,K EFA -,再分别以AC ,CE ,EA 为轴将ACH ∆,CEJ ∆,EAK ∆分别向上翻转180︒,使H ,J ,K 三点重合为点S 所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱的侧面积一定,当蜂房表面积最小时,求其顶点S 的曲率的余弦值.【新题速递】1.(2022·重庆沙坪坝·重庆八中校考模拟预测)如图,在三棱柱111ABC A B C 中,1BC CC =,1AC AB =.(1)证明:平面1ABC ⊥平面11BCC B ;(2)若BC =,1AB B C =,160CBB ∠=︒,求直线1BA 与平面111A B C 所成角的正弦值.2.(2022·四川达州·统考一模)如图,三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,112AB AC BB ===,,160ABB ∠=.(1)证明: 1AB B C ⊥;(2)若12B C =,求1AC 与平面1BCB 所成角的正弦值.3.(2022·陕西宝鸡·统考一模)如图在四棱锥P ABCD -中,PA ⊥底面ABCD ,且底面ABCD 是平行四边形.已知2,1,PA AB AD AC E ====是PB 中点.(1)求证:平面PBC ⊥平面ACE ;(2)求平面PAD 与平面ACE 所成锐二面角的余弦值.4.(2022·广东广州·统考一模)如图,已知四棱锥P ABCD -的底面ABCD 是菱形,平面PBC ⊥平面ABCD ,30,ACD E ∠=为AD 的中点,点F 在PA 上,3AP AF =.(1)证明:PC //平面BEF ;(2)若PDC PDB ∠∠=,且PD 与平面ABCD 所成的角为45,求平面AEF 与平面BEF 夹角的余弦值.5.(2022·上海奉贤·统考一模)如图,在四面体ABCD 中,已知BA BD CA CD ===.点E 是AD 中点.(1)求证:AD ⊥平面BEC ;(2)已知95,arccos,625AB BDC AD ∠===,作出二面角D BC E --的平面角,并求它的正弦值.6.(2022·上海浦东新·统考一模)如图,三棱锥-P ABC 中,侧面P AB 垂直于底面ABC ,PA PB =,底面ABC 是斜边为AB 的直角三角形,且30ABC ∠=︒,记O 为AB 的中点,E 为OC 的中点.(1)求证:PC AE ⊥;(2)若2AB =,直线PC 与底面ABC 所成角的大小为60°,求四面体P AOC 的体积.7.(2022·四川成都·石室中学校考模拟预测)如图,在四棱锥P ABCD -中,AB BD BP ===PA PD ==90APD ∠=︒,E 是棱PA 的中点,且BE 平面PCD(1)证明:CD ⊥平面PAD ;(2)若1CD =,求二面角A PB C --的正弦值.8.(2022春·江苏徐州·高三期末)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD ∥BC ,N 为PB 的中点.(1)若点M 在AD 上,2AM MD =,34AD BC =,证明:MN 平面PCD ; (2)若3PA AB AC AD ====,4BC =,求二面角D AC N --的余弦值.9.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD ED FA ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求二面角F AC E --的大小.10.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD FA ED ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求点A 到平面FBD 的距离.11.(2022·四川广安·广安二中校考模拟预测)APD △是等腰直角三角形,AP PD ⊥且AD =ABCD 是直角梯形,AB BC ⊥,DC BC ⊥,且222AB BC CD ===,平面APD ⊥平面ABCD .(1)求证:AP ⊥平面BPD ;(2)若点E 是线段PB 上的一个动点,问点E 在何位置时三棱锥D APE -.12.(2022·四川南充·统考一模)在平面五边形ABCDE 中(如图1),ABCD 是梯形,//AD BC ,2AD BC ==AB =90ABC ∠=︒,ADE 是等边三角形.现将ADE 沿AD 折起,连接EB ,EC 得四棱锥E ABCD -(如图2)且CE =(1)求证:平面EAD ⊥平面ABCD ;(2)在棱EB 上有点F ,满足13EF EB =,求二面角E AD F --的余弦值.13.(2022·贵州贵阳·贵阳六中校考一模)如图,在四棱锥P ABCD -中,DA AB ⊥,PD PC ⊥,PB PC ⊥,1AB AD PD PB ====,4cos 5DCB ∠=.(1)求证:BD ⊥平面PAC .(2)设E 为BC 的中点,求PE 与平面ABCD 所成角的正弦值.14.(2022春·广东广州·高三校考期中)如图所示,在四棱锥P ABCD -中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AB AD ⊥,//,222AB CD PC AB AD CD ====,点E 在侧棱PB 上.(1)求证:平面EAC ⊥平面PBC ;(2)若平面PAC 与平面ACE PE BE 的值.。
习题解析如何解决初中数学中的立体几何问题立体几何问题在初中数学中常常是学生们的难点,需要系统性的解析和解题方法来解决。
本文将就初中数学中的立体几何问题进行习题解析,为学生们提供一些解题思路和方法。
一、概念基础与几何体的特性立体几何问题的解析首先需要建立起基本的概念基础。
比如了解几何体的基本特性,如平行四边形的性质、圆锥的特点等等。
同时,要掌握各类几何体的名称、定义及其特性,如正方形、正方体、球体等等。
二、投影法解决问题在解决立体几何问题时,投影法是一种常用的解题思路。
投影法是利用几何体在不同平面上的投影来解决问题的方法。
比如,可以通过取截面,将立体几何问题转化为平面几何问题,从而更容易进行分析和解答。
三、平面图形的运用平面图形在解决立体几何问题时也起到了重要的作用。
通过将几何体展开成平面图形,可以更为直观地观察和分析问题。
例如,将长方体展开成六个面的平面图形后,可以更清楚地看到各个面的关系和相互作用。
四、正视图与侧视图的综合运用正视图和侧视图的综合运用也是解决立体几何问题的有效方法。
通过正视图和侧视图的对比,可以更清楚地了解几何体的三维结构和特性。
例如,通过观察正方体的正视图和侧视图,可以确定其体对角线的长度。
五、三维空间的空间想象能力解决立体几何问题还需要具备一定的空间想象能力。
可以通过平面上的分析与推理,将其转化到三维空间中进行进一步思考和解答。
通过不断的练习和思考,可以逐渐提高对几何体的空间想象能力。
六、习题解析实例为了更好地理解习题解析的具体过程,下面给出一个实例进行分析。
题目:一个长方体木箱的外观和尺寸如图所示,若将该木箱的一侧面切去5cm,另一侧切去15cm,高度不变,求修改后木箱的体积。
解析:首先画出该木箱原来的示意图,如下图所示:_________| /|| / || / || / ||_____/____|根据题意,可知该木箱的三个尺寸分别为:长15cm、宽10cm、高8cm。
衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,专题08 立体几何中的计算1、【2019年江苏数】.如图,长方体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.2、【2018年高考江苏数】.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.3、【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BCP 到平面ABC 的距离为___________.4、【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)5、【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.6、【2019年高考北京卷文数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.7、【2019.若圆柱的一个底衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.8、【2018年高考全国II 卷文数】已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30 ,若SAB △的面积为8,则该圆锥的体积为__________.一、柱、锥、台和球的侧面积和体积注意:(1)分的处理.(2)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,二、在求解一些不规则的几何体的体积以及两个几何体的体积之比时,常常需要用到分割法.在求一个几何体被分成两部分的体积之比时,若有一部分为不规则几何体,则可用整个几何体的体积减去规则几何体的体积求出其体积.(1)解决空间几何体表面上的最值问题的根本思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)如果已知的空间几何体是多面体,则根据问题的具体情况可以将这个多面体沿多面体中某条棱或者两个面的交线展开,把不在一个平面上的问题转化到一个平面上.如果是圆柱、圆锥则可沿母线展开,把曲面上的问题转化为平面上的问题. 三、方法与技巧(1)棱柱、棱锥要掌握各部分的结构特征,计算问题往往转化到一个三角形中进行解决.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状. (2)要注意将空间问题转化为平面问题.(3)求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解. (4)一些几何体表面上的最短距离问题,常常利用几何体的展开图解决. 四、失误与防范(1)几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.(2)与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.题型一 多面体的表面积与体积求多面体的表面积与体积常用方法:1、公式法:可以运用规则的几何体;2、割补法:把不规则的图衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,形分割成规则的图形,或者把几何体补成熟悉的几何体。
高考数学中常见的立体几何题解法立体几何是高考数学中的一个重要考点,占据了相当大的比重。
在高考中,立体几何题题目种类繁多,解法也各不相同。
本文将介绍几种常见的立体几何题解法,帮助考生更好地应对高考数学考试。
