2A97铝锂合金的疲劳裂纹萌生及早期扩展行为
- 格式:pdf
- 大小:1.22 MB
- 文档页数:8
金属材料疲劳裂纹萌生机理与扩展规律概述摘要:在飞行器结构中,如机翼与机身连接、发动机和发动机吊架连接等重要连接区的连接结构往往会因为受到严苛的循环载荷而萌生疲劳裂纹,随着疲劳裂纹逐渐扩展,最终导致结构发生断裂失效。
本文根据部分文献和相关书籍,对金属材料的疲劳裂纹萌生机理和扩展规律进行了梳理,结论表明影响裂纹萌生与裂纹扩展的主要参量、裂纹扩展不同阶段的扩展方向均有不同。
关键词:循环滑移;裂纹萌生;裂纹扩展;对于飞行器结构,疲劳裂纹是导致结构失效最主要且最危险的损伤形式之一[1]。
疲劳裂纹作为一种常见的机械损伤失效模式,约占总失效的50%~90%[2]。
在交变载荷、腐蚀环境等作用下,尽管结构的最大工作应力低于材料强度,但是经过一定的服役时间后,结构仍然会萌生疲劳裂纹并逐步扩展。
出现在大梁减轻孔、机身蒙皮、机翼机身接头等关键部位的疲劳裂纹会严重削弱结构的承载能力,其失稳破坏甚至会导致灾难性事故的发生。
因此研究飞行器结构的疲劳裂纹损伤萌生及扩展机理,准确地预测结构的疲劳寿命具有十分重要的工程意义。
1疲劳裂纹的萌生和扩展规律[3]金属结构材料在循环载荷作用下的疲劳损伤演化过程可以分为两个阶段:宏观裂纹萌生阶段和宏观裂纹扩展阶段,两个阶段的区别在于影响疲劳行为的因素,而控不同。
在宏观裂纹萌生阶段,控制裂纹萌生的重要参量是应力集中系数K1制宏观裂纹扩展的参量则是应力强度因子K。
从图1中可以看出,宏观裂纹萌生阶段可以细分为两个子阶段:一是微裂纹形核阶段;二是微裂纹扩展阶段,即微裂纹因扩展或相互作用而聚集合并,形成“主导”宏观裂纹的过程。
微裂纹扩展阶段和宏观裂纹扩展阶段的交点通常认为是裂纹萌生与扩展的分界线,但实际上这个临界点的精确定义是无法定量描述,一般定性地认为:当微裂纹扩展不在依赖于自由表面状况时,裂纹萌生阶段结束。
图1 疲劳损伤演化[4]1.1 疲劳裂纹的萌生在很多情况下,裂纹萌生寿命占到疲劳寿命相当大的一部分,例如在高周疲劳中裂纹萌生寿命占总寿命的80%~90%,在超高周疲劳中裂纹萌生寿命可占到总寿命的99%,因此裂纹萌生阶段在整个金属材料疲劳过程中占有极为重要的地位。
铝合金材料的疲劳研究进展徐超,杨尚磊(上海工程技术大学材料工程学院上海 201620)摘要:综述了铝合金材料的疲劳研究进展,介绍了铝合金材料的疲劳裂纹萌生机制和特性、裂纹扩展规律及其扩展阶段的研究进展,同时概述了裂纹疲劳行为的影响因素和微观机理方面的最新研究进展,最后从裂纹萌生和扩展机制以及微观机理等方面概述了铝合金疲劳行为研究趋势。
关键词:铝合金疲劳裂纹萌生和扩展微观机理0 前言材料的疲劳性能指标是许多构件设计的重要依据之一,为此从微观上分析研究材料疲劳裂纹萌生和扩展特点以及他们与材料本证微观结构之间的关系具有重要指导意义[1]。
由疲劳引起的焊接构件表面产生的裂纹萌生、扩展和断裂,都会导致一系列严重的影响,致使整个系统出现失效现象。
疲劳行为的研究已经成为材料学中的一个重要分支,由于其存在的广泛性,越来越受到国内外众多学者的关注。
铝合金由于密度小、比强度高,耐蚀性好,在汽车、列车、船舶、航空、航天等领域得到了广泛的应用,同时还具有良好的成形工艺性和焊接性,因此铝合金成为在工业中应用最广泛的一类有色金属材料[2]。
铝合金材料的疲劳破坏是汽车、列车、船舶、航空、航天领域中经常遇到的现象,所以对铝合金的疲劳行为的研究更具有重要意义。
目前对铝合金疲劳裂纹的萌生、扩展和断裂的微观特征以及疲劳寿命的预测研究也相当广泛,因此,本文对铝合金材料的疲劳研究进行了综述。
2 铝合金材料的疲劳研究现状2.1 疲劳裂纹的萌生由于交变载荷的循环作用,疲劳裂纹的萌生过程往往发生在材料存在缺陷或薄弱区域以及高应力区,其通过不均匀的滑移或位移,从微细小裂纹形成而逐渐长大扩展至断裂。
主要可能存在以下形式:对一般的工业合金,在交变应力作用下第二相、夹杂物与基体界面开裂;对纯金属或单相合金,尤其是单晶体,材料表面的滑移带集中形成驻留滑移带就会形成开裂;当经受较高的应力或应变幅时,晶界结合力在低于晶内滑移应力下,晶界或亚晶界处易发生开裂;另外,对高强度合金,也会由于夹杂物、第二相本身属于脆性相从而发生开裂。
AlSi10Mg(Cu)铸铝合金的热疲劳裂纹萌生及早期扩展行为周航;张峥【摘要】The damage evolution under thermal fatigue loading forAlSi10Mg (Cu) cast alloy on the crack initiation and early propagation stage, mainly focusing on the influence of silicon particles on the thermal fatigue crack behaviour. The results show that, thermal fatigue crack origins from the failure interfaces between debonded silicon particles and matrix, that is because of the difference in thermal expansion coefficient between silicon particles and aluminum matrix, thus leading to the misfit of thermal strain, finally caused cyclic stress on the interfaces with fatigue failure. The propagation of thermal fatigue crack related to the growth on both length and width direction, ductile dendrite hinders the propagation of fatigue crack. The result of simulation analysis about the stress distribution around silicon particles during thermal fatigue is given to help discuss the experiment results.%微观观察AlSi10Mg (Cu) 铸铝合金在热疲劳裂纹的萌生和早期扩展过程, 重点研究共晶硅粒子对热疲劳裂纹行为的影响.结果表明:热疲劳裂纹萌生于脱粘共晶硅粒子与铝基体间的开裂界面, 原因是共晶硅粒子与铝基体的热膨胀系数不同, 引起热循环过程中两相热应变不协调, 从而在两相界面处产生循环应力而引起疲劳破坏.热疲劳裂纹的扩展在长度和宽度上同时进行, 具有良好塑性的铝枝晶对疲劳裂纹的扩展起阻碍作用.对热疲劳过程中共晶硅粒子周围应力场的模拟分析进一步解释了实验现象.【期刊名称】《材料工程》【年(卷),期】2019(047)003【总页数】8页(P131-138)【关键词】AlSi10Mg (Cu) 铸铝合金;热疲劳;裂纹萌生;共晶硅粒子【作者】周航;张峥【作者单位】北京航空航天大学材料科学与工程学院,北京 100191;北京航空航天大学材料科学与工程学院,北京 100191【正文语种】中文【中图分类】TG113.25铝硅系合金具有良好的铸造性能,包括液态较高的流动性、较小的收缩性,且热裂、缩孔和疏松倾向小;同时还具有较好的强度和塑性、比重轻、焊接性好。
文献综述(2011级)设计题目铝合金疲劳及断口分析学生姓名胡伟学号*********专业班级金属材料工程2011级03班指导教师黄俊老师院系名称材料科学与工程学院2015年4月12日铝合金疲劳及断口分析1 绪论1.1 引言7系铝合金包括Al-Zn-Mg 系和Al-Zn-Mg-Cu 系合金,此类合金具有密度低、比强度高、良好的加工性能及优良的焊接性能等一系列优点。
随着应用在铝合金上的热处理工艺及微合金化技术的不断改进,其力学性能被大幅度强化,综合性能也得到了全面提升。
在航空航天、建筑、车辆、、桥梁、工兵装备和大型压力容器等方面都得到了广泛的应用。
