积分变换第4讲
- 格式:ppt
- 大小:451.50 KB
- 文档页数:34
积分变换定理积分变换定理是微积分中的重要定理之一,它为我们解决一类特殊的微分方程提供了有力的工具。
该定理将微分方程的解与积分方程的解联系起来,通过对方程两边进行积分变换,可以将微分方程转化为积分方程,从而简化问题的求解过程。
积分变换定理的基本形式可以表示为:若函数f(x)在[a,b]上连续,且f(x)在区间[a,b]上的积分存在,则有:∫[a,b]f'(x)dx = f(b) - f(a)其中f'(x)表示f(x)的导数。
这个定理说明了,如果一个函数在某个区间上的导数存在且连续,那么它在这个区间上的积分也存在,并且可以通过积分变换定理求得。
积分变换定理的应用十分广泛。
首先,它可以用于求解微分方程。
对于一些特殊的微分方程,通过应用积分变换定理,可以将微分方程转化为积分方程,从而更容易求解。
其次,积分变换定理可以用于计算一些复杂的积分。
通过将积分进行变换,可以将原本复杂的积分化简为简单的形式,从而便于计算。
此外,积分变换定理还可以用于证明一些数学定理和推导一些数学公式。
积分变换定理的证明可以通过微积分的基本理论进行推导。
首先,根据微积分的基本定义,我们知道积分是微分的逆运算。
也就是说,对于一个函数f(x),如果它的导数存在且连续,那么它在某个区间上的积分也存在,并且可以通过积分运算求得。
因此,我们可以得到∫[a,b]f'(x)dx = f(x) + C,其中C为常数。
接下来,我们可以通过边界条件来确定这个常数C的值。
当x=a时,有∫[a,b]f'(x)dx = f(a) + C;当x=b时,有∫[a,b]f'(x)dx = f(b) + C。
由于两边的积分相等,所以f(a) + C = f(b) + C,即f(b) - f(a) = ∫[a,b]f'(x)dx。
通过这个证明过程,我们可以看出积分变换定理的本质是微分方程的边界条件。
在应用积分变换定理时,我们需要注意边界条件的确定,以保证结果的准确性。
笔记前言:本笔记的内容是去掉步骤的概述后,视频的所有内容。
本猴觉得,自己的步骤概述写的太啰嗦,大家自己做笔记时,应该每个人都有自己的最舒服最简练的写法,所以没给大家写。
再是本猴觉得,不给大家写这个概述的话,大家会记忆的更深,掌握的更好!所以老铁!一定要过呀!不要辜负本猴的心意!~~~【祝逢考必过,心想事成~~~~】【一定能过!!!!!】复变函数与积分变换第一课一、 复数的加减乘除举例:①(2+3i)+(3+4i)=(2+3)+(3+4)i =5+7i②(3+4i)−(2+3i)=(3−2)+(4−3)i =1+i③(2+3i)×(3+4i)=2×3+2×4i+3i×3+3i×4i =6+8i+9i −12 =−6+17i ④ 2+3i 3+4i=(2+3i)(3−4i)(3+4i)(3−4i)=6−8i+9i+1232−(4i)2=18+i 9+16=1825+125i二、 求复数的实部与虚部例1:已知z=9−10i ,试求Re(z),Im(z)。
Re(z)=9,Im(z)=−10例2:已知z=3+3i ,w=z−1z+i ,试求Re(w),Im(w)。
w=z−1z+i=3+3i−13+3i+i=2+3i 3+4i=1825+125i猴博士爱讲课Re(w)=1825,Im(w)=125三、 求某复数的共轭复数例1:已知z=9−10i ,试求 z̅。
z ̅=9+10i例2:已知z=3+3i ,试求z−1z ̅+7i 。
z−1z̅+7i =3+3i−13−3i+7i =2+3i3+4i =1825+125i四、 求模、辐角和辐角主值例1:已知z=1+i ,试求z 的模、辐角、辐角主值。
∵ Re(z)=1,Im(z)=1 ∴ |z|=√12+12=√2∵ arg(z)∈(−π,π]猴博士爱讲课∴ arg(z)=π4Arg(z)=π4+2kπ,k=0,±1,±2···例2:已知w=−2+2i ,试求w 的模、辐角、辐角主值。