高等数学上学期期末考试试题和答案解析四份
- 格式:doc
- 大小:1.03 MB
- 文档页数:24
高等数学试卷(B 卷)答案及评分标准2004-2005年度第一学期科目:高等数学I 班级:姓名:学号:成绩: 一、填空题(5153'=⨯')1、()3)2ln(--=x x x f 的定义域是_2、 2 )1sin 2sin (lim 0x =⋅+→xx x x 3、 e )31(lim 3=+∞→xx x4、如果函数x x a x f 3sin 31sin )(+=,在3π=x 处有极值,则2=a5、34d )1(sin cos 223=+⋅⎰-x x x ππ二、单项选择题(5153'=⨯')1、当0→x 时,下列变量中与2x 等价的无穷小量是()A.x cos 1-B.2x x +C.1-x eD.x x sin )ln(1+2、)A ()(' ,)(的是则下列极限中等于处可导在设a f a x x f =。
A .h h a f a f h )()(lim0--→B .hh a f h a f h )()(lim 0--+→C .h a f h a f h )()2(lim 0-+→D .h h a f h a f h 3)()2(lim 0--+→3、设在[]b a ,上函数)(x f 满足条件()0)(,0<''>'x f x f 则曲线()x f y =在该区间上() A.上升且凹的B.上升且凸的C.下降且凹的D.下降且凸的4、设函数()x f 具有连续的导数,则以下等式中错误的是()A.)(d )(d d x f x x f x b a =⎪⎭⎫ ⎝⎛⎰ B.x x f t t f x a d )(d )(d =⎪⎭⎫ ⎝⎛⎰ C.()x x f x x f d )(d )(d=⎰ D.C t f t t f +='⎰)(d )(5、反常积分⎰∞+- 0d 2x xe x ()A.发散B.收敛于1C.收敛于21D.收敛于21-三、算题('488'6=⨯)1、求极限xxx x 30sin sin tan lim -→2、求22)2()ln(sin lim x x x -→ππ3、求曲线⎩⎨⎧==ty tx 2cos sin 在当4π=t 处的切线方程和法线方程4、已知函数0,sin >=x x y x ,计算xy d d5、求积分⎰x e xd6、求积分x x e ed ln 1⎰7、计算曲线π≤≤=x x y 0,sin 与x 轴围成的图形面积,并求该图形绕y 轴所产生的旋转体体积。
大一上学期高数期末考试之巴公井开创作一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不成导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点;(D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 4. =+→xx x sin 2)31(l i m .5.,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.6.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .7. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)8. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y .9.设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.10. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解. 四、 解答题(本大题10分)11. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程.五、解答题(本大题10分)12. 过坐标原点作曲线x y ln =的切线,该切线与曲线xy ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)13. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.14. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个分歧的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C 二、填空题(本大题有4小题,每小题4分,共16分)5.6e. 6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 11.解:1033()x f x dx xe dx ---=+⎰⎰⎰12. 解:由(0)0f =,知(0)0g =。
大一高等数学期末考试试卷一、选择题(共12分)1. (3分)若为连续函数,则的值为( )。