现代工业的飞速发展,对7 系铝合金的强度、韧性以及抗应力腐蚀性能等提出了更高的要求。
但是,存在另外一个现象,在各行各业的领域中,铝合金设备偶尔会出现难以察觉的断裂,在断裂之前很难甚至无法察觉到一点塑性变形。
这种断裂形式,对人身以及财产安全造成了不可挽回的损失。
经过大量实验表明,这些断裂是由于材料的疲劳引起,材料在交变载荷的长期作用下,表面或者内部,尤其是内部会产生微观裂纹。
本文主要研究铝合金疲劳引起的裂纹以及疲劳断口分析,此类研究对于日后的生产安全,有重大意义。
1.2 7系铝合金的发展历史在20世纪20年代,德国的科学家研制出Al-Zn-Mg系合金,由于该合金抗应力腐蚀性能太差,并未得到产业内应用。
在20世纪30年代初一直到二战结束期间,各个国家在研究中发现,Cu元素可以提高铝合金的抗应力腐蚀性能。
在此,开发了大量Al-Zn-Mg 系合金,因此忽视了对Al-Zn-Mg 系合金的研究。
德、美、苏、法等国在Al-Zn-Mg-Cu 系合金基础上成功地开发了7075 、B93 和D。
T。
D683 等合金。
目前正广泛应用在航空航天事业上,但是强度、韧性、抗应力腐蚀性能三者之间未能实现最佳组合状态。
20世纪50年代,德国科学家公布了具有优良焊接性能的合金AlZnMg1 和AlZnMg2,引起了人们对Al-Zn-Mg系合金的重视。
文章编号:1002-6886(2009)06-0076-03疲劳小裂纹的萌生和扩展形态研究3何子淑1,粱益龙2(1.贵州工业职业学院,贵州贵阳550008; 2.贵州大学,贵州贵阳550003) 基金项目:自然科学基金(04020092)。
作者简介:何子淑(1976-),女,贵州遵义人,硕士,从事教学工作。
收稿日期:2009-5-31摘要:本文通过对35Si M n Mo V 复相钢的常温疲劳试验研究和G H4049镍基高温合金的高温疲劳试验研究,获得了大量的试验数据和得出了相应的裂纹扩展行为规律。
采用对比分析方法,从疲劳小裂纹的萌生和扩展形态出发,归纳总结了疲劳小裂纹的扩展规律。
关键词:对比分析 疲劳小裂纹 萌生 扩展形态 扩展规律中图分类号:TG115.57,TG146.15 文献标识码:AStudy on the Beg i n n i n g and Develop ment Behavi or of S mall Fa ti gue CracksHE Zishu,L I ANG Y ilongAbstract:The thesis studied the fatigue test of 35Si M n Mo V steel at nor mal te mperature and the N i 2base super all oy G H4049at high te m 2perature .During the studies,a nu mber of trial data and ex panding regulati on of fatigue cracks were obtained .I n contrast with the beginning and devel op 2ment behavi or of s mall fatigue cracks,we conclude a series of ex panding regulati on of s mall fatigue cracks .Key words:contrast analysis ;s mall fatigue cracks ;beginning;devel opment behavi or;ex panding regulati on0 引言工程中对疲劳长裂纹的研究有多年的历史,得到的结论和提出的疲劳裂纹扩展规律有很多,但是对疲劳小裂纹的试验研究仍然没有较为系统的结论,因此本文采用对比分析的方法,将高温小裂纹的试验结果与常温小裂纹研究结论进行适当的对比,找出疲劳小裂纹的萌生位置和扩展形态及影响因素,分析总结出有关疲劳小裂纹萌生和扩展规律。
铝锂合金的损伤容限性能及多裂纹扩展行为研究铝锂合金的损伤容限性能及多裂纹扩展行为研究摘要:本文对铝锂合金的损伤容限性能及多裂纹扩展行为进行了研究。
通过对铝锂合金的材料特性进行分析,采用有限元模拟和实验测试相结合的方法,揭示了材料在不同外部载荷下的损伤容限行为和多裂纹扩展行为。
1. 引言铝锂合金作为一种轻量化材料,在航空航天和汽车制造等领域有着广泛的应用。
然而,随着材料使用寿命的增加,材料的损伤容限性能以及多裂纹扩展行为备受关注。
了解铝锂合金在损伤条件下的性能有助于设计和使用更安全可靠的材料。
2. 方法2.1 材料特性分析通过对铝锂合金的化学成分分析以及显微组织观察,了解材料的基本特性,包括晶粒结构、相含量等。
同时,利用扫描电子显微镜对材料的裂纹分布进行分析。
2.2 有限元模拟采用有限元分析软件对铝锂合金在不同外部载荷下的损伤容限行为进行模拟。
通过设定不同的载荷条件以及模拟裂纹扩展过程,计算材料的应力分布、应变分布和裂纹扩展速率等参数。
2.3 实验测试利用万能材料试验机对铝锂合金进行拉伸、压缩和弯曲等实验。
通过测量材料的力学性能、裂纹生成和扩展情况,获取材料的损伤容限性能和多裂纹扩展行为。
3. 结果与讨论3.1 材料特性分析结果显示,铝锂合金晶粒较细,相含量较低,具有较好的力学性能。
3.2 有限元模拟结果展示了铝锂合金在不同载荷下的应力分布和裂纹扩展速率。
模拟结果与实验测试结果吻合较好。
3.3 实验测试结果表明,铝锂合金在不同形变情况下的损伤容限性能存在差异。
拉伸情况下,材料的损伤容限性能较低;压缩情况下,材料的损伤容限性能较高。
同时,材料在多裂纹扩展过程中,扩展速率存在差异,不同载荷条件下的裂纹扩展速率也不同。
4. 结论通过对铝锂合金的损伤容限性能及多裂纹扩展行为的研究,可以得出以下结论:- 铝锂合金具有较好的力学性能,晶粒较细,相含量较低。
- 不同外部载荷下,铝锂合金的损伤容限性能存在差异,压缩情况下较高。
作者简介:王燕(1986-),女,安徽安庆人,高级工程师,主要从事铝加工工艺技术研发与新产品开发。
收稿日期:2021-03-202A97-T84铝锂合金型材形变热处理工艺技术研究王燕,杜荣(西南铝业(集团)有限责任公司,重庆401326)摘要:2A97铝锂合金是我国自主研发的新型Al-Cu-Li 系合金,具有轻质高强、可焊性好、耐疲劳等优点。
采用TEM 分析、拉伸性能测试等方法研究了2A97-T84铝锂合金在不同形变热处理工艺下的显微组织和拉伸力学性能,形成了2A97-T84铝锂合金挤压型材工业化生产稳定可行的形变热处理工艺制度。
研究结果表明,拉伸变形量对2A97-T84状态的性能影响极大,尤其是变形量在1%~4%范围时。
结合大生产设备条件以及确保产品性能的稳定性和均匀性,工业化生产时拉伸变形量最好设定在4%,按3.5%~4.5%控制,且控制在3h 内完成;2A97铝锂合金在双级时效制度为125℃/16h+150℃/13h 时具有强塑性好、抗剥落腐蚀性能优良等优点。
关键词:2A97铝锂合金;显微组织;力学性能;拉伸变形量;时效中图分类号:TG166.3,TG156.93文献标识码:A文章编号:1005-4898(2021)06-0049-04doi:10.3969/j.issn.1005-4898.2021.06.110前言为满足某种大飞机以及后续衍生机种的需求,研制、应用新的高比强度、高比模量、低密度材料是航空工业发展的主要方向之一,其中具有代表性的是高强、高韧、耐损伤性能优良的第三代铝锂合金[1]。
2A97铝锂合金是我国自主研发的新型Al-Cu-Li 系合金,具有轻质高强、可焊性好、耐疲劳等优点[2]。
与2197、2297铝锂合金相比,该合金组元多、成分构成复杂,Cu、Mg、Zn 等元素含量较高,通过改善热处理工艺可进一步提高它的性能,以满足航空航天工业的不同需求。
钟申等[3]采用先低温后高温的时效工艺制得了强韧性配比良好的2A97铝锂合金;李红英等[4]研究了2A97铝锂合金的峰值时效,在保证其塑性的前提下提高了强度。
