高二数学2015-2016下期中考试试卷
- 格式:doc
- 大小:883.50 KB
- 文档页数:2
2015-2016学年高二(下)期中数学试卷(含答案)一、选择题(共5小题,每小题5分,满分25分)1.如果直线y=x+b经过圆x2+y2+4x﹣2y﹣4=0的圆心,则b=( )A.﹣3 B.0 C.3 D.﹣22.直线x﹣2y+2=0和直线3x﹣y+7=0的夹角是( )A.30° B.60° C.45° D.135°3.设椭圆的焦点为F1、F2,直线L过点F1,且与椭圆相交于A,B两点,则△ABF2的周长为( )A.9 B.16 C.20 D.254.已知A(1,3)、B(4,﹣1)两点,则AB的距离=( )A.5 B.6 C.7 D.45.已知 A(﹣2,3)、B(4,﹣3)两点,则线段AB的中点坐标是( )A.(3,0) B.(2,3) C.(3,3) D.(1,0)二、填空题(每题5分,共40分)6.直线x﹣y﹣1=0的斜率是__________;倾斜角为__________;在y轴上的截距是__________.7.已知直线经过点A(1,2)、B(3,4),则斜率K=__________;倾斜角α=__________.8.如果直线ax﹣2y+1=0和2x﹣ay+3=0平行,则a=__________.9.已知直线(3a+2)x+(1﹣4a)y+8=0与(5a﹣2)x+(a+4)y﹣7=0垂直,则a=__________.10.过点A(2,1)且与直线2x+y﹣10=0垂直的直线l的方程是__________.11.椭圆+=1的焦点坐标是__________,长轴长=__________,短轴长=__________,焦距=__________,顶点坐标是__________,离心率e=__________,准线方程是__________.12.以点A(﹣1,2)为圆心,3为半径的圆,方程为__________.三、简答题(每题6分,共36分)13.求平行线L1:2x+3y﹣8=0和L2:2x+3y+18=0的距离.14.圆心在点C(1,3),并且和直线3x﹣4y﹣11=0相切的圆.15.求斜率为3,且和圆x2+y2=4相切的直线方程.16.求经过圆(x﹣1)2+(y﹣1)2=1外的一点P(2,3)向圆所引的切线方程.17.在椭圆中,a=5,b=4,焦点在x轴上,求椭圆方程.18.椭圆焦距为8,离心率e=0.8,求该椭圆的标准方程.一、选择题(共5小题,每小题5分,满分25分)1.如果直线y=x+b经过圆x2+y2+4x﹣2y﹣4=0的圆心,则b=( )A.﹣3 B.0 C.3 D.﹣2【考点】圆的一般方程.【专题】计算题;直线与圆.【分析】把圆的方程化为标准方程后,找出圆心坐标,代入直线y=x+b即可得出结论.【解答】解:把圆的方程化为标准方程得:(x+2)2+(y﹣1)2=9,则圆心坐标为(﹣2,1),∵直线y=x+b经过圆x2+y2+4x﹣2y﹣4=0的圆心,∴1=﹣2+b,∴b=3,故选:C.【点评】本题考查直线与圆的位置关系,考查学生的计算能力,确定圆心坐标是关键.2.直线x﹣2y+2=0和直线3x﹣y+7=0的夹角是( )A.30° B.60° C.45° D.135°【考点】两直线的夹角与到角问题.【专题】计算题;直线与圆.【分析】根据题意算出两条直线的斜率值,再利用两条直线的夹角公式加以计算,可得夹角的正切值为1,从而得到夹角的大小.【解答】解:∵直线x﹣2y+2=0的斜率k1=,直线3x﹣y+7=0的斜率k2=3,∴设两条直线的夹角为θ,由tanθ=||=1∵0°<θ<90°,∴θ=45°即两条直线的夹角等于45°故选:C.【点评】本题给出两条定直线,求它们的夹角大小.考查了直线的位置关系和两条直线的夹角公式等知识,属于基础题.3.设椭圆的焦点为F1、F2,直线L过点F1,且与椭圆相交于A,B两点,则△ABF2的周长为( )A.9 B.16 C.20 D.25【考点】椭圆的简单性质.【专题】整体思想;数学模型法;圆锥曲线的定义、性质与方程.【分析】利用椭圆的定义即可得出.【解答】解:∵椭圆,则a=5.∴△ABF2的周长=|AB|+|AF2|+|BF2|═|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a=4〓5=20.故选:C.【点评】本题考查了椭圆的定义、三角形的周长,考查了推理能力与计算能力,属于中档题.4.已知A(1,3)、B(4,﹣1)两点,则AB的距离=( )A.5 B.6 C.7 D.4【考点】两点间距离公式的应用.【专题】计算题;直线与圆.【分析】根据两点间的距离公式可直接解答.【解答】解:∵两点A(1,3)、B(4,﹣1),∴A、B两点间的距离是:=5.故选:A.【点评】本题考查了两点间的距离.求直角坐标系内任意两点间的距离可直接套用两点间的距离公式.5.已知 A(﹣2,3)、B(4,﹣3)两点,则线段AB的中点坐标是( )A.(3,0) B.(2,3) C.(3,3) D.(1,0)【考点】中点坐标公式.【专题】直线与圆.【分析】根据已知中A,B点的坐标,代入中点坐标公式,可得答案.【解答】解:∵A(﹣2,3)、B(4,﹣3),∴线段AB的中点坐标是(,)=(1,0),故选:D.【点评】本题考查的知识点是中点坐标公式,难度不大,属于基础题.二、填空题(每题5分,共40分)6.直线x﹣y﹣1=0的斜率是1;倾斜角为45°;在y轴上的截距是﹣1.【考点】直线的斜率.【专题】直线与圆.【分析】化直线方程的一般式为斜截式,由此求得直线的斜率,倾斜角以及直线在y轴上的截距.【解答】解:由x﹣y﹣1=0,得y=x﹣1.