(A)1 (B)2 (C)3 (D)—12. (3分)已知则的值为( ).(A)1 (B)3 (C)-1 (D)3. (3分)定积分的值为( ).(A)0 (B)—2 (C)1 (D)24. (3分)若在处不连续,则在该点处( )。
(A)必不可导(B)一定可导(C)可能可导(D)必无极限二、填空题(共12分)1.(3分)平面上过点,且在任意一点处的切线斜率为的曲线方程为。
2. (3分)。
3。
(3分)= .4. (3分)的极大值为。
三、计算题(共42分)1.(6分)求2.(6分)设求3.(6分)求不定积分4.(6分)求其中5.(6分)设函数由方程所确定,求6.(6分)设求7.(6分)求极限四、解答题(共28分)1.(7分)设且求2.(7分)求由曲线与轴所围成图形绕着轴旋转一周所得旋转体的体积.3.(7分)求曲线在拐点处的切线方程。
4.(7分)求函数在上的最小值和最大值.五、证明题(6分)设在区间上连续,证明标准答案一、1 B; 2 C; 3 D; 4 A.二、1 2 3 0; 4 0。
三、1 解原式5分1分2解2分4分3 解原式3分2分1分4解令则2分1分1分1分1分5两边求导得2分1分1分2分6解2分4分7解原式= 4分= 2分四、1 解令则3分= 2分2分1分2解3分2分2分3解1分令得1分当时,当时, 2分为拐点,1分该点处的切线为2分4解2分令得1分2分最小值为最大值为2分五、证明1分1分1分1分1分移项即得所证。
1分。
大一上学期高数期末考试、单项选择题(本大题有4小题,每小题4分,共16分)1 设 f ( X )cos x (x sin x ),则在 x 0 处有( (A) f(0)2(B) f (0)1 (C) f (0)° c 设(x) 1 x , (x) 3 33 x » 则当 x1 时(2. 1X(A)g 与M是同阶无穷小,但不是等价无穷小;是等价无穷小;(C)(X )是比(x)高阶的无穷小;(D)无穷小・(A) 函数F (x )必在X 0处取得极大值; (B) 函数F (x)必在x 0处取得极小值;(C) 函数F(x)在xo 处没有极值,但点(o,F (o ))为曲线yF(x)的拐点;(D)函数F”)在xO 处没有极值,点(:F (o ))也干是曲线YF(x)的拐点。
4设f (x)是连续函数,且 "X )22XX、僅產题(本夫龊右4小题'28. 斥曰二 ' 解答题(本大题有5小题,每小题8分,共40分)exy sin(xy)19.设函数y y (x)由方程确定,求y (x)以及y (0). 求I X10.x(心3•若Ff(x)(X) 0 (2t x)f(t )dt ,其中f (x)在区间上(")二阶可导且)・(D) MX)不可导.)(B) (X)与(X)(X )是比(x)高阶的2of(t)dt,则 f(x)((D)®4分,共16分)5.lim (1 3x)办x0\/6.已知沪空是f(X)的一个原函数XI r COSX则7.limn —(cos 2— n ncos3 ) n2x arcsin x i dxx 21 V1A2xy四、解答题(本大题10分)14.已知上半平面内一曲线yy (x )(xo ),过点®),且曲线上任一点M (Xo,yo )处切线斜率 数值上等于此曲线与X 轴、y 轴、直线X X 。
所围成面积的2倍与该点纵坐标之和,求此曲线方程.五、解答题(本大题10分)15. 过坐标原点作曲线y"x 的切线,该切线与曲线yin X 及X 轴围成平面图形D.(1 )求D 的面积A ;⑵求D 绕直线x = e 旋转一周所得旋转体的体积V.六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数“)在“上连续且单调递减,证明对任意的q 【o, J ,q1f (x ) d x q f (x )dx 0 0f ( x ) d x 0 f (x )cos x dx 017. 设函数”x )在0,上连续,且。
大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x y e y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1033()x f x dx xe dx ---=+⎰⎰⎰03()x xd e --=-+⎰⎰0232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
页眉内容大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:101233()2x f x dx xe dx x x dx---=+-⎰⎰⎰123()1(1)xxd e x dx--=-+--⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
2010级高等数学(上)A 解答一、填空题:(每题3分,共18分)(请将正确答案填入下表,否则不给分)1.已知极限01lim 2=⎪⎪⎭⎫⎝⎛--+∞→b ax x x x ,则常数b a ,的值分别是(空1)。