Trans. Nonferrous Met. Soc. China 24(2014) 303−309Fatigue crack initiation and early propagation behavior of 2A97 Al −Li alloyJing ZHONG 1, Shen ZHONG 1, Zi-qiao ZHENG 1,2, Hai-feng ZHANG 1, Xian-fu LUO 11. School of Materials Science and Engineering, Central South University, Changsha 410083, China;2. Key Laboratory of Nonferrous Material Science and Engineering, Ministry of Education,Central South University, Changsha 410083, ChinaReceived 23 February 2013; accepted 23 May 2013Abstract: The fatigue crack initiation and early propagation behavior of 2A97 Al −Li alloy was studied. The smooth specimens were fatigued at room temperature under constant maximum stress control when stress ratio (R ) is 0.1 and frequency (f ) is 40 Hz. Microstructure observations were examined by optical microscopy, transmission electron microscopy, scanning electron microscopy and electron back scattered diffusion, in order to investigate the relationship between microstructure and fatigue crack initiation and early propagation behavior of 2A97 alloy. The results show that the fatigue cracks are predominantly initiated at inclusions and coarsen secondary phases on the surface of 2A97 alloy. The fatigue crack early propagation behavior of 2A97 alloy is predominantly influenced by the interactions between grain structure and dislocations or persistent slip bands (PSBs). When the misorientation of two neighbouring grains is close to the orientations of the favorable slip plane within these two grains, high-angle grain boundary severely hinders the PSBs passing through, and thus leads to crack bifurcation and deflection. Key words: 2A97 Al −Li alloy; fatigue crack initiation; fatigue crack; early propagation1 IntroductionThe fatigue crack initiation behavior mainly depends on the irregular nature of fatigue cracks and the influence of metallurgical features such as inclusions and grain boundaries. Micromechanisms of fatigue crack initiation at inclusions depend on the matrix, types of inclusions and properties of the inclusion-matrix interface [1,2]. TANAKA and MURA [3] concluded three modes of fatigue crack initiation at inclusions in high strength alloys, which are dependent on the slip characteristics of the matrix, the distribution of inclusion size and the strength of the matrix-inclusion interface [4]. MORRIS and JAMES [5] observed that the inclusions were debonded firstly at the inclusion −matrix interface in 2219−T851 alloys under maximum cyclic stresses. The fatigue crack in 2024−T4 alloys could be initiated along slip bands emanating from an inclusion, which could not be debonded [6].It is well known that grain boundary characteristic is one of the main barriers to the fatigue crack growth behaviour in most metallic structures, which especially often accounts for the short fatigue crack growth rate [7].The short crack propagation behavior of Al −Li 8090 alloys [8,9] was dominated by the twist and tilt components of crack plane deflection at grain boundaries, which also explained the phenomena of fatigue branching. LIAO [10] presented a dislocation theory based short crack model to analyse the short crack growth behavior of Al 2024−T351 alloys by taking into account the influences of grain size, orientation and grain boundary.The Al −Li alloys have been widely used in various structural components in the aircraft for their high specific strength and superior comprehensive performances [11,12]. The 2A97 alloy belongs to the third generation of Al −Li alloys, which has excellent corrosion resistance, superior damage tolerance and good weldability [13]. There is a broad prospect of application in the