∴直线x﹣y﹣1=0的斜率是1,倾斜角为45°,在y轴上的截距为﹣1.故答案为:1;45°;﹣1.【点评】本题考查直线的斜率,考查了化直线的一般方程为斜截式方程,是基础题.7.已知直线经过点A(1,2)、B(3,4),则斜率K=1;倾斜角α=.【考点】直线的斜率;直线的倾斜角.【专题】计算题;直线与圆.【分析】利用直线的斜率公式代入数值计算即得斜率,利用斜率与倾斜角的关系,可得倾斜角.【解答】解:∵直线经过点A(1,2)、B(3,4),∴k==1,∵0≤α<π,∴α=.故答案为:1;.【点评】本题考查了由直线上的两点求其斜率的问题,考查斜率与倾斜角的关系,是基础题.8.如果直线ax﹣2y+1=0和2x﹣ay+3=0平行,则a=〒2.【考点】直线的一般式方程与直线的平行关系.【专题】直线与圆.【分析】直线直线判断的等价条件进行判断即可.【解答】解:若a=0,则两直线方程为﹣2y+1=0,2x+3=0.此时两直线不平行,若a≠0,若两直线平行,则≠,由得a2=4,则a=〒2,满足条件.故答案为:〒2【点评】本题主要考查直线平行的应用,根据系数之间的关系是解决本题的关键.9.已知直线(3a+2)x+(1﹣4a)y+8=0与(5a﹣2)x+(a+4)y﹣7=0垂直,则a=0或1.【考点】直线的一般式方程与直线的垂直关系.【专题】直线与圆.【分析】由直线的垂直关系可得a的方程,解方程可得.【解答】解:∵直线(3a+2)x+(1﹣4a)y+8=0与(5a﹣2)x+(a+4)y﹣7=0垂直,∴(3a+2)(5a﹣2)+(1﹣4a)(a+4)=0,化简可得a2﹣a=0,解得a=0或a=1故答案为:0或1【点评】本题考查直线的一般式方程和垂直关系,属基础题.10.过点A(2,1)且与直线2x+y﹣10=0垂直的直线l的方程是x﹣2y=0..【考点】直线的一般式方程与直线的垂直关系.【专题】直线与圆.【分析】由垂直可得直线的斜率,可得点斜式方程,化为一般式即可.【解答】解:∵直线2x+y﹣10=0的斜率为﹣2,由垂直可得所求直线的斜率为,∴所求直线的方程为y﹣1=(x﹣2),化为一般式可得x﹣2y=0故答案为:x﹣2y=0【点评】本题考查直线的一般式方程和垂直关系,属基础题.11.椭圆+=1的焦点坐标是(〒3,0),长轴长=10,短轴长=8,焦距=6,顶点坐标是(〒5,0);(0,〒4),离心率e=,准线方程是x=.21世纪教育网版权所有【考点】椭圆的简单性质.【专题】数形结合;数学模型法;圆锥曲线的定义、性质与方程.【分析】由椭圆+=1可得:a=5,b=4,c==3,即可得出.【解答】解:椭圆+=1可得:a=5,b=4,c==3,于是可得:焦点坐标是(〒3,0),长轴长=2a=10,短轴长=2b=8,焦距=2c=6,顶点坐标是(〒5,0),(0,〒4)离心率e==,准线方程是x=即x=.故答案分别为:(〒3,0);10;8;6;(〒5,0);(0,〒4);;x=.【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.12.以点A(﹣1,2)为圆心,3为半径的圆,方程为(x+1)2+(y﹣2)2=9.【考点】圆的标准方程.【专题】直线与圆.【分析】根据圆心坐标和半径,代入圆的标准方程,可得答案.【解答】解:以点A(﹣1,2)为圆心,3为半径的圆的标准方程为:(x+1)2+(y﹣2)2=9,故答案为:(x+1)2+(y﹣2)2=9【点评】本题考查的知识点是圆的标准方程,难度不大,属于基础题.三、简答题(每题6分,共36分)13.求平行线L1:2x+3y﹣8=0和L2:2x+3y+18=0的距离.【考点】直线的一般式方程与直线的平行关系.【专题】直线与圆.【分析】由已知中直线方程,代入平行线距离公式,可得答案.【解答】解:平行线L1:2x+3y﹣8=0和L2:2x+3y+18=0的距离d满足:d==2【点评】本题考查的知识点是平行线间距离公式,难度不大,属于基础题.14.圆心在点C(1,3),并且和直线3x﹣4y﹣11=0相切的圆.【考点】圆的切线方程.【专题】计算题;直线与圆.【分析】根据直线3x﹣4y﹣11=0为所求圆的切线,得到圆心到切线的距离等于圆的半径,故利用点到直线的距离公式求出圆心到已知直线的距离d,即为圆的半径r,根据圆心和半径写出圆的标准方程.【解答】解:∵圆心(1,3)到直线3x﹣4y﹣11=0的距离d==4,∴所求圆的半径r=4,则所求圆的方程为:(x﹣1)2+(y﹣3)2=16.【点评】此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,以及圆的标准方程,当直线与圆相切时,圆心到直线的距离等于圆的半径,即d=r,熟练掌握此性质是解本题的关键.15.求斜率为3,且和圆x2+y2=4相切的直线方程.【考点】圆的切线方程.【专题】计算题;直线与圆.【分析】设所求的直线的方程为y=3x+b,根据圆心(0,0)到直线的距离等于半径求得k 的值,可得所求的直线方程.【解答】解:设所求的直线的方程为y=3x+b,即3x﹣y+k=0,则由圆心(0,0)到直线的距离等于半径可得=2,求得k=〒2,故所求的直线方程为3x﹣y〒2=0.【点评】本题主要考查直线和圆相切的性质,点到直线的距离公式的应用,用待定系数法求直线的方程,属于基础题.16.求经过圆(x﹣1)2+(y﹣1)2=1外的一点P(2,3)向圆所引的切线方程.【考点】圆的切线方程.【专题】计算题;直线与圆.【分析】由圆的方程找出圆心坐标和半径r,当切线方程的斜率不存在时,显然x=2满足题意;当切线方程的斜率存在时,设斜率为k,由P的坐标和k表示出切线方程,利用点到直线的距离公式表示出圆心到切线的距离d,根据d=r列出关于k的方程,求出方程的解,得到k的值,确定出此时切线的方程,综上,得到所有满足题意的切线方程.