一、平行线与平面在立体几何题中,常见的一种情况是给出一条直线与两个平面的关系,考生需要求出直线和平面的距离、直线在平面上的投影等。
解法一:利用平行线与平面的性质,可通过构造垂线的方式解决问题。
具体步骤如下:1. 画出所给直线,并用不同颜色标出与该直线平行的两个平面;2. 在其中一个平面上,任选一点作为垂足;3. 连接该垂足与直线上的任意一点,得到一条垂线;4. 由于垂线与所给直线平行,因此垂线与另一个平面的交点即为所求点;5. 根据题目要求,计算出所求点到直线的距离或直线在平面上的投影。
解法二:根据几何关系和性质,利用相似三角形的特点解决问题。
具体步骤如下:1. 在给出的图形中,观察并找出相似三角形的性质;2. 根据相似三角形的性质,得到各个线段之间的比例关系;3. 利用比例关系解方程,求解出所需长度或角度。
二、平面图形的投影在立体几何题中,常见的一种情况是给出一个平面图形在空间中的投影,考生需要还原出该平面图形或者确定其性质。
解法一:根据已知条件以及图形的特点,利用平行四边形、相似三角形等图形的性质解决问题。
具体步骤如下:1. 画出所给平面图形的投影,并标出已知条件;2. 观察并找出平行四边形、相似三角形等图形的性质;3. 根据性质,确定各个线段之间的比例关系;4. 利用比例关系解方程,还原出所求图形或确定其性质。
解法二:利用投影的定义和性质解决问题。
具体步骤如下:1. 根据投影的定义,找到所给平面图形在空间中的位置;2. 根据已知条件及各个线段的投影长度,研究其规律性;3. 利用规律性解方程,求解出所求图形或确定其性质。
三、立体图形的体积与表面积在立体几何题中,求解立体图形的体积与表面积是经常出现的考点。
高中数学立体几何题解题方法立体几何是高中数学中的一个重要内容,也是让很多学生头疼的难点。
在解立体几何题时,我们需要灵活运用各种几何定理和方法,合理利用图形的性质,从而找到解题的突破口。
本文将以一些常见的立体几何题型为例,介绍解题方法和技巧,帮助高中学生更好地应对这一部分的考试。
一、平面与立体图形的相交关系在解立体几何题时,我们经常会遇到平面与立体图形相交的情况。
这类题目的考点主要是理解和应用平面截立体图形的性质。
例如下面这道题:【例题】如图所示,正方体ABCD-A1B1C1D1的棱长为2,点P在棱AA1上,且满足AP:PA1=2:1,平面P与正方体的交线与平面BCD1所围成的立体图形的表面积为多少?【解析】首先,我们可以通过观察得知,平面P与正方体的交线与平面BCD1所围成的立体图形是一个四棱锥。
接下来,我们需要确定这个四棱锥的底面和高。
由于平面P与正方体的交线与底面BCD1相交于一条直线,而且AP:PA1=2:1,所以这条直线被分成了3等分,即BP:PA1=1:2。
由此可以得出BP=2,PA1=1。
由于正方体的棱长为2,所以BP的长度为2,即正方形BCDP的边长为2。
而四棱锥的高等于AP的长度,所以四棱锥的高为2。
根据四棱锥的底面和高,我们可以计算出四棱锥的表面积。
四棱锥的底面是一个正方形,边长为2,所以底面积为2²=4。
四棱锥的侧面是四个等边三角形,边长为2,高为2,所以每个三角形的面积为√3,四个三角形的总面积为4√3。
因此,平面P与正方体的交线与平面BCD1所围成的立体图形的表面积为4+4√3。
通过这道题,我们可以看出,解决平面与立体图形相交的问题,关键在于确定交线所围成的图形的形状和大小,然后利用几何定理计算出相应的面积或体积。
二、立体图形的体积计算在解立体几何题时,计算立体图形的体积是一个常见的考点。
对于不同的立体图形,我们需要运用不同的计算公式。
下面是一道与球体体积计算相关的题目:【例题】一个半径为5cm的球体,被一个平面截下一个球冠,球冠的高度为3cm。
第三篇 立体几何专题03 立体几何中的夹角问题常见考点考点一 线线角典例1.如图,在多面体ABCEF 中,ABC 和ACE 均为等边三角形,D 是AC 的中点,EF BD ∥,2BD EF ==(1)证明:AC BF ⊥;(2)若平面ABC ⊥平面ACE ,求异面直线AE 与BF 所成角的余弦值.变式1-1.如图,在平行四边形ABCD 中,AB AC =,90ACD ︒=∠,以AC 为折痕将ACD ∆折起,使点D 到达点M 的位置,且AB AM ⊥.(1)证明:平面ACM ⊥平面ABC ;(2)E 为线段AM 上一点,F 为线段BC 上一点,且13AE CF AD ==,求异面直线AC 与EF 所成的角的余弦.变式1-2.如图,在直三棱柱111ABC A B C -中,1AA ,1AB =,AC =2BAC π∠=,D 是棱1CC 上一点.(1)若1A C BD ⊥,求1CD CC ; (2)在(1)的条件下,求直线1B D 与11A C 所成角的余弦值.变式1-3.如图,在正方体1111ABCD A B C D -中,E 、F 分别是1BB 、CD 的中点.(1)求证:1D F AE ⊥;(2)求直线EF 和1CB 所成角的大小.考点二 线面角典例2.如图,在梯形ABCD 中,AD BC ∥,2ABC π∠=,22AB BC AD ===,E ,F 分别为边AB ,CD 上的动点,且EF BC ∥,G 是BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)求AE 为何值时,BD EG ⊥;(2)在(1)的条件下,求BD 与平面ABF 所成角的正弦值.变式2-1.如图所示的直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为2的正方形,E ,F 分别是棱BC ,CD 上的点,且2BE EC =,2DF FC =,点G 为棱1CC 上的动点,13AA =,1O 为上底面1111D C B A 的中心,1AO ∥平面EFG .(1)求CG 的长度;(2)求直线1BO 与平面EFG 所成的角的正弦值.变式2-2.如图,三棱锥P -ABC 中,PAB △为正三角形,侧面P AB 与底面ABC 所成的二面角为150°,AB =AC =2,AB AC ⊥,E ,M ,N 分别是线段AB ,PB 和BC 的中点.(1)证明:平面PEN ⊥平面ABC ;(2)求直线PN 与平面MAC 所成角的正弦值.变式2-3.如图,在直三棱柱111ABC A B C -中,1222AC AB AA ===,11A B AB M =,11A B B C ⊥.(1)求证:AB AC ⊥;(2)若点N 在线段1A C 上,满足MN ∥平面ABC ,求直线1B N 与平面1A BC 所成角的正弦值.考点三 二面角典例3.如图,在三棱柱111ABC A B C -中,侧面11ACC A 是矩形,AC AB ⊥,12AB AA ==,3AC =,1120A AB ∠=︒,E ,F 分别为棱11A B ,BC 的中点,G 为线段CF 的中点.(1)证明:1//AG 平面AEF ; (2)求二面角A EF B --的余弦值.变式3-1.如图,ABC 中AB BC ⊥,且2AB BC =,将AEF 沿中位线EF 折起,使得AE BE ⊥,连结AB ,AC ,M 为AC 的中点.(1)证明:MF ⊥平面ABC ;(2)求二面角E MF C --的余弦值.变式3-2.如图,已知四棱锥P -ABCD 的底面为直角梯形,AB DC ∥,90DAB ∠=︒,PA ⊥底面ABCD ,且112PA AD DC AB ====,M 是棱PB 的中点.(1)证明:平面PAD ⊥平面PCD ;(2)求平面AMC 与平面BMC 的夹角的余弦值.变式3-3.如图,三棱锥P ABC -中,PA AB ⊥,PA AC ⊥,AB AC ⊥,2AB AC ==,4PA =,点M 是P A 的中点,点D 是AC 的中点,点N 在PB 上,且2PN NB =.(1)证明:BD 平面CMN ;(2)求平面MNC 与平面ABC 所成角的余弦值.巩固练习练习一 线线角1.如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,AA 1=4,点D 是BC 的中点,求异面直线 A 1B 与C 1D 所成角的余弦值.2.如图,直棱柱111,ABC A B C -在底面ABC 中,1,90CA CB BCA ∠===,棱12,,AA M N =分别为111,A B A A 的中点.(1)求异面直线1BA 、1CB 成角的余弦值;(2)求证:BN ⊥平面1C MN .3.如图,在直三棱柱111ABC A B C -中,1,2,,,AC AB A A AB AC D E F ⊥===分别为1,,AB BC BB 的中点.(1)证明://DF 平面11AB C ;(2)证明:11AF B E ⊥; (3)求异面直线111A F B C 与所成角的余弦值.4.如图,在棱长为1的正方体1111ABCD A B C D -中,E ,F ,G 分别是1DD ,BD ,1BB 的中点.(1)求证:EF CF ⊥;(2)求EF 与CG 所成角的余弦值;(3)求CE 的长.练习二 线面角5.如图,已知三棱柱111ABC A B C -中,侧面11AA B B ⊥底面11,60,ABC AA BAA ABC =∠=︒为等腰直角三角形,2AC BC ==.(1)若O 为AB 的中点,求证:1CO AA ⊥;(2)求直线1BC 与平面11ACC A 所成角的正弦值.6.如图,已知四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 中,90ABC ∠=︒,AB CD ∥,1AB =,1BC =,2CD =,点A 在平面PCD 内的投影恰好是△PCD 的重心G .(1)求证:平面PAB ⊥平面PBC ;(2)求直线DG 与平面PBC 所成角的正弦值.7.已知平行四边形ABCD ,2AB =,1BC =,3A π∠=,点E 是AB 的中点,沿DE 将ADE 翻折得PDE △,使得PC =,且点F 为PC 的中点.(1)求证:BF ∥平面PDE ;(2)求直线PE 与平面BCDE 所成角的正弦值.8.如图1,在△MBC 中,24,BM BC BM BC ==⊥,A ,D 分别为棱BM ,MC 的中点,将△MAD 沿AD 折起到△P AD 的位置,使90PAB ∠=,如图2,连结PB ,PC ,BD .(1)求证:平面P AD ⊥平面ABCD ;(2)若E 为PC 中点,求直线DE 与平面PBD 所成角的正弦值.练习三 二面角9.如图,在四棱柱1111ABCD A B C D -中,AB DC ∥,AB AD ⊥,224CD AB AD ===,四边形11ADD A 为菱形,1A 在平面ABCD 内的射影O 恰好为AD 的中点,M 为AB 的中点.(1)求证:BC ⊥平面1AOM ; (2)求平面11A BC 与平面11AA D D 夹角的余弦值.10.如图所示,在四棱锥S ABCD -中,四边形ABCD 为菱形,SAD 为等边三角形,120ABC ∠=︒,点S 在平面ABCD 内的射影O 为线段AD 的中点.(1)求证:平面SOB ⊥平面SBC ;(2)已知点E 在线段SB 上,32SE BE =,求二面角B OE C --的余弦值.11.如图,在直棱柱111ABC A B C -中,1CA CB ==,90BCA ∠=︒,12AA =,,M N 分别是11A B ,1AA 的中点.(1)求BN 的长;(2)求证:11A B C M ⊥;(3)求二面角11A BC B --的余弦值.12.如图,在多面体ABCDEF 中,四边形ABCD 为正方形,4AB =,AD EF ∥,2AF EF ==,90FAD AEC ∠=∠=︒.(1)证明:AF ⊥平面ABCD ;(2)求二面角B ED C --的正弦值.。