aerospace field, such as lower wing panel, fuselage and stringers. In the last ten years, several investigations have been carried out on the mechanical and corrosion behavior of 2A97 alloy [14−16], however, its fatigue behavior has not been investigated extensively. In this study, the mechanical and fatigue properties of 2A97 alloy were evaluated, including characterization of the fatigue crack initiation and micro-crack propagationCorresponding author: Zi-qiao ZHENG; Tel: +86-731-88830270; Fax: +86-731-8876692; E-mail: s-maloy@ DOI: 10.1016/S1003-6326(14)63061-2Jing ZHONG, et al/Trans. Nonferrous Met. Soc. China 24(2014) 303−309 304behavior, based on the observation of microstructures bytransmission electron microscopy (TEM), scanning electron microscopy (SEM) and electron back scattered diffusion (EBSD).2 ExperimentalThe as-received materials are 40 mm thick rolled2A97 alloy plate in T851 conditions with the base composition of 2.8% Cu, 0.35% Mg, 0.4% Mn, 0.5% Zn,1.8% Li and 0.1% Zr (mass fraction). The tensile properties in LT direction are listed in Table 1. The grain structure was characterized using a combination of optical microscopy (OM) and orientation imaging microscopy (OIM).Table 1 Tensile properties of 2A97−T851 alloyσb/MPaσ0.2/MPaδ/% E/GPa555 469 13 76 The thin foils for TEM observation were prepared with a standard procedure: samples were polished mechanically to less than 100 μm, and twin-jet was electro-polished using a 1/4 nitric acid and 3/4 methanol solution held at −25 to −35 °C, with a voltage of 25 V. The microstructures were observed on transmission electron microscopy (TEM, Tecnai G220) at an operating voltage of 200 kV.The fatigue crack initiation tests were performed on MTS 858 servo-hydraulic fatigue testing machine at room temperature with the stress ratio (R) of 0.1 and frequency (f) of 40 Hz. All fatigue smooth specimens were taken from L−T direction of the as-received plate,and the specimen surfaces were precisely ground to avoid the influences of surface defects. The crack initiation samples were observed by scanning electron microscope (SEM, Quanta-200) equipped with an energy dispersive spectrometer (EDS). For EBSD measurement,the sample surface was polished electrolytically to eliminate the residual stress. EBSD examinations were carried out by scanning electron microscopy (SEM,H-3400) with TSL EBSD patterns detection system.3 Results3.1 Microstructures of 2A97 alloyA typical pancake-shaped grain structure of 2A97 alloy showing partially recrystallization is displayed in Fig. 1, with large variation in grain width and grain aspect ratio in the three orthogonal directions. The grainsare significantly flattened and elongated in rolling direction, and the grain dimensions in transverse direction are comparably smaller than those in longitudinal direction.Fig. 1 Triplanar optical micrograph of 2A97−T851 alloyThe results of TEM observation of the predominant precipitates in 2A97 alloy are shown in Fig. 2. The dark center field image with 〈001〉 beam direction is shown in Fig. 2(a), which depicts a massive and uniform distribution of needle θ″ phases, spherical δ′ phases. A few δ′/β′ composite particles are also observed, with the typical dark core of β′ enveloped by a bright shell of δ′, forming the characteristic bull’s eye structure [17,18]. Many fine dispersed T1 phases and a few S′ phases can be seen in Fig. 2(b), which are observed from 〈112〉 beam direction. The morphologies in the vicinity of grain boundaries are shown in Figs. 2(c) and (d). An evidence of precipitation free zone of about 40 nm width can be seen, and the continuous equilibrium phases can also be observed along the high angle grain boundaries.3.2 Fatigue crack initiation and early propagationFigure 3 shows some typical sites for fatigue crack initiation in 2A97 fatigue smooth specimens obtained by SEM and the corresponding EDS results. Figure 3(a) shows a network of cracks initiated at metallic inclusions and propagated into the matrix after 8000 cycles with a maximum stress of 400 MPa. The EDS results in Fig. 3(b) indicate that they are chiefly constituted by the brittle aluminum oxides, which may generate in the smelting process. As shown in Fig. 3(c), a crack initiates at the interior of intermetallic particles, which might be Al7Cu2(Fe,Mn) particles according to the EDS results in Fig. 3(d).Figure 4 shows the typical SEM images of the fatigue crack initiation and early growth behavior on the specimen surface with the orientation of L−T. A cyclic loading with the maximum stress of 400 MPa and stress ratio of 0.1 is vibrated about 21000 cycles. It can be seen that the fatigue crack initiates at the specimen edge, where no evident large secondary phase is observed. Under the control of cycle stress, there is a large stress concentration near the sharp edge of the specimen,Jing ZHONG, et al/Trans. Nonferrous Met. Soc. China 24(2014) 303−309 305Fig. 2 TEM images showing typical precipitates of 2A97 alloy in dark field: (a) θ″ and δ′ phase with corresponding SAED pattern from 〈001〉α; (b) T1 phase with corresponding SAED pattern from 〈112〉α; (c) Precipitate-free zone (PFZ) and grain boundary precipitates from 〈001〉α; (d) Precipitate-free zone (PFZ) and grain boundary precipitates from 〈112〉αFig. 3 SEM images for fatigue crack initiation: (a) A network of cracks initiated at inclusion of aluminum oxide; (b) Corresponding EDS results of (a); (c) A crack initiated in the secondary phase; (d) Corresponding EDS results of (c)Jing ZHONG, et al/Trans. Nonferrous Met. Soc. China 24(2014) 303−309306Fig. 4 SEM images of fatigue crack early growth behavior of 2A97 alloy with specimen orientation of L−T, about 21000 vibratory cycles, maximum stress of 400 MPa and stress ratio of 0.1: (a) Secondary cracks; (b) Crack bifurcation at grain boundary; (c) Micro crack initiated at grain boundary and parallel to slip bands; (d) Overall imagewhich would cause localized plastic deformation and lead to crack initiation. Typical images for secondary cracks and crack bifurcation can be observed in Figs. 4(a) and (b). Secondary cracks derived from the main crack, which might be brittle grain (or sub-grain) boundaries cracking under the influence of the strain field of crack tip. At the very tip of this crack, the occurrences of slip bands at a certain angle with the grain boundary can be seen obviously, as well as some micro-cracks parallel to them (Fig. 4(c)).The EBSD results for the fatigue crack propagation paths of 2A97 alloy are shown in Fig. 5. The SEM image (Fig. 5(a)) for fatigue crack and grain/sub-grain boundaries shows that the crack moves through several different sized grains. There is a significant recrystallization in the region I, which is normally high-angle boundary grain. However, the recrystallization is not observed in the region II, which contains several low-angle boundary sub-grains. The fatigue crack moves through the region II without obvious deflection, while a tortuous deflection of fatigue crack can be seen when it moves through the region