【解答】解:由圆(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,当过P的切线方程斜率不存在时,显然x=2为圆的切线;当过P的切线方程斜率存在时,设斜率为k,切线方程为y﹣3=k(x﹣2),即kx﹣y﹣2k+3=0,∴圆心到切线的距离d==r=1,解得:k=,此时切线方程为3x﹣4y+6=0,综上,切线方程为x=2或3x﹣4y+6=0.【点评】此题考查了圆的切线方程,涉及的知识有:圆的标准方程,点到直线的距离公式,直线的点斜式方程,利用了分类讨论的思想,是高考中常考的题型.本题易漏掉特殊情况导致错误17.在椭圆中,a=5,b=4,焦点在x轴上,求椭圆方程.【考点】椭圆的标准方程.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】椭圆方程中,由a=5,b=4,焦点在x轴,能够求出椭圆的标准方程.【解答】解:∵椭圆方程中,a=5,b=4,焦点在x轴,∴椭圆方程为.【点评】本题考查椭圆的方程,考查学生的计算能力,比较基础.18.椭圆焦距为8,离心率e=0.8,求该椭圆的标准方程.【考点】椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程.【分析】由题意求出椭圆的半焦距,结合离心率求出a,则b可求,椭圆的标准方程可求.【解答】解:由题意知,2c=8,c=4,又,得a=5.∴b2=a2﹣c2=25﹣16=9.则椭圆的标准方程为或.【点评】本题考查椭圆的简单性质,考查了椭圆标准方程的求法,是基础题.。
洛阳市2015——2016学年第二学期期中考试高二数学试卷(理A )一、选择题(本大题共12个小题,每小题5分,共60分) 1、已知i 为虚数单位,(1)(2)i i a bi +-=+,其中,a b R ∈,则( )A .1,1a b ==B .3,1a b ==C .1,0a b ==D .3,0a b ==2、已知函数()23f x x x =-,则(2)(23)lim t f f t t →∞--的值为( )A .-2B .13 C .1 D .33、已知i 为虚数单位,复数12iz i +=在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限4、给出下列数阵第1列 第2列 第3列 第4列第1行 1 第2行 2 3第3行 4 5 6第4行 7 8 9 10L L设第i 行第j 列的数字为ij a ,则2016为( )A .32,33aB .2016,1aC .63,62aD .63,63a5、若函数()32(,,,)f x ax bx cx d a b c d R =+++∈有极值点,则导函数()f x '的图象可能是()6、已知i 为虚数单位,若复数z 满足341z i --=,则z 的最大值为( ) A .4 B .5 C .42 D .67、11lim (sin )n n i in n →∞==∑( )A .1cos1-B .1sin1-C .2π D .2π- 8、已知核黄素()2612()f x x x a a R =-++∈,则核黄素()f x 的极值点的个数为( )A .0B .1C .2D .与实数a 的取值有关9、过点(1,0)作曲线2y x =的切线,切线方程为( )A .0330y x y =--=或B .0274270y x y =--=或C .01y x ==或D .1330x x y =--=或10、已知核黄素()22x x f x e ae x =-+是R 上的增函数,则实数a 的取值范围是( )A .[]4,4-B .[22,22]-C .(,4]-∞D .(,22]-∞11、用数学归纳法证明不等式1111(,1)2321n n n N n ++++<∈>-L 上,不等式的左边从n k =到1n k =+,需添加的式子是( )A .111112212221k k k k +++++++-L B .1121k +- C .111221k k ++- D .1111145621k +++++-L 12、已知定义在R 上的可导函数()f x 图象既关于直线1x =对称,又关于直线5x =对称,且当[]1,5x ∈时,有()()3f x f x '>,则下列各式成立的是( )A .33(14)(5),(10)(19)e f f e f f -<--<-B .33(14)(5),(10)(19)e f f e f f ->-->-C .33(14)(5),(10)(19)e f f e f f -<-->-D .33(14)(5),(10)(19)e f f e f f ->--<-第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