(名师选题)(精选试题附答案)高中数学第八章立体几何初步题型总结及解题方法单选题1、下面四个选项中一定能得出平面α/⁄平面β的是()A.存在一条直线a,a//α,a//βB.存在一条直线a,a⊂α,a//βC.存在两条平行直线a,b,a⊂α,b⊂β,a//β,b//αD.存在两条异面直线a,b,a⊂α,b⊂β,a//β,b//α答案:D分析:对于A,B,C,举出符合条件的特例即可判断;对于D,过直线a作平面γ∩β=c,再证c//α即可.如图,ABCD−A1B1C1D1是长方体,平面ABCD为平面α,平面ABB1A1为平面β,对于A,直线C1D1为直线a,显然a//α,a//β,而α与β相交,A不正确;对于B,直线CD为直线a,显然a⊂α,a//β,而α与β相交,B不正确;对于C,直线CD为直线a,直线A1B1为直线b,显然a⊂α,b⊂β,a//β,b//α,而α与β相交,C不正确;对于D,因a,b是异面直线,且a⊂α,b⊂β,过直线a作平面γ∩β=c,如图,则c//a ,并且直线c 与b 必相交,而c ⊄α,于是得c//α,又b//α,即β内有两条相交直线都平行于平面α,因此,平面α/⁄平面β.故选:D2、某正方体被截去部分后得到的空间几何体的三视图如图所示,则该空间几何体的体积为( )A .132B .223C .152D .233答案:C分析:根据几何体的三视图,可知该几何体是棱长为2的正方体截去两个小三棱锥,根据三棱锥的体积公式即可求解.解:根据几何体的三视图,该空间几何体是棱长为2的正方体截去两个小三棱锥,由图示可知,该空间几何体体积为V =23−(13×12×12×1+13×12×12×2)=152,故选:C.3、已知圆锥的母线长为3,其侧面展开图是一个圆心角为2π3的扇形,则该圆锥的体积为()A.√23πB.2√23πC.πD.√2π答案:B分析:根据弧长计算公式,求得底面圆半径以及圆锥的高,即可求得圆锥的体积.设圆锥的底面圆半径为r,故可得2πr=2π3×3,解得r=1,设圆锥的高为ℎ,则ℎ=√32−12=2√2,则圆锥的体积V=13×πr2×ℎ=13×π×2√2=2√23π.故选:B.4、如图,“蘑菇”形状的几何体是由半个球体和一个圆柱体组成,球的半径为2,圆柱的底面半径为1,高为3,则该几何体的表面积为()A.18πB.20πC.22π3D.26π答案:A分析:由题意可知该几何体的体积是由半球的表面积加上圆柱的侧面积,再加上圆的面积即可解:由题意得,球的半径R=2,圆柱的底面半径r=1,高ℎ=3,则该几何体的表面积为S=2πR2+πR2+2πrℎ=8π+4π+2π×1×3=18π故选:A.5、《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,四个面均为直角三角形的四面体称为“鳖臑”,如图在堑堵ABC−A1B1C1中,AC⊥BC,且AA1=AB=2.下列说法错误的是()A.四棱锥B−A1ACC1为“阳马”B.四面体A1C1CB为“鳖臑”C.四棱锥B−A1ACC1体积最大为23D.过A点分别作AE⊥A1B于点E,AF⊥A1C于点F,则EF⊥A1B答案:C分析:由新定义结合线面垂直的判定、性质、体积公式逐项判断即可得解.底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”.所以在堑堵ABC−A1B1C1中,AC⊥BC,侧棱AA1⊥平面ABC,在选项A中,因为AA1⊥BC,AC⊥BC,且AA1∩AC=A,则BC⊥平面AA1C1C,且AA1C1C为矩形,所以四棱锥B−A1ACC1为“阳马”,故A正确;在选项B中,由A1C1⊥BC,A1C1⊥C1C且C1C∩BC=C,所以A1C1⊥平面BB1C1C,所以A1C1⊥BC1,则△A1BC1为直角三角形,由BC⊥平面AA1C1C,得△A1BC,△CC1B为直角三角形,由“堑堵”的定义可得△A1C1C为直角三角形,所以四面体A1C1CB为“鳖臑”,故B正确; 在选项C中,在底面有4=AC2+BC2≥2AC⋅BC,即AC⋅BC≤2,当且仅当AC=BC时取等号,则V B−A1ACC1=13S A1ACC1×BC=13AA1×AC×BC=23AC×BC≤43,所以C不正确;在选项D中,由BC⊥平面AA1C1C,则BC⊥AF,AF⊥A1C且A1C∩BC=C,则AF⊥平面A1BC,所以AF⊥A1B,又AE⊥A1B且AF∩AE=A,则A1B⊥平面AEF,则A1B⊥EF,所以D正确.故选:C.6、设m,n是两条不同的直线,α,β是两个不同的平面,则下列说法错误的是()A.若m⊥n,m⊥α,n⊥β,则α⊥βB.若m//n,m⊥α,n//β,则α⊥βC.若m⊥n,m//α,n//β,则α//βD.若m//n,m⊥α,n⊥β,则α//β答案:C分析:利用线面垂直的判定性质、面面垂直的判定推理判断A,B;举例说明判断C;利用线面垂直的判定性质判断D作答.对于A,因m⊥n,m⊥α,当n⊂α时,而n⊥β,则α⊥β,当n⊄α时,在直线m上取点P,过P作直线n′//n,则m⊥n′,过直线m,n′的平面γ∩α=l,如图,由m⊥α得m⊥l,于是得l//n′//n,而n⊥β,则l⊥β,而l⊂α,所以α⊥β,A正确;对于B,若m//n,m⊥α,则n⊥α,又n//β,则存在过直线n的平面δ,使得δ∩β=c,则有直线c//n,即有c⊥α,所以α⊥β,B正确;对于C,如图,在长方体ABCD−A1B1C1D1中,平面ABCD为平面α,直线A1B1为直线m,平面ADD1A1为平面β,直线B1C1为直线n,满足m⊥n,m//α,n//β,而α∩β=AD,C不正确;对于D,若m//n,m⊥α,则n⊥α,又n⊥β,于是得α//β,D正确.故选:C7、下列命题中,正确的是()A.三点确定一个平面B.垂直于同一直线的两条直线平行C.若直线l与平面α上的无数条直线都垂直,则l⊥αD.若a、b、c是三条直线,a∥b且与c都相交,则直线a、b、c在同一平面上答案:D分析:利用空间点、线、面位置关系直接判断.A.不共线的三点确定一个平面,故A错误;B.由墙角模型,显然B错误;C.根据线面垂直的判定定理,若直线l与平面α内的两条相交直线垂直,则直线l与平面α垂直,若直线l与平面α内的无数条平行直线垂直,则直线l与平面α不一定垂直,故C错误;D.因为a//b,所以a、b确定唯一一个平面,又c与a、b都相交,故直线a、b、c共面,故D正确;故选:D.8、直角三角形的三边满足a<b<c,分别以a,b,c三边为轴将三角形旋转一周所得旋转体的体积记为V a、V b、V c,则()A .V c <V b <V aB .V a <V b <V cC .V c <V a <V bD .V b <V a <V c答案:A解析:求出V a =b ×13abπ,V b =a ×13abπ,V c =ab c ×13abπ,推导出ab c <a <b ,从而得到V c <V b <V a . ∵直角三角形的三边满足a <b <c ,分别以a 、b 、c 三边为轴将三角形旋转一周所得旋转体的体积记为V a 、V b 、V c ,∴V a =13×π×b 2×a =13πab 2=b ×13abπ,V b =13×π×a 2×b =13πa 2b =a ×13abπ,该直角三角形斜边上的高ℎ满足12ab =12cℎ,可得ℎ=ab c , V c =13×π×(ab c )2×c =13π⋅a 2b 2c =ab c ×13abπ, ∵ ab c −a =ab−ac c <0,ab c −b =ab−bc c <0,∴ ab c <a <b ,∴V c <V b <V a ,故选:A. 小提示:关键点点睛:本题考查旋转体体积的大小比较,解题的关键就是确定旋转体的形状,并据此求出对应的旋转体的体积,结合作差法比较即可.9、下图是一个圆台的侧面展开图,若两个半圆的半径分别是1和2,则该圆台的体积是( )A .7√2π24B .7√3π24C .7√2π12D .7√3π12答案:B分析:先计算出上下底面的半径和面积,再求出圆台的高,按照圆台体积公式计算即可.如图,设上底面的半径为r ,下底面的半径为R ,高为ℎ,母线长为l ,则2πr =π⋅1,2πR =π⋅2,解得r =12,R =1,l =2−1=1,ℎ=√l 2−(R −r )2=√12−(12)2=√32, 设上底面面积为S ′=π⋅(12)2=π4,下底面面积为S =π⋅12=π,则体积为13(S +S ′+√SS ′)ℎ=13(π+π4+π2)⋅√32=7√3π24. 故选:B.10、在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A −BCD 中,AB ⊥平面BCD ,BC ⊥CD ,且AB =BC =CD =4,M 为AD 的中点,则异面直线BM 与CD 夹角的余弦值为( )A .√32B .√34C .√33D .√24答案:C分析:画出图形,取AC 的中点N ,连接MN ,BN ,可得MN //CD ,则所求为∠BMN ,易证△BMN 是直角三角形,则可得BM ,进而求解.如图,取AC 的中点N ,连接MN ,BN ,由题,AB =BC =CD =4,M 为AD 的中点,所以MN //CD ,MN =2,则∠BMN 为所求,由AB ⊥平面BCD ,则AB ⊥CD ,又BC ⊥CD ,AB ∩BC =B ,所以CD ⊥平面ABC ,则MN⊥平面ABC,所以△BMN是直角三角形,即∠MNB=90°,又BM=12AD=12√AB2+BD2=2√3,所以cos∠BMN=MNBM =2√3=√33,故选:C填空题11、从正方体的12条棱和12条面对角线中选出n条,使得其中任意两条线段所在的直线都是异面直线,则n的最大值为______.答案:4分析:根据正方体的结构特征,先确定至多可选出4条,再确定选出4条两两异面的线,即可得到结论.正方体共有8个顶点,若选出的n条线两两异面,则不能共顶点,即至多可选出4条,又可以选出4条两两异面的线(如图AC,BC′,B′D′,A′D),故所求n的最大值是4.所以答案是:4.12、如图∶矩形A'B'C'D'的长为4cm,宽为2cm,O'是A'B'的中点,它是水平放置的一个平面图形ABCD的直观图,则四边形ABCD的周长为∶__________cm;答案:20分析:利用斜二测画法还原出原图形,结合题干中数据以及斜二测画法的规则,计算即可由斜二测画法的规则知与x轴平行或重合的线段其长度不变以及与横轴平行的性质不变;与y轴平行或重合的线段长度变为原来的一半,且与y′轴平行的性质不变.