I. The grain orientation distribution in Fig. 5(b) shows that the prior path of crack expansion is along the sub-grain boundaries or grain boundaries, and larger deflections occur when the crack moves through a large angle grain boundaries (circle marked in Fig. 5(b)). The Schmid factor distribution in Fig. 5(c) represents that the crackJing ZHONG, et al/Trans. Nonferrous Met. Soc. China 24(2014) 303−309 307Fig. 5 EBSD image of fatigue crack early propagation paths of 2A97 alloy: (a) SEM image of fatigue crack and grain/sub-grain boundaries; (b) Grain orientation distribution; (c) Schmid factor distributionpreferably moves through the grains with a larger Schmid factor of the slip plane.4 DiscussionThe inclusions and coarsen secondary phases are the primary fatigue crack nucleation sites in 2A97 alloy, as shown in Fig. 3. Compared with the Al matrix, hard and brittle intermetallic compounds, such as Al7Cu2(Fe,Mn) particles mentioned above, can be difficult to cut by dislocations, causing dislocation pile-up in the case of high stress or local stress concentration, and the micro-cracks are formed by the crushing of particles or the debonding at the interface between particles and matrix [19]. Besides, other locations such as the edges of the specimens, where there are regions for high stress concentration, or grain boundaries interacted strongly with slip bands or dislocations where strain localization and micro cracks are easily formed. The micro-cracks continue to expand in the matrix, and form the macroscopic cracks under the subsequent cyclic stress.To reveal the relationship between the microstructures of grain boundaries, persistent slip bands and the fatigue crack early propagation behavior, TEM images of dislocation structures are shown in Figs. 6(a) and (b). The specimen is cyclic loading at 350 MPa for about 30000 cycles, when R=0.1 and K t=1.0. The thin foils for TEM observations are shown near the crack tip. TEM images in bright field and dark field in Fig. 6 show several parallel gray or white stripes passing through grain (or sub-grain) boundaries, which are called slip bands. The closer grain contrast of grains I and II determines that there is a low-angle grain boundary between these two adjacent grains, and the strong grain contrasts of grains II and III, I and IV show that those are large-angle grain boundaries. It could be observed that the persistent slip bands pass easily through the I−II grain boundary without almost any significant deflection, while no apparent slip strips are shown in grains III and IV. This is corresponding to the previously mentioned mechanism proposed by SANGID et al [20]. The circular mark in Fig. 6(b) shows that the slip bands move straightly through the grain-boundary precipitate, and form a larger local stress concentration around grain boundary.Figure 6(c) shows the relationship between grain boundary and persistent slip bands in relation to the fatigue crack early propagation behavior in 2A97 alloy. A large number of vacancies, dislocations and other defects exist around the grain boundary and its vicinity, subjecting to higher stress concentration. Meanwhile, the existence of the PFZs and the equilibrium phases arouses the weaker resistance to stress concentration and the micro-crack initiation relative to the matrix. Under the intense stress field at the tip of the micro-cracks, dislocations are easy to form pile-up at the grainJing ZHONG, et al/Trans. Nonferrous Met. Soc. China 24(2014) 303−309308Fig. 6 TEM images of