解:0x b a 1x x lim b ax 1x x x 1lim x 2x =⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛--+∞→∞→ ⇒1-a=0⇒a=1⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=∞→∞→x 1x x lim ax 1x x lim b 2x 2x 1x111lim 1x x lim 1x x x x lim x x 22x -=+-=+-=⎪⎪⎭⎫ ⎝⎛+--=∞→∞→∞→ 或:01x b x )b a (x )a 1(lim b ax 1x x lim 2x 2x =⎪⎪⎭⎫⎝⎛+-+--=⎪⎪⎭⎫ ⎝⎛--+∞→∞→ 所以1-a=0,a+b=0⇒a=1,b=-1。
或:⎪⎪⎭⎫⎝⎛++--+-=⎪⎪⎭⎫ ⎝⎛--+∞→∞→1x 1b ax 1x 1x lim b ax 1x x lim 2x 2x 01x 1)b 1(x )a 1(lim 1x 1b ax 1x lim x x =⎪⎭⎫ ⎝⎛+++--=⎪⎭⎫ ⎝⎛++---=∞→∞→ 所以1-a=0,1+b=0⇒a=1,b=-1。
2.函数xx x x x f 323)(23---=的第一类间断点是(空2)。
解:f(x)在x=3,0,-1处无定义,是间断点。
121)3x )(1x (x 3x lim x 3x 2x 3x lim)x (f lim 3x 233x 3x =-+-=---=→→→,x=3是第一类间断点。
∞=---=-→-→x3x 2x 3x lim)x (f lim 231x 1xx=-1是第二类间断点。
∞=---=→→x3x 2x 3x lim)x (f lim 230x 0xx=0是第二类间断点。
3.设函数)(x f 可导,)(1)(2x f x g +=,则)('x g =(空3)。
大一高等数学期末考试试卷一、选择题(共12分)1. (3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为( ).(A)1 (B)2 (C)3 (D)-12. (3分)已知(3)2,f '=则0(3)(3)lim 2h f h f h→--的值为( ). (A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-⎰的值为( ). (A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ).(A)必不可导 (B)一定可导(C)可能可导 (D)必无极限二、填空题(共12分)1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 .2. (3分) 1241(sin )x x x dx -+=⎰ . 3. (3分) 201lim sin x x x→= . 4. (3分) 3223y x x =-的极大值为 .三、计算题(共42分)1. (6分)求20ln(15)lim .sin 3x x x x →+ 2. (6分)设2,1y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +⎰4. (6分)求30(1),f x dx -⎰其中,1,()1cos 1, 1.x x x f x x e x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程00cos 0y xt e dt tdt +=⎰⎰所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x2. (7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程.4. (7分)求函数y x =+[5,1]-上的最小值和最大值.五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bb a ab a f x dx f a f b x a x b f x dx -''=++--⎰⎰ 标准答案一、 1 B; 2 C; 3 D; 4 A.二、 1 31;y x =+ 2 2;33 0;4 0. 