还原出原图形如上图所示,其中AB=A′B′=4cm,OC=2O′C′=2×2√2=4√2cm∴BC=√OB2+OC2=6cm所以原图形的周长为2×(4+6)=20cm13、已知a,b表示两条直线,α,β,γ表示三个不重合的平面,给出下列命题:①若α∩γ=a,β∩γ=b,且a//b,则α//β;②若a,b相交且都在α,β外,a//α,b//β,则α//β;③若a//α,a//β,则α//β;④若a⊂α,a//β,α∩β=b,则a//b.其中正确命题的序号是________.答案:④分析:根据线线、线面、面面之间的位置关系即可得出结果.解析:①错误,α与β也可能相交;②错误,α与β也可能相交;③错误,α与β也可能相交;④正确,由线面平行的性质定理可知.所以答案是:④14、在直三棱柱ABC﹣A1B1C1中,D为AA1中点,点P在侧面BCC1B1上运动,当点P满足条件___________时,A1P//平面BCD(答案不唯一,填一个满足题意的条件即可)答案:P是CC1中点分析:根据线面平行的性质,只需在侧面BCC1B1上找到一点,A1P//平面BCD上的任一条线即可,可以取A1P//CD,此时P是CC1中点.取CC1中点P,连结A1P,∵在直三棱柱ABC﹣A1B1C1中,D为AA1中点,点P在侧面BCC1B1上运动,∴当点P满足条件P是CC1中点时,A1P//CD,∵A1P⊄平面BCD,CD⊂平面BCD,∴当点P满足条件P是CC1中点时,A1P//平面BCD所以答案是:P是CC1中点.15、2021年7月,某学校的学生到农村参加劳动实践,一部分学生学习编斗笠,一种用竹篾或苇蒿等材料制作外形为圆锥形的斗笠,称为“灯罩斗笠”(如图),一部分学生学习制作泥塑几何体,现有一个棱长为6的正方体形状泥块,其各面的中心分别为点E,F,G,H,M,N,将正方体削成正八面体形状泥块G−EMHF−N,若用正视图为正三角形的一个“灯罩斗笠”罩住该正八面体形状泥块G−EMHF−N,使得正八面体形状泥块G−EMHF−N可以在“灯罩斗笠”中任意转动,则该有底的“灯罩斗笠”的表面积的最小值为___________.答案:81π分析:由题意,只需正八面体形状泥块G−EMHF−N位于圆锥的内切球内即可.如图所示:设正方体ABCD−A1B1C1D1的中心O满足OE=OF=OH=OF=OH=OM=ON=3,则几何体GEMHFN的外接球的球心为O,半径为3.当“灯罩斗笠”的表面积最小时,正八面体形状泥块G−EMHF−N的外接球即为圆锥的内切球,=3√3,故圆锥的底面圆的半径r=3tan30°所以该“灯罩斗笠”的表面积的最小值为S=πr2+πlr=π(3√3)2+π⋅3√3⋅6√3=81π. 所以答案是:81π解答题16、在正方体ABCD—A1B1C1D1中,E是棱BB1的中点.(1)求证:B1D∥平面ACE.(2)若F是棱CC1的中点,求证:平面B1DF∥平面ACE.答案:(1)证明见解析(2)证明见解析分析:(1)连BD,使BD∩AC=G,连EG,由中位线定理以及线面平行判定定理证明即可;(2)证明B1F∥平面ACE,结合B1D∥平面ACE,利用面面平行判定定理证明即可.(1)连BD,使BD∩AC=G,连EG.∵ABCD是正方形,BD∩AC=G,∴DG=BG.又∵E是BB1中点,∴B1E=BE,∴DB1∥GE,又DB1⊄平面ACE,GE⊂平面ACE,∴B1D∥平面ACE.(2)∵E是棱BB1的中点,F是棱CC1的中点.∴B1E∥CF且B1E=CF,∴四边形B1ECF是平行四边形,∴B1F∥CE,又∴B1F⊄平面ACE,CE⊂平面ACE,∴B1F∥平面ACE,由(1)B1D∥平面ACE,又∵DB1∩B1F=B1,∴平面B1DF∥平面ACE.17、如图,已知正三棱锥S−ABC的高SO=ℎ,侧面上的斜高SM=l,求经过SO的中点O1且平行于底面的截面△A1B1C1的面积(用l,ℎ表示).答案:3√34(l2−ℎ2).分析:利用正三棱柱的性质可得S△ABC=3√3(l2−ℎ2),根据面面平行的性质可得A1B1//AB,进而可得S△A1B1C1 S△ABC =14,即得.连接OM,OA,在Rt△SOM中,OM=√l2−ℎ2,∵棱锥S−ABC是正三棱锥,∴O是△ABC的中心,∴AB=2AM=2OM⋅tan60°=2√3√l2−ℎ2,S△ABC=√34AB2=3√3(l2−ℎ2),因为平面A1B1C1//平面ABC,O1为SO的中点,平面A1B1C1∩平面SAB=A1B1,平面ABC∩平面SAB=AB,∴A1B1//AB,A1B1=12AB,同理可得,C1B1//CB,C1B1=12CB,A1C1//AC,A1C1=12AC,所以△A1B1C1∽△ABC,所以S△A1B1C1S△ABC =14,∴截面△A1B1C1的面积为S△A1B1C1=3√34(l2−ℎ2).18、如图,在正方体ABCD−A1B1C1D1中,A1C1与B1D1交于点O1,求证:(1)直线A1B∥平面ACD1;(2)直线BO1∥平面ACD1.答案:(1)证明见解析(2)证明见解析分析:(1)根据题意,先证得四边形A1D1CB是平行四边形,从而证得A1B∥D1C,即可证得线面垂直;(2)连接BD,交AC于O,连接D1O,只需证明O1B∥D1O,即可证得线面垂直;(1)证明:直线A1B在平面ACD1外,因为A1D1∥BC,A1D1=BC,所以四边形A1D1CB是平行四边形,所以A1B∥D1C,而D1C是平面ACD1内的直线,根据判定定理可知,直线A1B∥平面ACD1.(2)证明:如图,连接BD,交AC于O,连接D1O,易知D1O1∥OB,D1O1=OB,则四边形D1O1BO是平行四边形,所以O1B∥D1O,所以D1O在平面ACD1上,根据判定定理可知,O1B∥平面ACD1.19、如图,D为圆锥的顶点,O是圆锥底面的圆心,△ABC是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=√2,圆锥的侧面积为√3π,求三棱锥P−ABC的体积..答案:(1)证明见解析;(2)√68分析:(1)根据已知可得PA=PB=PC,进而有△PAC≌△PBC,可得∠APC=∠BPC=90∘,即PB⊥PC,从而证得PC⊥平面PAB,即可证得结论;(2)将已知条件转化为母线l和底面半径r的关系,进而求出底面半径,由正弦定理,求出正三角形ABC边长,在等腰直角三角形APC中求出AP,在Rt△APO中,求出PO,即可求出结论.(1)连接OA,OB,OC,∵D为圆锥顶点,O为底面圆心,∴OD⊥平面ABC,∵P在DO上,OA=OB=OC,∴PA=PB=PC,∵△ABC是圆内接正三角形,∴AC=BC,△PAC≌△PBC,∴∠APC=∠BPC=90°,即PB⊥PC,PA⊥PC,PA∩PB=P,∴PC⊥平面PAB,PC⊂平面PAC,∴平面PAB⊥平面PAC;(2)设圆锥的母线为l,底面半径为r,圆锥的侧面积为πrl=√3π,rl=√3,OD2=l2−r2=2,解得r=1,l=√3,AC=2rsin60∘=√3,在等腰直角三角形APC中,AP=√22AC=√62,在Rt△PAO中,PO=√AP2−OA2=√64−1=√22,∴三棱锥P−ABC的体积为V P−ABC=13PO⋅S△ABC=13×√22×√34×3=√68.小提示:本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.。
初二数学中常见的立体几何问题立体几何是数学中的一个重要分支,它研究的是三维空间中的形状、结构和体积等问题。
在初二阶段的数学学习中,我们经常会遇到一些与立体几何相关的问题。
本文将介绍几种常见的立体几何问题及其解法。
一、平面与立体的相互关系在初二数学中,我们需要了解平面与立体的相互关系。
常见的问题包括:平面和立体的交点、平面截立体的形状等。
1. 平面和立体的交点问题当一个平面与一个立体相交时,我们需要确定它们的交点个数。
这一问题通常通过计算交点的数量来解决。
例如,给定一个立方体和一个平面,我们需要确定它们的交点个数。
首先,我们可以将立方体分为六个面,然后计算平面与这些面的交点。
若交点个数为零,则表示平面与立方体没有交点。
2. 平面截立体的形状问题当一个平面截取一个立体时,我们需要确定截取后的形状。
常见的问题包括:平面截取正方体的形状、平面截取圆柱体的形状等。
解决这类问题的关键在于确定平面与立体的交线,然后根据交线确定截取后的形状。
二、面积与体积的计算在初二数学中,我们还需要计算立体的面积和体积。
常见的问题包括:正方体、长方体和圆柱体的面积和体积计算等。
1. 正方体的面积和体积计算正方体是初二数学中较为基础的一个立体。
其面积和体积的计算公式都较为简单。
正方体的表面积等于六个面的面积之和,而体积等于边长的立方。
通过应用这些公式,我们可以轻松地计算正方体的面积和体积。
2. 长方体的面积和体积计算长方体是比较常见的立体之一,其计算公式与正方体类似。
长方体的表面积等于六个面的面积之和,而体积等于长、宽、高的乘积。
因此,我们只需将给定的数值代入公式,即可求解长方体的面积和体积。
3. 圆柱体的面积和体积计算圆柱体是初二数学中另一个常见的立体。
与之前的立体不同,圆柱体的面积和体积计算较为复杂。
圆柱体的表面积由三部分组成:圆周面积、底面积和侧面积。
而体积则等于底面积乘以高。
解决这类问题时,我们需要注意参数的单位一致性,确保计算结果的准确性。
备考指南立体几何问题侧重于考查同学们的空间想象、逻辑推理以及运算能力.求解立体几何问题的常用方法主要有几何法和向量法.掌握并合理运用这两种解题方法,有利于迅速找到解题的思路.下面结合实例,谈一谈解答立体几何问题的常用方法.一、几何法几何法是解答立体几何问题的常用方法,也是比较重要的方法.在运用几何法求解立体几何问题时,要根据空间中点、线、面之间的位置关系,寻找平行、垂直关系,灵活运用立体几何中的定义、公理、判定定理和性质定理来分析、解答问题.例1.如图1所示,已知四棱锥P-ABCD的底面ABCD是边长为3的菱形,PD=3,PA=PC=23,点Q是PD的中点.(1)求证:直线PB∥平面ACQ;(2)求证:平面PAD⊥平面ABCD.证明:(1)连接BD交AC于点O,连接OQ,根据菱形ABCD的性质可知O为BD的中点,因为Q是PD的中点,所以OQ是ΔPBD的中位线,可得OQ∥PB.又OQ⊂平面ACQ,PB⊄平面ACQ,由线面平行的判定定理得PB∥平面ACQ.(2)在ΔPAD中,PD2+DA2=32+(3)2=12=(23)2 =PA2,所以PD⊥DA.同理可证PD⊥DC.因为DA⋂DC=D,由线面垂直的判定定理得PD⊥平面ABCD.因为PD⊂平面PAD,所以由面面垂直的判定定理得平面PAD⊥平面ABCD.在解答立体几何中有关线线、线面、面面平行和垂直的问题时,往往需要首先根据图形理清点、线、面之间的位置关系,然后运用线线、线面、面面平行和垂直的定义、判定定理、性质定理来解题.对于第一个问题,需首先想到运用线面平行的判定定理;对于第二个问题,要证明面面垂直,往往需先想到运用面面垂直的判定定理,则需根据线面垂直的判定定理证明线面垂直,只需根据勾股定理证明线线垂直.二、向量法1.基底法基底法是指根据向量的基本定理,将各个向量用基底表示出来,通过向量运算来解题.运用基底法解题,需先根据立体几何图形的特点和位置关系,选择一组合适的向量,将其作为基底,再根据向量的基本定理,将各个向量用基底表示出来,利用向量的数量积公式、模的公式、共线定理等进行求解.例2.