dislocation structures with σmax=350 MPa, R=0.1 after 30000 cycles in bright field (a) and dark field (b), schematic of interaction between grain boundaries and PSBs (c)boundaries, which makes strong stress concentration and produces a large amount of persistent slip bands. And the cycle slips can also leave the traces of extrusions and intrusions at the surface of the specimen, where the micro-cracks can initiate easily, especially at the specimen sharp edges.The SEM images in Fig. 4 show that numerous traces of the PSBs form near the main crack, and some secondary cracks generate along these PSBs. The EBSD results in Fig. 5 indicate that fatigue cracks pass through high-angle grain boundaries with obvious large deflections, and move through low-angle sub-grain boundaries without almost no deflection or along the sub-grain boundaries. The Schmid factor distribution in Fig. 5(c) shows that the fatigue crack almost selects the most favorable path which has the maximum Schmid factor of slip system within one grain [7,21]. When the orientation difference of the favorable slip plane is small, which causes the slight impediment of grain boundary on the crack, the crack growth path is not prone to deflection. Otherwise, the crack is hard to move through grain boundary to the favorable slip plane of the adjacent grain, then the fatigue crack would deflect or terminate on the grain boundaries [20,22]. As the misorientation of two neighbouring grains is close to the orientations of the favorable slip plane within these two grains [8], low-angle grain boundary weakly hinders dislocations and the PSBs, so the PSBs can easily traverse straightly through adjacent grains. High-angle grain boundary has a strong blocking effect on the motion of dislocations, which impedes the PSBs traversing through grain boundary.The slip bands are associated mainly with strong plastic deformation, while the specimen is predominantly under the elastic state. Under the cyclic stress, the strong interactions between the dislocations, precipitates and grain boundaries lead to intense stress concentrations, which may cause cyclic plastic deformations in local areas even when the loading stress is far below the yield stress, and these areas may become the places for crack initiation.5 Conclusions1) The coarsened secondary phases and inclusions are the primary fatigue crack nucleation sites in fatigue smooth specimens of 2A97 alloy. The cracks mainly initiate at the interior of large Al7Cu2(Fe,Mn) particles, the aluminum oxides or defects and the vicinity of specimen sharp edge.2) The fatigue crack early propagation behavior of 2A97 alloy is jointly influenced by precipitates, grain/sub-grain boundaries and their interactions with dislocations or persistent slip bands (PSBs). When the misorientation of two grains is close to the orientations of the favorable slip plane within these two grains, high-angle grain boundary plays as an obstacle role in the moving of the PSBs, thus leads to crack bifurcation and deflection. While low-angle grain boundary weakly hinders the PSBs passing through, so the crack growth path is not prone to deflection.References[1]MERATI A. A study of nucleation and fatigue behavior of anaerospace aluminum alloy 2024-T3 [J]. International Journal ofFatigue, 2005, 27(1): 33−44.[2]LUKÁŠ P. Fatigue crack initiation mechanisms. Encyclopedia ofmaterials: Science and technology [M]. 2nd ed. Oxford, Elsevier,1992: 2882−2891.[3]TANAKA K, MURA T. A theory of fatigue crack initiation atinclusions [J]. Metallurgical and Materials Transactions A, 1982,13(1): 117−123.