2015-2016学年高二下学期期中考试 数 学 试 卷(文科重点、潜能、特长班)考试时间:120分钟 分值:150分一、选择题(每小题5分 共计60分)1、方程组2219x y x y +=⎧⎨-=⎩的解集是( )A .(5,4)B .(5,4)-C .{(5,4)}-D .{(5,4)}- 2、圆)sin (cos 2θθρ+=的圆心坐标是( )A .⎪⎭⎫⎝⎛4,1π B .⎪⎭⎫ ⎝⎛4,21π C .⎪⎭⎫ ⎝⎛4,2π D .⎪⎭⎫ ⎝⎛4,2π 3、已知直线l 的参数方程为12332x ty t ⎧=+⎪⎨=-⎪⎩(t 为参数 ),则直线l 的倾斜角为( ) A .6π B .4π C .34π D .56π4、已知集合{}|11M x x =-<<,{}|N x y x==,则M N = ( )A.{}|01x x << B. {}|01x x ≤< C. {}|0x x ≥ D. {}|10x x -<≤5、下列四组函数,表示同一函数的是( ). A .()2f x x =,()g x x= B .()f x x =,()2xg x x =C . ()24f x x =-,()22g x x x =+⋅- D .()1f x x =+,()1,11,1x x g x x x +≥-⎧=⎨--<-⎩ 6、命题:“0>∀x ,02≥-x x ”的否定形式是( )A.0x ∀≤,20x x ->B.0x ∀>,02≤-x xC.0>∃x ,02<-x xD.0≤∃x ,02>-x x7、“a b >”是 “22ac bc >”的( )考试时间:2016年5月A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8、已知命题p :x R ∃∈,20x ->,命题q :x R ∀∈,x x <,则下列说法中正确的是( )A .命题p q ∨是假命题B .命题p q ∧是真命题C .命题()p q ∧⌝是真命题D .命题()p q ∨⌝是假命题9、已知函数()21f x +的定义域为12,2⎛⎫- ⎪⎝⎭,则()f x 的定义域为( ) A .31,24⎛⎫- ⎪⎝⎭ B .31,2⎛⎫- ⎪⎝⎭ C .()3,2- D .()3,3- 10、如果函数,2)1(2)(2+-+=x a x x f 在区间(]4,∞-上单调递减,那么实数a 的取值范围是( ) A.3-≤a B.3-≥a C.5≤a D.5≥a11、设定义在R 上的奇函数()f x 满足)0(4)(2>-=x x x f ,则0)2(>-x f 的解集为( ) A .(4,0)(2,)-+∞ B . (0,2)(4,)+∞ C . (,0)(4,)-∞+∞ D .(4,4)-12、已知不等式9)1)((≥++y ax y x 对任意正实数y x ,恒成立,则正实数a 的最小值为A .8B .6C .4D .2二、填空题(每小题5分 共计:20分)13、已知2(1)3,f x x x -=-则函数()f x 的解析式()f x = . 14、设(,x y )在映射f 下的象是(,)22x y x y+-,则(5,2)-在f 下的原象是 . 15、若不等式R x a x x ∈≥-++对|1||2|恒成立,则实数a 的取值范围是 . 16、下列说法:①“,23xx R ∃∈>”的否定是“,23x x R ∀∈≤”; ②函数sin 2sin 236y x x ππ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭的最小正周期是π; ③命题“函数()f x 在x x =处有极值,则()0f x '=”的否命题是真命题;④()f x 是()(),00,-∞+∞ 上的奇函数,0x >时的解析式是()2xf x =,则0x <时的解析式为()2xf x -=-.其中正确的说法是 . 三、解答题(共计:70分) 17、(本小题满分10分) 求直线(t 为参数)被圆(α为参数)截得的弦长.18、(本小题满分12分) 设正数,,x y z ,(1)满足1x y z ++=,求证:14936x y z ++≥;(2)若1=+y x ,求11()()x y x y ++的最小值。
绍兴一中期中考试试题卷一、选择题(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.命题“若2x =,则2320xx -+=”的逆否命题是( )A .若2x ≠,则2320x x -+≠B .若2320x x -+=,则2x =C .若2320x x -+≠,则2x ≠D .若2x ≠,则2320x x -+=2.椭圆221y x m+=的焦点在x 轴上,长轴长是短轴长的两倍,则m 的值为 ( ) A .14 B .12C .2D .43.曲线y =x e x +2x -1在点(0,-1)处的切线方程为 ( )A .y =3x -1B .y =-3x -1C .y =3x +1D .y =-2x -14.若函数()y f x =的导函数...在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是( )A .B .C .D .5.直线3+=x y 与曲线1492=-x x y 的公共点的个数是 ( ) A. 1 B.2 C.3 D. 46.过点(3,2)--A 作直线与抛物线28=x y 在第二象限相切于点B ,记抛物线的焦点为F ,则直线BF 的斜率为 ( ) A.32-B.23- C.43- D.34- y7.已知函数())0(212<-+=x e x x f x与())ln(2a x x x g ++=图象上存在关于y 轴对称的点,则a 的取值范围是 ( ) A. )1,(e -∞ B. ),(e -∞ C. ),1(e e - D. )1,(ee -8.如图所示,,,A B C 是双曲线22221(0,0)x y a b a b-=>>上的三个点,AB 经过原点O ,AC 经过右焦点F ,若BF AC ⊥且||||BF CF =,则该双曲线的离心率是 ( )A .BC .32D .3二、填空题(本大题共9个空格,每个空格3分,满分27分)9.双曲线2212x y -=的焦距是 ,渐近线方程是 . 