已知正四面体ABCD的各条棱长均为1,点E、F分别是BC、AD的中点,则AE∙CF=(). A.0 B.12 C.1 D.-12解:如图2所示,设向量AB=a ,AC=b , AD=c ,因为正四面体的各条棱长均为1,所以a ∙b =a ∙c =b ∙c =1×1×cos60°=12,且||||b 2=1.因为点E、F分别是BC、AD的中点,所以AE=a +b 2, CF=-b +c 2,所以AE∙CF=æèçöø÷a +b 2∙æèçöø÷-b +c 2=-12a ∙b +14a ∙c -12||||b 2+14b ∙c=-12×12+14×12-12×1+14×12=-12.故本题选D.以AB=a 、AC=b 、 AD=c 为基底,并用这些基底将AE、CF表示出来,即可根据向量的数量积公式,求得AE∙CF的表达式及值.运用基底法解题的关键在于根据题意和图形的特点,选取合适的基底.图1图2552.坐标法有些立体几何问题中的图形为特殊图形,如正方体、直棱柱、长方体、正棱锥、圆锥、圆柱等,此时可采用坐标法求解.首先要根据这些图形的特点,找到两条或三条垂直且交于一点的直线,将其作为坐标轴,建立空间直角坐标系;然后求得相关点的坐标、直线的方向向量以及平面的法向量,通过向量的坐标运算求得问题的答案.若用a 、b 表示直线a 、b 的方向向量,用m 、n 表示平面α、β的法向量,则(1)直线a 、b 所成角的余弦值为:cos θ=||||||cos a ,b =||||||||||a ∙b ||a ||||b ;(2)直线a 与平面α所成角的正弦值为:sin θ=||cos a,m =||||||||a∙m ||a ||m ;(3)平面α、β的二面角的余弦值为:cos θ=cos m ,n =m ∙n ||m ||n 或cos θ=-cos m ,n =-m ∙n ||m ||n (依平面角与法向量夹角的大小而定);(4)若A 为平面α外一点,P 为平面α上任意一点,则A 到平面α的距离为:d =|||||||| AP ∙n ||n.例3.据《九章算术》中的记载可知,堑堵是底面为直角三角形,侧棱垂直于底面的三棱柱;阳马是底面为矩形,一条侧棱垂直于底面的四棱锥;鳖臑是四个面均为直角三角形的四面体.如图3,在堑堵ABC -A 1B 1C 1中,AC ⊥BC .(Ⅰ)求证:四棱锥B -A 1ACC 1为阳马,并判断四面体A 1-CBC 1是否为鳖臑,若是,请写出各个面的直角(只写出结论);(Ⅱ)若A 1A =AB =2,当阳马B -A 1ACC 1的体积最大时,求二面角C -A 1B -C 1的余弦值.图3解:(Ⅰ)由堑堵ABC -A 1B 1C 1的定义知A 1A ⊥底面ABC ,所以BC ⊥A 1A ,因为BC ⊥AC ,A 1A ⋂AC =A ,所以BC ⊥平面A 1ACC 1.由堑堵ABC -A 1B 1C 1的定义知,四边形A 1ACC 1为矩形,因此四棱锥B -A 1ACC 1为阳马.易知四面体A 1-CBC 1为鳖臑,四个面的直角分别是∠A 1CB ,∠A 1C 1C ,∠BCC 1,∠A 1C 1B .(Ⅱ)因为A 1A =AB =2,由(Ⅰ)知阳马B -A 1ACC 1的体积为V =13S 矩形A 1ACC 1∙BC =13×A 1A ×AC ×BC =23AC ×BC≤13(AC 2+BC 2)=13×AB 2=43,所以当AC =BC =2时,V max =43,此时直线CA ,CB ,CC 1两两互相垂直,可建立如图4所示的空间直角坐标系C -xyz .易知点C (0,0,0),B (0,2,0),A 1(2,0,2),C 1(0,0,2),所以 CA 1=(2,0,2),CB =(0,2,0),BA 1=(2,-2,2),BC 1=(0,-2,2).设平面CA 1B 的法向量为n =(x ,y ,z ),则ìíîn ∙CA 1=0,n ∙ CB =0,可得ìíî2x +2z =0,2y =0,令x =2,则z =-1,y =0,则n =(2,0,-1);同理可得平面C 1A 1B 的一个法向量m =(0,2,1).所以cos <n ,m >=n ∙m ||n ||m =-13×3=-13.由图4知,二面角C -A 1B -C 1为锐二面角,故二面角C -A 1B -C 1的余弦值为13.利用坐标法求解有关夹角或距离问题,关键是建立合适的空间直角坐标系.通常要使更多的点落在坐标轴上,这样便于计算.有时可通过添加辅助线来画出其中的一条坐标轴.相比较而言,几何法和基底法的适用范围较广,对于大部分的题目,都可以采用几何法和基底法求解;而坐标法的适用范围较窄,只适用于求解方便建立空间直角坐标系的题目.但运用坐标法求解立体几何问题较为便捷,只需通过简单的向量运算即可.(作者单位:安徽省宁国市宁国中学)备考指南图456。
初二数学中常见的立体几何问题解析立体几何是数学中的一个重要分支,涉及到空间中的各种图形和物体的性质和关系。
在初二数学中,立体几何问题是一个重点和难点,需要我们掌握一定的方法和技巧来解决。
本文将针对初二数学中常见的立体几何问题进行详细的解析和讲解。
一、棱柱和棱锥的性质和计算棱柱和棱锥是初二数学中最常见的立体几何图形,它们有着许多的性质和计算方法。
1. 棱柱的性质和计算棱柱是由两个并排的多边形底面和连接底面的若干个平行线段组成的立体图形。
常见的棱柱有三棱柱、四棱柱、五棱柱等。
首先,我们来看棱柱的性质。
棱柱的底面是一多边形,顶面是和底面相对应的平行的多边形。
对于一个棱柱,它的侧面是由底面上的各个顶点与顶面上相对应的点连接而成的多边形。
此外,棱柱的侧面与底面和顶面均相交于一条边。
根据这些性质,我们可以计算棱柱的表面积和体积。
棱柱的表面积计算公式为:S = 2A + Dh,其中A为底面积,D为底面周长,h为棱柱的高。
棱柱的体积计算公式为:V = Ah,其中A为底面积,h为棱柱的高。
通过这些公式,我们可以快速计算棱柱的表面积和体积,从而解决与此相关的问题。
2. 棱锥的性质和计算棱锥是由一个多边形底面和连接底面顶点与底面各边上的点所形成的三维图形。
常见的棱锥有三棱锥、四棱锥、五棱锥等。
棱锥的性质与棱柱有一些差别。
棱锥的底面是一个多边形,而顶点则是引出底面各边的连线所汇集的点。
棱锥的侧面由顶点到底面各点连线而成。
同样地,我们可以根据这些性质来计算棱锥的表面积和体积。
棱锥的表面积计算公式为:S = A + L,其中A为底面积,L为侧面积。
棱锥的体积计算公式为:V = 1/3Ah,其中A为底面积,h为棱锥的高。
掌握了这些公式,我们可以迅速解决与棱锥相关的问题。
二、圆柱和圆锥的性质和计算圆柱和圆锥是与棱柱和棱锥类似的立体图形,它们也有着特定的性质和计算方法。
1. 圆柱的性质和计算圆柱是由一个圆形底面和连接底面各点与底面中心点的垂直线段所形成的立体图形。
立体几何解答题常考模型归纳总结 高考立体几何解答题常考模型主要包括柱体、锥体、球体、旋转体、多面体等。
这些模型常涉及体积、表面积的计算,截面问题,以及与其他几何体的组合或相交问题。
此外,空间位置关系,如平行、垂直的判断与证明,也是常考内容。
空间角的计算,包括异面直线所成的角、直线与平面所成的角、二面角等,同样是高考立体几何的重要考点。
最后,空间距离的计算,如点到平面的距离、两平行平面间的距离等,也是解答题中常见的考查点。
掌握这些模型的基本性质和解题方法,对于提高高考立体几何的解题能力至关重要。
题型一:非常规空间几何体为载体【典例1-1】(2024·河南濮阳·模拟预测)如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B -==(1)求证:1AA ^平面11BCC B ;(2)求直线AB 和平面1ACB 所成角的正弦值.【典例1-2】(2024·云南昆明·三模)如图,在三棱台111ABC A B C -中,上、下底面是边长分别为2和4的正三角形,1AA ^平面ABC ,设平面11AB C I 平面=ABC l ,点,E F 分别在直线l 和直线1BB 上,且满足EF l ^,1EF BB ^.(1)证明:^EF 平面11BCC B ;(2)若直线EF 和平面ABC 【变式1-1】(2024·天津和平·二模)如图,三棱台111ABC A B C -中,ABC V 为等边三角形,1124AB A B ==,1AA ^平面ABC ,点M ,N ,D 分别为AB ,AC ,BC 的中点,11A B AC ^.(1)证明:1CC ∥平面1A MN ;(2)求直线1A D 与平面1A MN 所成角的正弦值;(3)求点D 到平面1A MN 的距离.【变式1-2】(2024·河南周口·模拟预测)如图,平行六面体1111ABCD A B C D -中,底面ABCD 与平面11ABC D 都是边长为2的菱形,11120BCD BC D °Ð=Ð=,侧面11BCC B(1)求平行六面体1111ABCD A B C D -的体积;(2)求平面11BCC B 与平面11CDD C 的夹角的余弦值.题型二:立体几何存在与探索性问题【典例2-1】如图1,ABC V 是边长为3的等边三角形,点,D E 分别在线段,AC AB 上,且1,2AE AD ==,沿DE 将ADE V 翻折到PDE △的位置,使得PB 2.(1)求证:平面PDE ^平面BCDE ;(2)在线段PB 上是否存在点M ,使得//EM 平面PCD ,若存在,求出PM MB的值;若不存在,请说明理由.【典例2-2】(2024·广东·一模)如图所示,四边形ABCD 是圆柱底面的内接四边形,AC 是圆柱的底面直径,PC 是圆柱的母线,E 是AC 与BD 的交点,608AB AD BAD AC Ð===o ,,.(1)记圆柱的体积为1V ,四棱锥P ABCD -的体积为 2V ,求 12V V ;(2)设点F 在线段AP 上,且存在一个正整数k ,使得PA kPF PC kCE ==,,若已知平面FCD 与平面PCDk 的值.【变式2-1】在ABC V 中,90ABC Ð=°,6AB BC ==,D 为边AB 上一点,2AD =,E 为AC 上一点,//DE BC ,将ADE V 沿DE 翻折,使A 到A ¢处,90DA B ¢Ð=°.(1)证明:A B ¢^平面A DE ¢;(2)若射线DE 上存在点M ,使l =uuuu r uuu r DM DE ,且MC 与平面A EC ¢所成角的正弦值为15,求λ.【变式2-2】(2024·甘肃张掖·模拟预测)如图,在四棱锥P ABCD -中,底面四边形ABCD为菱形,且60,DAB PAD Ð=o V 是边长为2的等边三角形,且平面PAD ^平面,ABCD O 为AD 中点.(1)求证:OB ^平面PAD ;(2)在线段PC 上是否存在点M ,使二面角M BO C --的大小为60o ,若存在,求PM PC的值,若不存在,请说明理由.题型三:立体几何折叠问题【典例3-1】(2024·湖北武汉·模拟预测)如图1,在矩形ABCD 中,2AB =,BC =ABD △沿矩形的对角线BD 进行翻折,得到如图2所示的三棱锥A BCD -,且AB CD ^.(1)求翻折后线段AC 的长;(2)点M 满足2AM MD =uuuu r uuuu r ,求CM 与平面ABD 所成角的正弦值.