三、 1 解 原式205lim 3x x x x →⋅= 5分 53= 1分 2 解 22l n l n l n (1),12x y x x ==-++ 2分2212[]121x y x x '∴=-++ 4分3 解 原式221ln(1)(1)2x d x =++⎰ 3分 222212[(1)ln(1)(1)]21x x x x dx x=++-+⋅+⎰ 2分2221[(1)ln(1)]2x x x C =++-+ 1分 4 解 令1,x t -=则 2分3201()()f x dx f t dt -=⎰⎰ 1分1211(1)1cos t t dt e dt t-=+++⎰⎰ 1分 210[]t e t =++ 1分 21e e =-+ 1分5 两边求导得cos 0,y e y x '⋅+= 2分 cos y x y e '=-1分 c o s s i n 1x x =- 1分 cos sin 1x dy dx x ∴=- 2分 6 解 1(23)(23)(22)2f x d x f x d x +=++⎰⎰ 2分21sin(23)2x C =++ 4分 7 解 原式=23323lim 12n n n ⋅→∞⎛⎫+ ⎪⎝⎭4分 =32e 2分四、1 解 令ln ,x t =则,()1,t t x e f t e '==+ 3分()(1)t f t e dt =+⎰=.t t e C ++ 2分 (0)1,0,f C =∴= 2分().x f x x e ∴=+ 1分2 解 222c o s x V xd x πππ-=⎰ 3分 2202cos xdx ππ=⎰ 2分 2.2π=2分 3 解 23624,66,y x x yx '''=-+=- 1分 令0,y ''=得 1.x = 1分当1x -∞<<时,0;y ''< 当1x <<+∞时,0,y ''> 2分 (1,3)∴为拐点, 1分该点处的切线为321(1).y x =+- 2分 4 解1y '=-= 2分 令0,y '=得3.4x = 1分35(5)5 2.55,,(1)1,44y y y ⎛⎫-=-+≈-== ⎪⎝⎭ 2分最小值为(5)5y -=-+最大值为35.44y ⎛⎫= ⎪⎝⎭ 2分 五、证明 ()()()()()()b ba a x a xb f x x a x b df x '''--=--⎰⎰ 1分 [()()()]()[2()bb a a x a x b f x f x x a b dx ''=----+⎰ 1分[2()()b a x a b df x =--+⎰ 1分{}[2()]()2()b b a a x a b f x f x dx =--++⎰ 1分()[()()]2(),b a b a f a f b f x dx =--++⎰ 1分移项即得所证. 1分。
高等数学试卷(B 卷)答案及评分标准2004-2005年度第一学期科目: 高等数学I 班级: 姓名: 学号: 成绩:一、填空题(5153'=⨯') 1、()3)2ln(--=x x x f 的定义域是_ 2、 2 )1sin 2sin (lim 0x =⋅+→xx x x 3、 e )31(lim 3=+∞→xx x e )31(lim 3=+∞→x x x4、如果函数x x a x f 3sin 31sin )(+=,在3π=x 处有极值,则2=a5、34d )1(sin cos223=+⋅⎰-x x x ππ二、单项选择题(5153'=⨯')1、当0→x 时,下列变量中与2x 等价的无穷小量是( )A . x cos 1-B . 2x x +C . 1-x eD . x x sin )ln(1+ 2、)A ()(' ,)(的是则下列极限中等于处可导在设a f a x x f =。
A .h h a f a f h )()(lim0--→ B .hh a f h a f h )()(lim 0--+→C .h a f h a f h )()2(lim 0-+→ D . hh a f h a f h 3)()2(lim 0--+→3、设在[]b a ,上函数)(x f 满足条件()0)(,0<''>'x f x f 则曲线()x f y =在该区间上( ) A. 上升且凹的 B. 上升且凸的 C. 下降且凹的 D. 下降且凸的4、设函数()x f 具有连续的导数,则以下等式中错误的是( )A. )(d )(d d x f x x f x b a=⎪⎭⎫ ⎝⎛⎰ B. x x f t t f x a d )(d )(d =⎪⎭⎫ ⎝⎛⎰ C. ()x x f x x f d )(d )(d=⎰ D. C t f t t f +='⎰)(d )(5、反常积分⎰∞+- 0d 2x xex ( )A. 发散B. 收敛于1C. 收敛于21D. 收敛于21-三、算题('488'6=⨯) 1、求极限xxx x 3sin sin tan lim -→ 2、求22)2()ln(sin lim x x x -→ππ3、求曲线⎩⎨⎧==ty tx 2cos sin 在当4π=t 处的切线方程和法线方程4、已知函数0,sin >=x x y x,计算xy d d 5、求积分⎰x e x d6、求积分x x e ed ln 1⎰7、计算曲线π≤≤=x x y 0,sin 与x 轴围成的图形面积,并求该图形绕y 轴所产生的旋转体体积。