10.抛物线x y C 2:2=的准线方程是 ,经过点)1,4(P 的直线l 与抛物线C 相交于,A B 两点,且点P 恰为AB 的中点,F 为抛物线的焦点,则AF BF +=.11.已知函数()sin f xx x =-,则关于a 的不等式()()2240f a f a -+->的解是_ _.12.在椭圆2222:1(0)x y C a b a b+=>>中,斜率为(0)k k >的直线交椭圆于左顶点A 和另一点B ,点B在x 轴上的射影恰好为右焦点F ,若椭圆离心率13e =,则k 的值为________. 13.设函数1()()2ln =--f x p x x x (p 是实数)在其定义域内为增函数,则p 的取值范围为 .14.设抛物线21:2(0)=>C y px p 的焦点F 是双曲线22222:1(0,0)-=>>x y C a b a b右焦点.若曲线12C C 与的公共弦AB 恰好过F ,则双曲线2C 的离心率e 的值为 .15.已知点A (﹣3,0)和圆O :x 2+y 2=9,AB 是圆O 的直径,M 和N 是AB 的三等分点,P (异于 A ,B )是圆O 上的动点,PD ⊥AB 于D ,,直线PA 与BE 交于C ,则当λ= 时,|CM|+|CN|为定值.三、解答题(本大题共5小题,满分49分,解答应写出文字说明, 证明过程或演算步骤)16.已知命题:p 实数m 满足:方程221(0)34x y a m a m a +=>--表示双曲线;命题:q 实数m 满足方程22y x +=12-m m-1表示焦点在y 轴上的椭圆. (1)若命题q 为真命题,求m 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.17.已知函数32()f x x ax bx c =+++在32-=x 与1x =时都取得极值. (1)求a 、b 的值及函数()f x 的单调区间;(2)若对[]1,2x ∈-,不等式2()f x c <恒成立,试求c 的取值范围.18.在平面直角坐标系x O y 中,直线l 与抛物线x y 22=相交于A 、B 两点。
2015-2016学年第二学期高二期中考试数学学科(文科)试题一、填空题:本大题共14小题,每小题5分,共70分1.命题0)(),2,0(:<∈∀x f x p π,则p ⌝: .2.已知复数i Z 43+= (i 为虚数单位),则Z = . 3.设全集{}3,2,1,0,1{},42-=≤≤-∈=A x Z x U ,若A C B U ⊆,则集合B 的个数是 .4.已知复数i Z i Z 34,221-=+= 在复平面内的对应点分别为点A 、B ,则A 、B 的中点所对应的复数是 .5.已知11)1(+=x x f ,那么)(x f 的解析式为 . 6.已知ni i+=-112,其中i R n ,∈ 是虚数单位,则n = . 7.函数)3lg(1)(2x x x f --=的定义域为 .8. 函数⎪⎩⎪⎨⎧>+-≤=0,10,2)(2x x x x f x 的值域为 . 9.若函数2+-=x b x y 在)2)(6,(-<+b a a 上的值域为),2(+∞,则=+b a . 10.若命题“存在04,2≤++∈a x ax R x ”为假命题,则实数a 的取值范围是 .11. 已知函数⎩⎨⎧≥<+-=-1,21,3)21()(1x x a x a x f x 的值域为R ,则实数a 的取值范围是 . 12. 记12x x -为区间],[21x x 的长度.已知函数)0](,2[,2≥-∈=a a x y x,其值域为],[n m ,则区间],[n m 的长度的最小值是 .13.观察下列各式9﹣1=8,16﹣4=12,25﹣9=16,36﹣16=20…,这些等式反映了自然数间的某种规律,设n 表示自然数,用关于n 的等式表示为 . 14.设][x 表示不超过x 的最大整数,如2]5.1[,1]5.1[-=-=.若函数x xaa x f +=1)( )1,0(≠>a a ,则]21)-([]21)([)(-+-=x f x f x g 的值域为 . 二、解答题:(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分14分) 已知}42{},71{},9{2<-=≤<-=≥=x x C x x B x x A .(1)求A ∩B 及A ∪C ;(2)若U=R ,求A ∩∁U (B ∩C )16.(本小题满分14分)已知复数Z 满足:Z i Z -+=31,求Zi i 2)43()1(2++的值.17.(本小题满分15分)设a 为实数,给出命题:p 关于x 的不等式a x ≥-1)21(的解集为φ,命题:q 函数]89)2(lg[)(2+-+=x a ax x f 的定义域为R ,若命题""q p ∨为真,""q p ∧为假,求实数a 的取值范围.18.(本小题满分15分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x(单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v 的值为2千克/年;当204≤<x 时,v 是x 的一次函数,当x 达到20尾/立方米时,因缺氧等原因,v 的值为0千克/年.(1)当200≤<x 时,求v 关于x 的函数表达式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.19.