【典例3-2】(2024·山东·模拟预测)如图,在菱形ABCD 中,60BAD Ð=°,E 是AD 的中点,将ABE V沿直线BE 翻折使点A 到达点1A 的位置,F 为线段1AC 的中点.(1)求证:DF ∥平面1A BE ;(2)若平面1A BE ^平面BCDE ,求直线1A E 与平面1A BC 所成角的大小.【变式3-1】(2024·河南驻马店·二模)在如图①所示的平面图形中,四边形ACDE 为菱形,现沿AC 进行翻折,使得AB ^平面ACDE ,过点E 作//EF AB ,且12EF AB =,连接,,FD FB BD ,所得图形如图②所示,其中G 为线段BD 的中点,连接FG .(1)求证:FG ^平面ABD ;(2)若2AC AD ==,直线FG 与平面BCD ,求AB 的值.【变式3-2】在等腰梯形ABCD 中,//AB CD ,2AB =,2AD BC ==,60DAB Ð=°,M 为AB 中点,将AMD V ,BMC △沿MD ,MC 翻折,使A ,B 重合于点E ,得到三棱锥M CDE -.(1)求ME 与平面CDE 所成角的大小;(2)求二面角M DE C --的余弦值.题型四:立体几何作图问题【典例4-1】(2024·河南信阳·模拟预测)长方体1111ABCD A B C D -中,123,2AB AA AD CE ED ===uuu r uuu r .(1)过E 、B 作一个截面,使得该截面平分长方体的表面积和体积.写出作图过程及其理由.(2)记(1)中截面为a ,若a 与(1)中过D 点的长方体的三个表面成二面角分别为,,q j w ,求222cos cos cos q j w ++的值.【典例4-2】(2024·高三·河北承德·期中)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,,,O E F 分别是,,BD PA BC 的中点.(1)证明://OE 平面PBC ;(2)若平面a 经过点,,F D E ,且与棱PB 交于点H .请作图画出H 在棱PB 上的位置,并求出PH HB的值.【变式4-1】(2024·辽宁大连·一模)如图多面体ABCDEF 中,面FAB ^面ABCD ,FAB V 为等边三角形,四边形ABCD 为正方形,EF BC ∥,且334EF BC ==,H ,G 分别为CE ,CD 的中点.(1)证明:BF AD ^;(2)求平面BCEF 与平面FGH 所成角的余弦值;(3)作平面FHG 与平面ABCD 的交线,记该交线与直线AD 交点为P ,写出AP AD的值(不需要说明理由,保留作图痕迹).【变式4-2】如图,已知底面为平行四边形的四棱锥P ABCD -中,平面MNGH 与直线PB 和直线AC 平行,点E 为PD 的中点,点F 在CD 上,且:1:2DF FC =.(1)求证:四边形MNGH 是平行四边形;(2)求作过EF 作四棱锥P ABCD -的截面,使PB 与截面平行(写出作图过程,不要求证明).截面的定义:用一个平面去截一个几何体,平面与几何体的表面的交线围成的平面图形.【变式4-3】(2024·北京·三模)四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,23DAB p Ð=.AC BD O =I ,且^PO 平面ABCD ,PO =,点,F G 分别是线段.PB PD 上的中点,E 在PA 上.且3PA PE =.(Ⅰ)求证://BD 平面EFG ;(Ⅱ)求直线AB 与平面EFG 的成角的正弦值;(Ⅲ)请画出平面EFG 与四棱锥的表面的交线,并写出作图的步骤.题型五:立体几何建系繁琐问题【典例5-1】(2024·山东淄博·二模)已知直角梯形ABCD ,90ADC Ð=°,//AB CD ,2AB CD AD ===M 为对角线AC 与BD 的交点.现以AC 为折痕把ADC V 折起,使点D 到达点P 的位置,点Q 为PB 的中点,如图所示:(1)证明:AC ^平面PBM ;(2)求三棱锥P ACQ -体积的最大值;(3)当三棱锥P ACQ -的体积最大时,求直线AB 与平面PBC 所成角的正弦值.【典例5-2】(2024·贵州黔东南·二模)如图,在四棱台1111ABCD A B C D -中,O 为AC 的中点,1111122AA A C C C AC ====.(1)证明:1//OC 平面11AA D D ;(2)若平面ABCD ^平面11ACC A ,AB BC ^,当四棱锥11B AA C C -的体积最大时,求1CC 与平面11AA B B 夹角的正弦值.【变式5-1】(2024·重庆·三模)如图所示的几何体是一个半圆柱和一个三棱锥的组合体.11,BB CC 是半圆柱的母线,1,O O 分别是底面直径BC 和11B C 的中点,11114,2,BC B C BB CC A ====是半圆O 上一动点,1A 是半圆1O 上的动点,1AA 是圆柱的母线,延长1A A 至P 点使得A 为1A P 的中点,连接PB ,PC 构成三棱锥P ABC -.(1)证明:1AC BA ^;(2)当三棱锥P ABC -的体积最大时,求平面1ABA 与平面1BA C 的夹角.【变式5-2】已知平面四边形ABCD ,2AB AD ==,60BAD Ð=°,30BCD Ð=°,现将ABD D 沿BD 边折起,使得平面ABD ^平面BCD ,此时AD CD ^,点P 为线段AD 的中点.(1)求证:BP ^平面ACD ;(2)若M 为CD 的中点①求MP 与平面BPC 所成角的正弦值;②求二面角P BM D --的平面角的余弦值.题型六:两角相等(构造全等)的立体几何问题【典例6-1】(2024·河南·模拟预测)如图,在三棱锥A BCD -中,ABC V 是等边三角形,90BAD BCD Ð=Ð=°,点P 是AC 的中点,连接,BP DP .(1)证明:平面ACD ^平面BDP ;(2)若BD =,且二面角A BD C --为120°,求直线AD 与平面BCD 所成角的正弦值.【典例6-2】(2024·广西桂林·二模)如图,四棱锥F ABCD -中,底面ABCD 为边长是2的正方形,E ,G 分别是CD ,AF 的中点,4AF =,FAE BAE Ð=Ð,且二面角F AE B --的大小为90°.(1) 求证:AE BG ^;(2) 求二面角B AF E --的余弦值.【变式6-1】(2024·安徽合肥·模拟预测)如图,四棱锥E ABCD -中,四边形ABCD 是边长为2的菱形,45DAE BAE °Ð=Ð=,60DAB Ð=°.(1)证明:平面ADE ^平面ABE ;(2)当直线DE 与平面ABE 所成的角为30°时,求平面DCE 与平面ABE 所成锐二面角的余弦值.【变式6-2】(2024·辽宁沈阳·模拟预测)如图,四棱锥E ABCD -中,四边形ABCD 是边长为2的菱形45DAE BAE Ð=Ð=°,60DAB Ð=°(1)证明:平面ADE ^平面ABE ;(2)当平面DCE 与平面ABE DE 与平面ABE 所成角正弦值.题型七:利用传统方法找几何关系建系【典例7-1】(2024·江苏南京·二模)如图,//AD BC ,AD AB ^,点E 、F 在平面ABCD 的同侧,//CF AE ,1AD =,2AB BC ==,平面ACFE ^平面ABCD ,EA EC ==(1)求证://BF 平面ADE ;(2)若直线EC 与平面FBD ,求线段CF 的长.【典例7-2】斜三棱柱ABC -A 1B 1C 1上,侧面AA 1C 1C ⊥平面ABC ,侧面AA 1C 1C 是菱形,∠A 1AC =60°,A 1C =AC AB =2,为BB 1的中点.(1)求二面角C -A 1D -C 1的余弦值;(2)记△ABC 的外接圆上有一动点P ,若二面角P -AA 1-C 与二面角C -A 1D -C 1相等,求AP 的长.【变式7-1】如图,已知四棱锥P ABCE -中,PA ^平面ABCE ,平面PAB ^平面PBC ,且1AB =,2BC =,BE =,点A 在平面PCE 内的射影恰为PCE V 的重心G .(1)证明:BC AB ^;(2)求直线CG 与平面PBC 所成角的正弦值.【变式7-2】如图所示,圆锥的高2PO =,底面圆O 的半径为R ,延长直径AB 到点C ,使得BC R =,分别过点A ,C 作底面圆O 的切线,两切线相交于点E ,点D 是切线CE 与圆O 的切点.(1)证明:平面PDE ^平面POD ;(2)若直线PE 与平面PBD ,求点A 到平面PED 的距离.题型八:空间中的点不好求【典例8-1】(2024·山东日照·三模)在五面体ABCDEF 中,CD ADE ^平面,EF ADE ^平面.(1)求证:AB CD ∥;(2)若222AB AD EF ===,3CD =,90ADE Ð=°,点D 到平面ABFE A BC F --的余弦值.【典例8-2】(2024·全国·校联考模拟预测)已知三棱锥ABCD ,D 在面ABC 上的投影为O ,O 恰好为△ABC 的外心.4AC AB ==,2BC =.(1)证明:BC ⊥AD ;(2)E 为AD 上靠近A 的四等分点,若三棱锥A-BCD 的体积为1,求二面角E CO B --的余弦值.【变式8-1】(2024·河南·校联考模拟预测)如图,在四棱锥P ABCD -中,AB BC ==AD CD AC ===E ,F 分别为AC ,CD 的中点,点G 在PF 上,且G 为三角形PCD 的重心.(1)证明://GE 平面PBC ;(2)若PA PC =,PA CD ^,四棱锥P ABCD -的体积为GE 与平面PCD 所成角的正弦值.【变式8-2】(2024·湖北武汉·华中师大一附中校考模拟预测)如图,平行六面体1111ABCD A B C D -中,点P 在对角线1BD 上,AC BD O =I ,平面ACP ∥平面11AC D .(1)求证:O ,P ,1B 三点共线;(2)若四边形ABCD 是边长为2的菱形,11π3BAD BAA DAA =ÐÐ==Ð,13AA =,求二面角P AB C --大小的余弦值.【变式8-3】(2024·全国·模拟预测)已知菱形ABCD 中,1AB BD ==,四边形BDEF 为正方形,满足2π3ABF Ð=,连接AE ,AF ,CE ,CF .(1)证明:CF AE ^;(2)求直线AE 与平面BDEF 所成角的正弦值.题型九:数学文化与新定义问题【典例9-1】(2024·高三·山东青岛·期中)某校积极开展社团活动,在一次社团活动过程中,一个数学兴趣小组发现《九章算术》中提到了“刍薨”这个五面体,于是他们仿照该模型设计了一道数学探究题,如图1,E 、F 、G 分别是边长为4的正方形的三边AB CD AD 、、的中点,先沿着虚线段FG 将等腰直角三角形FDG 裁掉,再将剩下的五边形ABCFG 沿着线段EF 折起,连接AB CG 、就得到了一个“刍甍” (如图2)。
几何法解立体几何的步骤:
1. 确定问题中的已知信息
•识别给定的立体形状、线段、角度和面积。
•确定需要求解的未知量(例如:体积、表面积、高度、线段长度、角度)。
2. 分析形状
•观察立体形状并确定其关键特征(例如:底面、侧表面、顶点、棱)。
•寻找与已知信息相关的相似三角形或其他几何形状。