[4]LAZ P, HILLBERRY B. Fatigue life prediction from inclusioninitiated cracks [J]. International Journal of Fatigue, 1998, 20(4):263−270.[5]MORRIS W, JAMES M. Statistical aspects of fatigue cracknucleation from particles [J]. Metallurgical and Materials Transactions A, 1980, 11(5): 850−851.Jing ZHONG, et al/Trans. Nonferrous Met. Soc. China 24(2014) 303−309 309[6]KUNG C, FINE M. Fatigue crack initiation and microcrack growthin 2024-T4 and 2124-T4 aluminum alloys [J]. Metallurgical andMaterials Transactions A, 1979, 10(5): 603−610.[7]ZHAI T, WILKINSON A, MARTIN J. A crystallographic mechanismfor fatigue crack propagation through grain boundaries [J]. ActaMaterialia, 2000, 48(20): 4917−4927.[8]WEN W, ZHAI T. Three-dimensional effects of microstructures onshort fatigue crack growth in an Al−Li 8090 alloy [J]. PhilosophicalMagazine, 2011, 91(27): 3557−3577.[9]MORRIS W, JAMES M. Statistical aspects of fatigue cracknucleation from particles [J]. Metallurgical and Materials Transactions A, 1980, 11(5): 850−851.[10]LIAO M. Dislocation theory based short crack model and itsapplication for aircraft aluminum alloys [J]. Engineering FractureMechanics, 2010, 77(1): 22−36.[11]RIOJA R J, LIU J. The evolution of Al−Li base products foraerospace and space applications [J]. Metallurgical and MaterialsTransactions A, 2012: 1−13.[12]JIANG N, GAO X, ZHENG Z Q. Microstructure evolution ofaluminum-lithium alloy 2195 undergoing commercial production [J].Transactions of Nonferrous Metals Society of China, 2010, 20(5):740−745.[13]PRASAD N E, GOKHALE A, RAO P R. Mechanical behaviour ofaluminium-lithium alloys [J]. Sadhana, 2003, 28(1): 209−246.[14]ZHONG Shen, ZHENG Zi-qiao, LIAO Zhong-quan, CAI Biao.Effects of aging treatment on strength and fracture toughness of2A97 aluminum-lithium alloy [J]. The Chinese Journal of NonferrousMetals, 2011, 21(3): 546−553. (in Chinese)[15]LI Hong-ying, WANG Xiao-feng, ZHAO Yan-kuo, ZENG Cui-ting,ZHANG Jian-fei. Effect of solution temperature on microstructureand properties of 2A97 alloy [J]. Transactions of Materials and HeatTreatment, 2010, 31(4): 114−119. (in Chinese)[16]YUAN Z S, WU X L , LU Z , XIE Y H, DAI S L , LIU C S. Theaging behavior of aluminum-lithium alloy 2A97 [J]. Rare Metal Materials and Engineering, 2008, 37(11): 1898−1902. (in Chinese) [17]TERRONES L A H, MONTEIRO S N. Composite precipitates in acommercial Al−Li−Cu−Mg−Zr alloy [J]. Materials Characterization,2007, 58(2): 156−161.[18]FRAGOMENI J, WHEELER R, JATA K. Effect of single and duplexaging on precipitation response, microstructure, and fatigue crackbehavior in Al−Li−Cu alloy AF/C-458 [J]. Journal of Materials Engineering and Performance, 2005, 14(1): 18−27.[19]BOWLES C, SCHIJVE J. The role of inclusions in fatigue crackinitiation in an aluminum alloy [J]. International Journal of Fracture,1973, 9(2): 171−179.[20]SANGID M D, MAIER H J, SEHITOGLU H. The role of grainboundaries on fatigue crack initiation-An energy approach [J].International Journal of Plasticity, 2011, 27(5): 801−821.[21]LI J, ZHAI T, GARRATT M, BRAY G. Four-point-bend fatigue ofAA 2026 aluminum alloys [J]. Metallurgical and Materials Transactions A, 2005, 36(9): 2529−2539.[22]SANGID M D, EZAZ T, SEHITOGLU H, ROBERTSON I M.Energy of slip transmission and nucleation at grain boundaries [J].Acta Materialia, 2011, 59(1): 283−296.2A97铝锂合金的疲劳裂纹萌生及早期扩展行为钟警1,钟申1,郑子樵1,2,张海锋1,罗先甫11. 中南大学材料科学与工程学院,长沙 410083;2. 中南大学有色金属材料科学与工程教育部重点实验室,长沙 410083摘 要:研究2A97铝锂合金的疲劳裂纹萌生及早期扩展行为。