(本小题满分16分)若)(x f 为二次函数,1-和3是方程04)(=--x x f 的两根,1)0(=f(1)求)(x f 的解析式;(2)若在区间]1,1[-上,不等式m x x f +>2)(有解,求实数m 的取值范围.20.(本小题满分16分)已知函数0(2log )(>-+=a x m x x f a且)1≠a 的定义域为2{>x x 或}2-<x . (1)求实数m 的值;(2)设函数)2()(xf xg =,对函数)(x g 定义域内任意的21,x x ,若021≠+x x ,求证:)1()()(212121x x x x g x g x g ++=+; (3)若函数)(x f 在区间),4(r a -上的值域为),1(+∞,求r a -的值.2015-2016学年第二学期高二期中考试数学试题(文科)参考答案一、填空题: 1. 0)(),2,0(≥∈∃x f x π2. 53. 44. i -35. xx x f +=1)( 6. 1 7. 5]30[-2,(), 8. ]1,(-∞ 9. 10- 10. ),(∞+2 11. )21,0[ 12. 3 13. )(),1(4)2(*22N n n n n ∈+=-+ 14. 1}-{0,二、解答题:15.解:(1)集合A 中的不等式解得:x≥3或x≤﹣3,即A={x|x≥3或x≤﹣3};--2分 集合C 中的不等式解得:﹣2<x <6,即C={x|﹣2<x <6},-------- -------------4分 ∴A∩B={x|3≤x≤7},----------------------- ------------------------------6分 A∪C={x|x≤﹣3或x >﹣2};-----------------------------------------------8分(2)∵B∩C={x|﹣1<x <6},-----------------------------------------------10分 全集U=R ,∴∁U (B∩C)={x|x≤﹣1或x≥6},--------------------------------12分 则A∩∁U (B∩C)={x|x≥6或x≤﹣3}.--------------------------------------14分16.解:设z=a+bi (a ,b ∈R ),---------------------------------------------2分 而|z|=1+3i ﹣z ,即,-------------------------------4分 则-----------------------------------------------------6分 解得,z=﹣4+3i ,--------------------------------------------------8分 ∴==1.-------------14分17.解:命题p :|x ﹣1|≥0,∴,∴a>1;---------------------4分命题q :不等式的解集为R ,∴,解得;---------------------------------------------------------------8分若命题“p∨q”为真,“p∧q”为假,则p,q一真一假;----------------------10分p真q 假时,,解得a≥8;----------------------------------12分p假q 真时,,解得;-----------------------------------14分∴实数a 的取值范围为:.----------------------------15分18.解(1)由题意得当0<x≤4时,v=2; ----------------------------------2分当4<x≤20时,设v=ax+b,由已知得:,解得:,所以v=﹣x+,---------------------4分故函数v=;-------------------------------------------6分(2)设年生长量为f(x)千克/立方米,依题意并由(1)可得f(x)=-----------------------8分当0<x≤4时,f(x)为增函数,故f(x)max=f(4)=4×2=8;-----------------10分当4<x≤20时,f(x)=﹣x2+x=﹣(x2﹣20x)=﹣(x﹣10)2+,f(x)max=f(10)=12.5.--------------------------------------------------12分所以当0<x≤20时,f(x)的最大值为12.5.-------------------------------14分即当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.--------------------------------------------------------------------15分19. 解:(1)设二次函数f(x)=ax2+bx+c,(a≠0),由f(0)=1可得c=1,------------------------------------------------------2分故方程f(x)﹣x﹣4=0可化为ax2+(b﹣1)x﹣3=0,∵﹣1和3是方程f(x)﹣x﹣4=0的两根,∴由韦达定理可得﹣1+3=﹣,﹣1×3=,解得a=1,b=﹣1,故f(x)的解析式为f(x)=x2﹣x+1;----------------------------------------8分(2)∵在区间[﹣1,1]上,不等式f(x)>2x+m有解,∴m<x2﹣3x+1在区间[﹣1,1]上有解,--------------------------------------10分故只需m小于函数g(x)=x2﹣3x+1在区间[﹣1,1]上的最大值,由二次函数可知当x=﹣1时,函数g(x)取最大值5,--------------------------14分∴实数m的取值范围为(﹣∞,5)------------------------------------------16分20.