3. 使用相似性定理
•使用相似三角形定理或其他几何定理来建立已知量和未知量之间的关系。
•比例可以用于确定线段长度、角度或面积。
4. 代入公式或定理
•使用立体几何公式或定理来计算未知量。
•例如:体积公式、表面积公式、三视图公式等。
5. 求解方程
•代入已知信息并求解方程以确定未知量。
•可能需要使用代数或三角学技巧。
6. 检查答案
•确保答案与给定的信息相符。
•如果答案不合逻辑或不合理,则重新检查计算过程或假设。
提示:
•绘制立体形状的草图或三视图,以可视化问题。
•分解复杂的问题为更小的步骤。
•仔细检查单位和单位转换。
•利用几何软件(例如 GeoGebra)来协助计算和可视化。
增强模型意识,口算解题不再是梦想新课标教材对高中立体几何的教学分成了两套思路。
一套是传统思路,以欧式几何中的公理、定理及推论作为一条主线,灵活添加辅助线,数形结合求得题解;另一套则是借助空间直角坐标系,将立体图形坐标化,从而将几何问题完全转化成代数问题,再通过方程来解决问题。
在此,我愿意另辟蹊径,用模型的意识来看待立体几何问题,利用补形法,力争将高考立体几何大题变为口算题!为了实现这一目标,我们先来熟悉一下几个模型:1、 长方体的“一角”模型在三棱锥P A B C -中,,,PA PB PB PC PC PA ⊥⊥⊥,且,,PA a PB b PC c ===.①三棱锥P A B C-的高h =证明:设直线AH 交BC 于D 点,由于H 点一定在△ABC 内部,所以D 点一定在BC 上,连结PD. 在△PAD 中:PH ==②,,P BC A P CA B P AB C ------二面角的平面角分别是:arctanarctanarctanbcacab.例1、四棱锥P A B C D -中,底面A B C D 是边长为的正方形,,1PA ABCD PA ⊥=面,求A D P B --的大小.分析:考虑三棱锥A PD B -,它就是模型1-长方体的“一个角”.本来我们可以利用结论②解:设二面角A D P B --的大小为α.CAADCB则:tan2ABPA ADα⋅===⋅,故arctan2α=我们看到象例1这样本来是高考中大题目,可是抓到了长方体“一角”,做起来就变得很轻松了.例2、直二面角D AB E--中,ABCD是边长为2的正方形(见图)AE=BE,求B点到面ACE的距离.分析:这是一道高考中的大题.因为D-AB-E是直二面角,BC⊥面ABE,当然面ABCD⊥面ABE,又因为ABCD是正方形,BC要垂直于面ABE.在ABE中,AE就是面内的一条线,而BE就是BF在该面内的射影,而AE是垂直于BF,这是因为BF垂直面ACE的,所以AE是垂直于面ACE的.所以AE垂直于BF,又有AE=BE,所以△ABE是等腰直角三角形.这一小段是熟悉几何环境的过程.图形中特殊的位置关系约束△ABE的形状.补充图形,在正方体1111ABC D A B C D-看问题.在这里看直二面角的局部图形.问题就转化为:求D到面ACE的距离,就是求O点到面AB1C的距离.因为O,B到面ACB1的距离相等,所以只须求B到面ACB1的距离即可,考虑三棱锥B-ACB1,它是模型2.312,3BC BA BB BF===∴==所以,D到面ACE的距离为3.点评:比起高考评分标准给的答案那要简单得多了.这儿要注意:一个是把局部的直二面角根据它的AEB是以E为直角的等腰直角三角形和ABCD是正方形的图形特征,补足正方体,这就是一种扩大的几何环境,而正方体也就是长方体模型,另一方面又抓到这正方体的一个角B-ACB1,那么这个角的模型更高,DB1A1CBED CBA这就使我们在运算过程中得以简化.所以说一道看起来很复杂的几何题,用典型几何模型做就显得轻松. 例3 底面为ABCD 的长方体被截面AEC 1F 所截,AB =4,BC =2,CC 1=3,BE =1(见图),求C 点到面AEC 1F 的距离.分析:这也是一道高考题,在评分标准中给出了很多的辅助线.现在我们用典型的空间模型,再对这道题解解看.解:延长C 1E 交CB 延长线于M ,延长CD ,交C 1F 延长线于N ,C -C 1NM 是模型2.因为13,,321C C C M C M C M C N B C B E C M ===-- 同理13,,1242C C C N C N C N C N C DD FC N ===--.所以,C 到面C 1MN331211⨯⨯=.2、公式12cos cos cos θθθ=⋅的几何模型PB PA ααα⊥∈平面,是的斜线,B ,AB 是PB 在α内的射影,BC 是α内一条直线12,,,PBC PBA ABC θθθ∠=∠=∠=则有12cos cos cos θθθ=⋅.大家要注意搞清楚那个是θ,那个是1θ,那个是2θ,实际上只要搞清那个是θ,另外两个就是12,θθ.特别的,α内的直线不一定过B ,如上面的右图所示:C CDθ2θ1θαPCBAθ2θ1θαPCBA在直线AB 上有一点D ,过D 在α画一直线DC ,则θ是直线PB 与DC 所成的角,12,.PBA ADC θθ∠=∠=则12cos cos cos θθθ=⋅那么这样的有可能利用这样的模型计算出异面直线成角.PB 和DC 的成角. 例4 EA ⊥面ABCD ,ABCD是边长为的正方形,EA =1,在AC 上是否存在P 点,使PE 、BC 成60 角.分析:12EPA APM EPM θθθ∠=∠=∠=cos cos cos EPA APM EPM∠⋅∠=∠即1,22=所以112A P A C==.可见AC 中点即是要找的点P例5 长方体1111ABC D A B C D -中,AB =2,AA 1=1,BD 与面AA 1B 1B 成30°角.AE ⊥BD 于E ,F 为A 1B 1的中点,求AE ,BF 成角.解:12cos cos cos cos 45cos(9030)θθθ=⋅=-=1224⨯=所以AE ,BF成角为arccos4.这样的一个题目,最重要的是位.在高考评分标准中,都要有很长的解题过程中.这些结论在高考中,教材中有的可以直接用,有的可以先用,然后把结论来源说明.这样可以减少思考的时间与计算量.这就相当于电脑中的集成块一样,减少空间.3、双垂四面体模型如图3,四面体A -BCD ,AB ⊥面BCD ,CD ⊥面BCA ,这种四面体构成许多简单多面体的基本图形,不妨称为双垂四面体,主要性质:DCBB 1CB①cos cos cos A D C A D B B D C ∠=∠⋅∠;②以BD 、BC 和AC 为棱的二面角都是直二面角,以AB 、BC 为棱的二面角的平面角,分别是D B C ∠与A C B ∠③以AD 为棱的二面角为θ,则cos A B C D A C B Dθ⋅=⋅;④对棱AB 与CD 垂直,且BC 是它们的公垂线; ⑤对棱AD 与BC 为异面直线,它们夹角为α,则cos B C A Dα=例3 如图4,ABCD 是上下底长分别为2和6,高为的等腰梯形,将它沿对称轴OO 1拆成直二面角,如图5.(1)证明:AC ⊥BO 1;(2)求二面角O -AC -O 1的大小. 解:(1)略(2)∵平面AOO 1⊥平面OO 1C ,又∵AO ⊥O 1C ,∴AO 平面OO 1C ,同理CO 1⊥平面AOO 1,四面体AOO 1C 是一个双垂四面体,若二面角O -AC -O 1的平面角为θ,则11c o s A O C O O C A O θ⋅=⋅,根据条件,从图5中可知AO =3,OC =2,1AO =CO 1=1,即可自得cos 4θ=.例4 如图6,直二面角D -AB -E 中,四边形ABCD 是边长为2的正方形,AE =EB ,F 为CE 上的点,且BF ⊥平面ACE.(1)求证:AE ⊥平面BCE ; (2)求二面角B -AC -E 的大小; (3)求点D 到平面ACE 的距离.分析:当(1)证明后,我们很容易识别四面体A -EBC 是一个双垂四面体,若二面角B -AC -E 的平面角为θ,则cos C B A E A B C Eθ⋅=⋅,由条件可以计算出AB =CB=2,AE=,C E =,图3DBAO图4DCBAC图6DCBA∴arccos3θ=.值得注意的是此题的(3)并不需要用等积变换,根据平面斜线上两点到平面的距离等于它们的斜线长的比,∴点D到平面ACE的距离等于B点到平面ACE的距离,也就是线段BF的长为33E B BE C⋅==利用典型立体几何模型解高考题1.(本小题满分13分)如图,已知三棱锥O A B C-的侧棱OA OB OC,,两两垂直,且1O A=,2O B O C==,E是O C的中点.(1)求O点到面ABC的距离;(2)求异面直线B E与A C所成的角;(3)求二面角E A B C--的大小.解:显然三棱锥O A B E-和O A B C-都是长方体一脚模型,(1)设O点到面ABC的距离为h,则由结论1—①,3h==(2)设B E与A C所成的角为α,则由模型二cos cos cosO E B A C Oα=∠⋅∠,由勾股定理AB AC BE===2cos AC O∠=,1cos O EB∠=故2cos5α=,2arccos5α=(3)设二面角E A B O--、C A B O--、E A B C--的大小分别为,,θβγ,则θβγ=-,由结论1—②,tanO CO A O Bβ⋅==⋅,tan2O EO A O Bγ==⋅所以tan tantan1tan tan7βγθβγ-==+⋅2、(本小题满分13分)AOECB如图,在四棱锥P —ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PE ⊥EC. 已知,21,2,2===AE CD PD 求二面角E —PC —D 的大小.解:过E 点作EG CD G ⊥于,G 过点作FG CD G EF ⊥于,连结,则显然三棱锥 G C E F-是长方体一角模型,设二面角E —PC —D 的大小为α,则由结论1—②可知:tan C G FGα=⋅,下面就只剩下计算问题了因为PD ⊥底面,故PD ⊥DE ,又因EC ⊥PE ,且DE 是PE 在面ABCD 内的射影,故由三垂直线定理的逆定理知:EC ⊥DE ,设DE=x ,因为△DAE ∽△CED ,故1,1,2±===x xx CD AEx 即(负根舍去).从而DE=1,故有勾股定理2AD EG ==32C G CD D G =-=,又因为C G F G C DD P=,所以4C GD P FG C D⋅==,故tan 1EG C G FGα⋅==⋅,二面角E —PC —D 的大小为.4π3、(本小题满分13分)如图,在三棱柱ABC —A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1,已知AB=2,BB 1=2,BC=1,∠BCC 1=3π,求:(Ⅰ)异面直线AB 与EB 1的距离;(Ⅱ)二面角A —EB 1—A 1的平面角的正切值. 解(Ⅰ)显然四面体1A BEB -是双垂四面体模型 由结论3—④,BE 是异面直线AB 与EB 1的公垂线在平行四边形BCC 1B 1中,设EB=x ,则EB 1=24x -,PCBEA!B !A !E作BD ⊥CC 1,交CC 1于D ,则BD=BC·.233sin=π在△BEB 1中,由面积关系得0)3)(1(,23221421222=--⋅⋅=-x x x x 即.3,1±=±=x x 解之得(负根舍去),33cos21,,322=⋅-+∆=πCE CE BCE x 中在时当解之得CE=2,故此时E 与C 1重合,由题意舍去3=x . 因此x =1,即异面直线AB 与EB 1的距离为1. (Ⅱ)先求二面角1A EB B --由结论3—②,二面角1A EB B --的大小为AEB ∠,由于AB=2,1BE =故tan AEB ∠=11A B EB -是直二面角,故二面角A —EB 1—A 1的平面角的正切值为2.巧妙利用典型的立体几何模型可以很轻松地解决一些复杂的高考题,在平时复习是我们应该不断总结,总结有哪些典型的立体几何模型可以用于解题,这样才能提高解题能力。