高等数学试卷(B 卷)答案及评分标准2004-2005年度第一学期科目: 高等数学I 班级: 姓名: 学号: 成绩:一、填空题(5153'=⨯')1、()3)2ln(--=x x x f 的定义域是_2、 2 )1sin 2sin (lim 0x =⋅+→xx x x 3、 e )31(lim 3=+∞→xx x e )31(lim 3=+∞→x x x4、如果函数x x a x f 3sin 31sin )(+=,在3π=x 处有极值,则2=a5、34d )1(sin cos 223=+⋅⎰-x x x ππ二、单项选择题(5153'=⨯')1、当0→x 时,下列变量中与2x 等价的无穷小量是( )A . x cos 1-B . 2x x +C . 1-x eD . x x sin )ln(1+ 2、)A ()(' ,)(的是则下列极限中等于处可导在设a f a x x f =。
A .h h a f a f h )()(lim0--→ B .hh a f h a f h )()(lim 0--+→C .h a f h a f h )()2(lim 0-+→ D . hh a f h a f h 3)()2(lim 0--+→3、设在[]b a ,上函数)(x f 满足条件()0)(,0<''>'x f x f 则曲线()x f y =在该区间上( ) A. 上升且凹的 B. 上升且凸的 C. 下降且凹的 D. 下降且凸的4、设函数()x f 具有连续的导数,则以下等式中错误的是( )A.)(d )(d d x f x x f xb a =⎪⎭⎫ ⎝⎛⎰ B. x x f t t f x a d )(d )(d =⎪⎭⎫ ⎝⎛⎰ C. ()x x f x x f d )(d )(d=⎰ D. C t f t t f +='⎰)(d )(5、反常积分⎰∞+- 0d 2x xex ( )A. 发散B. 收敛于1C. 收敛于21D. 收敛于21- 三、算题('488'6=⨯)1、求极限x xx x 30sin sin tan lim -→2、求22)2()ln(sin lim x x x -→ππ3、求曲线⎩⎨⎧==t y tx 2cos sin 在当4π=t 处的切线方程和法线方程4、已知函数0,sin >=x x y x ,计算xy d d5、求积分⎰x e xd6、求积分x x e ed ln 1⎰7、计算曲线π≤≤=x x y 0,sin 与x 轴围成的图形面积,并求该图形绕y 轴所产生的旋转体体积。
8、计算星型线0,20,cos ,sin 33>≤≤==a t t a y t a x π的全长.四、求函数求10123+-=x x y 的单调区间、极值点、凹凸区间、拐点('7)五、设)(0 ]10[)(x f x f <且上连续,,在, 证明:方程1d )( 0=+⎰xt t f x 在[0,1]上有且仅有一根('5)六、设f (x )连续, 计算t t x f t xx d )(d d 0 22⎰- ('5)七、⎪⎩⎪⎨⎧>+≤=01062t tt t e t f t ,,)(设 , 计算:⎰∞-=xt t f x F d )()(('5) 答案:一、填空题1、(2,3)∪(3,+∞)2、23、 e )31(lim 3=+∞→xx x4、25、34d )1(sin cos223=+⋅⎰-x x x ππ二、1、D2、A3、B4、A5、C三、计算题1、解:x x x x 30sin sin tan lim-→=x x x 20sin cos 1lim -→=21 2’ 4’2、解:22)2()ln(sin lim x x x -→ππ=)2(4cos sin 1lim 2x xx x --→ππ=)2(4cos lim 2x x x --→ππ=81 3、解: 当4π=t曲线过点)0,22(, 由于22d d 4-=πxy, 4’所以, 当4π=t 处的切线方程和法线方程分别为:)22(22--=x y 1’ )22(42-=x y 1’ 4、解:)sin ln (cos )sin ln (cos d )(d d d sin ln sin ln sin x xx x x x x x x e x e x y x x x x x +=+==解: 令u u x x u d 2d ,==, 则: 1’ 解: 令u u x x u d 2d ,==, 则: 1’ 5、令u u x x u d 2d ,==, ⎰x e xd =c e x c e u u e ue u ue xuu u u +-=+-=-=⎰⎰)1(2)1(2d 22d 26、解:x x e ed ln 1⎰=ex x x x x x x x x x e e eeee 22d ]ln [d ]ln [d ln d ln 111111111-=-++-=+-⎰⎰⎰⎰7、解:面积⎰==π2d sin x x s 2’体积微分元x x x V d sin 2d π= 1’所求体积204d cos 2]cos 2[d sin 2πππππππ=+-==⎰⎰x x x x x x x V 3’8、解: 弧微分t t a s d 2sin 23d =2’ 弧长⎰⎰===20206d 2sin 6d 2sin 23ππa t t a t t a s 4’四、解:2,2,0',123'212=-==-=x x y x y 得驻点令 1’,0'',6''3===x y x y 得点令由上可知:函数的单调增区间为: (-∞,-2),(2,+∞); 函数的单调减区间为:(-2,2) 2’函数的极大值点:(-2,26),极小值点(2,-6) 1’ 凹区间为:(0,+∞),凸区间为:(-∞,0) 1’拐点为:(0,10)五、证: 构造函数=)(x ϕ1d )( 0 -+⎰xt t f x , 函数在[0,1]上连续,在区间内可导1’0d )()1(,1)0(1>=-=⎰x x f ϕϕ,由连续函数的零点定理知,存在ξ在(0,1)内使0)(=ξϕ 2’ 又因为0)(1)('>+=x f x ϕ所以函数在(0,1)的零点唯一. 