解:(1)m=2时,解得,x>2,或x<﹣2;∴m=2;-----------------1分(2)证明:,;------------2分∴g(x1)+g(x2)==;=;∴;------------------------------------6分(3);∴①若a>1,f(x)在(a﹣4,r)上单调递减;∴;∴;∴;∴;-----------------------------12分②若0<a<1,f(x)在(a﹣4,r)上单调递增;∴;∴;∴,或(舍去);∴.-----------------16分。
第12题图第10题图2015学年度第二学期高二年级数学学科期中考试卷(考试时间:120分钟 满分:150分 )一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.已知复数z 满足()3425i z +=,则z =_________. 2.半径为1的球的表面积为_____________.3. 若抛物线px y 22=的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.4. 设k 是实数,若方程22144x y k k -=-+表示的曲线是双曲线,则k 的取值范围为. 5. 直线()2110x a y +++=的倾斜角的取值范围是______.6.设βα,是方程022=+-m x x 的两个虚根,且8||||=+βα,则实数=m ________.7. 圆锥的侧面展开图为扇形,已知扇形弧长为2π_____.8. 在直三棱柱111ABC A B C -中,0190,2,1ACB AA AC BC ∠====,则异面直线1A B 与AC 所成角的余弦值是____________.9.已知1F 、2F 是椭圆1:2222=+b y a x C (a >b >0)的两个焦点,P 为椭圆C 上一点,且21PF PF ⊥.若21F PF ∆的面积为9,则b =____________.10.某由圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为60︒的扇形,则该几何体的侧面积为________.11. 某地球仪上北纬30︒纬线长度为12πcm ,该地球仪的表面上北纬30︒东经30︒对应点A 与北纬30︒东经90︒对应点B 之间的球面距离为cm (精确到0.01).12.如图,在边长为2的正方形ABCD 中,E 为正方形边上的动点,现将ADE ∆所在平面沿AE 折起,使点D 在平面ABC 上的射影H 在直线AE 上,当E 从点D 运动到C ,再从C 运动到B ,则点H 所形成轨迹的长度为______.13.抛物线24(0)y mx m =>的焦点为F ,点P 为该抛物线上的动点,又点)0,(m A -,则PFPA的最小值为.14.直线⊥m 平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是_________.二.选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.给出下列命题,其中正确的命题是( )A .若z C ∈,且20z <,那么z 一定是纯虚数B .若1z 、2z C ∈且120z z ->,则21z z >C .若z R ∈,则2z z z ⋅=不成立D .若x C ∈,则方程23=x 只有一个根16.一个水平放置的三角形的斜二测直观图是有一条边水平的等边三角形,则这个三角形一定是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .以上都有可能17.已知椭圆)0(1:2222>>=+b a b y a x C 的左、右焦点分别是)0,(),0,(21c F c F -,若215-=ac,则称椭圆C 为“黄金椭圆”.则下列三个命题中正确命题的序号是( ) ①在黄金椭圆C 中,c b a ,,成等比数列;②在黄金椭圆C 中,若上顶点、右顶点分别为B E ,,则0190=∠EB F ;第20题图③在黄金椭圆C 中,以),0(),,0(),0,(),0,(b E b D a B a A --为顶点的菱形ADBE 的内切圆过焦点21,F F .A .①②B .①③C .②③D .①②③18.如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点Q P A ,,的平面截该正方体所得的截面记为S 。
贵安新区第三高级中学2017届高二半期考试试卷
出题人:高 正 江 审题人:王 涛
第一部分(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选出符合题目要求的一项.
1、设集合M ={m ∈Z |-3<m<2},N ={n ∈Z |-1≤n ≤3},则M ∩N 等于( )
A .{0,1}
B .{-1,0,1}
C .{0,1,2}
D .{-1,0,1,2}
2、函数f (x )=ln(x +1)-2
x
的零点所在的大致区间是( ).