微专题7 利用常见几何模型求解立体几何问题(2)专题05 直棱锥模型例1.在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.若四棱锥M A BCD -为阳马,侧棱MA ⊥底面A B C D ,且2M A BC A B ===,则该阳马的外接球与内切球表面积之和为 .【类比训练1】已知点P ,A ,B ,C ,D 是球O 表面上的点,⊥PA 平面AB CD ,四边形AB CD 是边长为=PA ,则∆O AB 的面积为 .【类比训练2】已知球O 面上的四点,,,,A B C D DA ⊥平面,,ABC AB BC DA AB BC ⊥===O 的体积等于 .专题06 侧棱相等模型例1.已知四棱锥的-P ABCD ,的矩形,则该四棱锥外接球的表面积为( )A .π18 B . π323 C .π36 D .π48【类比训练1】体积为-A BCD 的每个顶点都在半径为R 的球O 的球面上,球心O 在此三棱锥内部,且=:2:3R BC,点E 为BD 的中点,过点E 作球O 的截面,则所得截面圆面积的最小值是 .【类比训练2】在三棱锥-P ABC 中,=PA PB ====4PC AC AB ,且⊥AC AB ,则该三棱锥外接球的表面积为________.【类比训练3】在三棱锥P ABC -中,PA PB PC ===PA 与底面ABC 所成的角为60︒,则该三棱锥外接球的体积为( )A .πB .3πC .4πD .43π【类比训练4】如图,半径为2的半球内有一内接正六棱锥-P ABCDEF ,则此正六棱锥的侧面积是 .专题07 侧棱为外接球直径模型例1.已知三棱锥-S ABC 的所有顶点都在球O 的表面上,∆AB C 是边长为1的正三角形,SC 为球O 的直径,且=2SC ,则此三棱锥的体积为( )A .14BC D例2.已知点A 是以BC 为直径的圆O 上异于B ,C 的动点,P 为平面ABC 外一点,且平面PBC ⊥平面ABC ,3BC =,PB =PC ,则三棱锥P ABC -外接球的表面积为 10π .专题08 共斜边拼接模型例1.在矩形AB CD 中,==4,3AB BC ,沿AC 将矩形AB CD 折成一个直二面角--B AC D ,则四面体AB CD 的外接球的体积为( )A .π12512B .π1259C .π1256D .π1253【类比训练】三棱锥-P ABC 中,平面⊥PAC 平面ABC ,=2AC ,⊥PA PC ⊥AB BC ,则三棱锥-P ABC 的外接球的半径为。
借助推论与模型快速解答立体几何高考题〔关键词〕立体几何;高考题;推论;模型〔中图分类号〕G633.63〔文献标识码〕 C〔文章编号〕1004―0463(2010)04(A)―0052―01一、常用推论:1. 如图1所示,在四面体P-ABC中,设顶点P在底面ABC 上的射影为O.①若PA=PB=PC或PA、PB、PC与底面ABC所成的角相等,则O为底面ABC的外心.(对于正棱锥而言,则O为底面的中心).②若PA⊥BC,PB⊥AC,则O为底面ABC的垂心,同时也有PC⊥AB(即四面体中若有两组对棱相互垂直,则任何顶点在与之相对面上的射影都是该面三角形的垂心,且第三组对棱也相互垂直).特殊地,若PA、PB、PC两两垂直,也有一样的结论.③若O在△ABC的内部,且P到△ABC的三边的距离相等或侧面PAB、PBC、PAC与底面所成的二面角相等,则O为底面△ABC的内心.在运用这个结论时需注意:若没有O在△ABC 的内部这一限制,则O还可能是△ABC的旁心.2. 如图2所示,设∠BAC在平面?琢内,点P?埸?琢,若PAB=PAC(或P到BAC的两边AB、AC的距离相等),则点P在平面?琢内的射影O在∠BAC的平分线所在的直线上.3. 若两个平面垂直,则其中一个面内的任意一条直线在另一个平面上的射影必在两个平面的交线上.(这个结论有助于我们去寻找一条直线与一个平面所成的角,倘若这条直线在一个与这个平面垂直的平面内,则它与两个平面的交线所成的角就是直线和平面所成的角)4. 直线和平面所成的角是直线和平面内所有直线所成角中的最小角.二、常用模型1. 如图3所示,设二面角?琢-l-?茁的大小为?兹,A、B∈l,AC?奂?琢,BD?奂?茁,AC⊥l,BD⊥l,且AB=d,AC=m,BD=n.这是一个包含二面角的平面角、两条异面直线的公垂线(距离)、其上任意两点间的距离等诸多条件的模型.作AE∥BD,连接DE,则由题意知:四边形ABDE为矩形,则∠CAE为二面角?琢-l-?茁的平面角,AB、CD所成的角为∠CDE.由余弦定理得:CE2=AC2+AE2-2AC?AEcos∠CAE=m2+n2-2mncos?兹,所以CD=■=■,且异面直线AB、CD 所成角∠CDE的余弦为cos∠CDE=■=■.这个模型告诉我们:若两条异面直线分别在一个二面角的两个面内且都和二面角的棱垂直,则可以很方便地求出它们上面任意两定点间的距离以及这两点的连线与二面角的棱所成的角.若反过来考虑,还可在知道两条异面直线上两点间距离的条件下,求出二面角的平面角(利用公式CD=■=■);另外,在这个模型中,还存在线面的垂直和面面的垂直(DE⊥平面CAE,平面CDE⊥平面CAE).2. 如图4所示,设二面角A-BC-D的大小为?兹,作AO⊥平面BCD于O,作OE⊥BC于E,连接AE,则由三垂线定理知AE⊥BC,所以∠AEO是二面角A-BC-D的平面角.在立体几何中,二面角通常采用本模型的形式叙述,即用两个共边的三角形表述,在这种情形下,一般最适合用三垂线定理作出二面角的平面角.3.墙角是我们生活中经常碰到的一种模型,它的几何抽象是从同一点出发的三条两两垂直的射线,也可以看成是长方体(或正方体)的一个角,因而它具有长方体(或正方体)的某些性质特征.连接长方体上下底面两条异面对角线的四个顶点可以得到一个四面体,这个四面体的特殊之处在于它的三组对棱对应相等,因而在平时的练习当中,若接触到这样一个特殊的四面体,可以将它补成一个长方体,从而利用长方体的性质来考虑问题.三、推论与模型在高考解题中的应用例:(2009江西卷理9)如图5所示,正四面体ABDC的顶点A,B,C分别在两两垂直的三条射线Ox,Oy,Oz上,则在下列命题中,错误的为:A.O-ABC是正三棱锥B .直线OB∥平面ACDC .直线AD与OB所成的角是45°D. 二面角D-OB-A为45°分析:该题从设问到图形的放置都有一定的迷惑性,逐个判断比较费时,但是,正四面体和墙角模型可将原图补为如图6所示的正方体,由OB∥DE不难得出B为错误的.。
微专题8 利用常见几何模型求解立体几何问题(3)
专题09 最值模型
这类问题是综合性问题,方法较多,常见方法有:导数法,基本不等式法,观察法等
例1.已知A ,B 是球O 的球面上两点,90AOB ∠=︒,C 为该球面上的动点,若三棱锥
O ABC -体积的最大值为36,则球O 的表面积为( )
A .36π
B .64π
C .144π
D .256π
【类比训练1】体积为183的正三棱锥-A BCD 的每个顶点都在半径为R 的球O 的球面上,球心O 在此三棱锥内部,且=:2:3R BC
,点E 为BD 的中点,过点E 作球O 的截面,则所得截面圆面积的最小值是 .
例2.已知三棱锥O ABC -的顶点A ,B ,C 都在半径为2的球面上,O 是球心,120AOB
∠=︒,当A O C ∆与B O C ∆的面积之和最大时,三棱锥O ABC -的体积为( )
A .32
B .233
C .23
D .13
【类比训练1】已知底面为正三角形的三棱柱内接于半径为1的球,则三棱柱的体积的最大值为 .
【类比训练2】已知底面为正三角形的直三棱柱内接于半径为1的球,当三棱柱的体积最大时,三棱柱的高为 .
专题10 垂面模型
例 1.已知ABC ∆是以BC 为斜边的直角三角形,P 为平面ABC 外一点,且平面PBC ⊥平面ABC ,3BC =,22PB =,5PC =,则三棱锥P ABC -外接球的表面积为 .
【类比训练1】在三棱锥P ABC -中,4AB AC ==,120BAC ∠=︒,43PB PC ==,平面PBC ⊥平面ABC ,则三棱锥P ABC -外接球的表面积为 .
例2.已知点A 是以BC 为直径的圆O 上异于B ,C 的动点,P 为平面ABC 外一点,且平面PBC ⊥平面ABC ,3BC =,22PB =,5PC =,则三棱锥P ABC -外接球的表面积为 .
【类比训练2】在菱形ABCD 中,60DAB ∠=︒,将这个菱形沿对角线BD 折起,使得平面DAB ⊥平面BDC ,若此时三棱锥A BCD -的外接球的表面积为5π,则AB 的长为 .
专题11二面角模型
例1.在三棱锥P ABC -中,AB BC ⊥,三角形PAC 为等边三角形,二面角P AC B --的余弦值为63-,当三棱锥P ABC -的体积最大值为13时,三棱锥P ABC -的外接球的表面积为 . 【类比训练1】在三棱锥A BCD -中,ABD ∆和CBD ∆均为边长为2的等边三角形,且二面角A BD C --的平面角为60︒,则三棱锥的外接球的表面积为 .
例2.在等腰直角ABC ∆中,2AB =,90BAC ∠=︒,AD 为斜边BC 的高,将ABC ∆沿AD 折叠,使二面角B AD C --为60︒,则三棱锥A BCD -的外接球的表面积为 .
【类比训练2】在平面五边形ABCDE 中,60A ∠=︒,63AB AE ==,BC CD ⊥,DE CD ⊥,且6BC DE ==.将五边形ABCDE 沿对角线BE 折起,使平面ABE 与平面BCDE 所成的二面角为120︒,则沿对角线BE 折起后所得几何体的外接球的表面积是 .
【类比训练3】在三棱锥S ABC -中,6AB =,8BC =,10AC =,二面角S AB C --、S AC B --、S BC A --的大小均为4
π,设三棱锥S ABC -的外接球球心为O ,直线SO 交平面ABC 于点M ,则三棱锥S ABC -的内切球半径为 ,SO OM
= . 专题12 坐标法模型
例3. 四面体ABCD 在空间坐标系内的坐标分别为(0,0,0)A ,(0,0,1)B ,(0,2,0)C ,33(
,,0)22
D ,则该四面体的外接球的面积为( )
A .2π
B .2π
C .4π
D .5π 专题13圆锥圆柱圆台模型
例4.半径为4的球中有一个内接圆柱,圆柱的侧面积为163π,则圆柱的体积为 .。