2’ 原命题得证.六、解: 令:22t x u -=, t t u d 2d -= 2’t t x f t x x d )(d d 0 22⎰-=)(]d )(21[d d 20 x 2x f x u u f x =-⎰ 七、解:当⎰∞===≤xx t e t e x F x d )(0时, 2’当⎰⎰⎰∞=∞-+=++==>x x tx t tt t e t t f x F x 36200arctan 311d 1d d )()(0时,《高等数学IV1》课程考试试卷(A 卷)学院 专业 班级学号 姓名………………………………………………………………………………………………………………一、选择题(每小题3 分,共12分)1、设2()3,f x x x x =+使()(0)n f存在的最高阶数n 为( )(A) 0 (B) 1 (C) 2 (D) 3 2、函数dt e t y x t ⎰-=2 0)1( 有极大值点( )(A ) 1=x (B ) 1-=x (C ) 1±=x (D ) 0=x 3、已知函数()f x 的一个原函数是x 2sin,则'()xf x dx =⎰( )(A) 2cos2sin 2x x x C -+ (B) 2sin 2cos2x x x C -+ (C) 2sin 2cos2x x x C ++ (D) sin 2cos2x x x C -+4、2x =是函数1()arctan 2f x x=-的 ( )(A )连续点 (B )可去间断点 (C )第一类不可去间断点 (D )第二类间断点二、填空题(每小题3 分,共12分)1、函数x y xe -=的图形的拐点是 。
2、曲线21x ey --=的渐进线是 。
3、设dt e x f xt ⎰-=02)(,则 0()()lim h f x h f x h h→+--= 。
4、=-→xx x 2)1(lim 。
三、求下列极限(每小题6分,共12分)。
1、2301cos(1)lim tan sin x x e x x→--⋅。
2、()011lim ln 1x x x →⎛⎫- ⎪ ⎪+⎝⎭。
四、计算下列微分或导数(每小题6分,共18分)。
1、21x ln x arctan x y +-=,求dy 。
2、cos (sin ),x dy x dx=若y 求。
3、设cos sin x R ty R t=⎧⎨=⎩ ,求22d y dx 。
五、计算下列积分(每小题6分,共18分)。
1、dx )x (x ⎰+11。
2、求1(12ln )dx x x +⎰。
3、dx xx ⎰-10221。
六、若01x <<,证明不等式x e xx211-<+-(8分)。
七、,0423412所围成的平面图形与直线为曲线设=--=y x x y D 求: (1) D 的面积S ; (2) D 绕x 轴旋转一周所得的旋转体体积V 。
(10分)八、求微分方程522(1)1dy yx dx x -=++的通解(10分)。
《高等数学IV1》统考试题(A )答案及评分标准一、选择(每题3分,共12分)1、B 2、D 3、A 4、C 二、填空(每题3分,共12分)1、)2 ,2(2-e 2、1=y 3、22x e- 4、21e 三、计算下列极限(每小题6分,共12分)。
1、解:原式=4202)1(lim 2x e x x -→ (2分)4402lim x x x →= (4分)21=(6分)2、 解:原式=20ln(1)ln(1)limlim ln(1)x x x x x x x x x →→-+-+=+ (3分) 2121lim 2111lim00=+=+-→→x x xx x x x (3分)四、求下列导数和微分(每小题6分,共18分)。
1、解:22tan 11x x dy arc x dx x x ⎡⎤=+-⎢⎥++⎣⎦(3分) arctan xdx = (6分) 2、解:cos lnsin ()x x y e ''= (2分)cos lnsin (sin ln sin cot cos )x x e x x x x =-+ (4分)=cos (sin )(sin ln sin cot cos )xx x x x x -+ (6分)3、解:解:t dxdycot -= (3分) 2'2311(cot)sin sin t d y dx R t R t=-=-- (6分)五、计算下列积分(每小题6分,共18分)。