A .(0,1)
B .(1,2)
C .(2,e)
D .(3,4)
3、执行如右图所示的程序框图,若输出的结果为2,则输入的正整数a 的可能取值的集合是( ).
A .}{1,2,3,4,5
B .}{1,2,3,4,5,6
C .}{2,3,4,5
D .}{2,3,4,5,6
4、)(),(x g x f 是定义在R 上的函数,)
()()(x g x f x h =,则“)(),(x g x f 均为偶函数”是“)(x h 为
偶函数”的 ( ) A.充要条件 B.充分而不必要的条件
C.必要而不充分的条件
D.既不充分也不必要的条件
5、已知函数π()2sin()(0,0,)2
f x x A ωϕωϕ=+>><的部分图像如下图所示,则ϕ=( ).
A .π6-
B .π6
C .π3-
D .π
3
6、某几何体的三视图如图所示,它的体积为( )
A .72π
B .48π
C .30π
D .24π
7、已知命题:p 复数1i
i
z +=在复平面内所对应的点位于第四象限;命题:q 0x ∃>,cos x x =,
则下列命题中为真命题的是( ).
A .()()p q ⌝∧⌝
B .()p q ⌝∧
C .()p q ∧⌝
D .p q ∧ 8、设n S 是等差数列{}n a 的前n 项和,若361,3S S =则612
S
S = ( )
A.
3
10
B.13
C.18
D.19
9、若双曲线2
2
21(0)y x b b
-=>的一条渐近线与圆22(2)1x y +-=至多有一个交点,则双曲线离心
率的取值范围是( ).
A .(1,2]
B .[2,)+∞ C
. D
.)+∞
10、若变量x ,y 满足 ⎩⎪⎨⎪⎧
2x +y ≤40,
x +2y ≤50,
x ≥0,
y ≥0.则z =3x +2y 的最大值是 ( ).
A .90
B .80
C .70
D .40
11、函数)(x f =|ln(2-x )|的增区间为( )
A .(-∞,1]
B .[-1,
34] C .[0,2
3
) D .[1,2) 12、 设Ω为平面直角坐标系xOy 中的点集,从Ω中的任意一点P 作x 轴、y 轴的垂线,垂足分别为M ,N ,记M 点的横坐标的最大值与最小值之差为()x Ω,点N 的纵坐标的最大值与最小值之差为()y Ω.如果是边长为1的正方形,那么的()()x y Ω+Ω取值范围是( )
A.
B .
C.
D.
第二部分(非选择题 共90分)
二、填空题(本大题共4小题,每小题5分,共20分)
13.已知平面向量a ,b 满足1=a ,2=b ,a 与b 的夹角为60︒,则2+=a b __________. 14.5(12)x -的展开式中3x 项的系数为___________.(用数字表示)
15.已知数列{}n a 的前n 项和为n S ,且满足24n n S a =-*()n ∈N ,则数列{}2log n a 的前n 项和为
_____________.
16.若存在正实数M ,对于任意(1,)x ∈+∞,都有()≤f x M ,则称函数()f x 在(1,)+∞上是有界函数.下列函数
① 1()1f x x =
-;②2()1x f x x =+;③ln ()x f x x
=;④()sin f x x x =, 其中“在(1,)+∞上是有界函数”的序号为__________.
三、解答题:本大题共6小题,共70分.解答应写出文字说明,演算步骤或证明过程. 17.(本小题满分12分)
已知向量)2,(sin θ=,)sin ,cos 2(2θθ=,函数f ⋅-=1)(θ (1)求函数)(θf 的解析式; (2)若⎥⎦
⎤
⎢⎣⎡∈2,
0πθ,求函数)(θf 的最值及相应θ的值。
18.(本题满分12分)
某市规定,高中学生三年在校期间参加不少于80小时的社区服务才合格.教育部门在全
市随机抽取200学生参加社区服务的数据,按时间段[)75,80,[)80,85,[)85,90,[)90,95,[]95
,100(单位:小时)进行统计,其频率分布直方图如图所示.
(I )求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;
(II )从全市高中学生(人数很多)中任意选取3位学生,记ξ为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量ξ的分布列和数学期望E ξ.
19.(本小题满分12分)
如图,)如图,正四棱锥ABCD S -,E 是SD 的中点,2,2==SD AB
(1)求证:SB ∥平面ACE ;
(2)求四棱锥ABCD S -的体积。
20.(本小题满分12分)
已知函数2()x f x x e -=
(1).求()f x 的极小值和极大值;
(2)当()y f x =的切线l 的斜率为负数时,求l 在横轴上的截距的取值范围。
21、本小题满分12分)
在平面直角坐标系中,曲线261y x x =-+与坐标系的交点都在圆C 上;
(1) 求圆C 的方程
(2) 若圆C 与直线0x y a -+=交于A 、B 两点,且OA 垂直OB ,求a 的值。
22、已知函数()12,0f x x x a a =+--〉,当a=1时,求不等式()1f x 〉的解集;。