四川省资阳市简阳市镇金学区2018-2019学年八年级(上)期中数学模拟试卷(含答案)
- 格式:doc
- 大小:140.38 KB
- 文档页数:8
2018-2019学年四川省资阳市简阳市镇金学区八年级(上)期中数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=()A.B.4C.4或D.以上都不对2.(3分)3的算术平方根是()A.±B.C.﹣D.93.(3分)在直角三角形中,若勾为3,股为4,则弦为()A.5B.6C.7D.84.(3分)点P(x﹣1,x+1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣6.(3分)如图,盒内长、宽、高分别是6cm、3cm、2cm,盒内可放木棒最长的长度是()A.6cm B.7cm C.8cm D.9cm7.(3分)将△ABC的三个顶点坐标的横坐标都乘以﹣1,纵坐标不变,则所得图形与原图的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将图形向下平移一个单位8.(3分)若a,b为实数,且|a+1|+=0,则﹣(﹣ab)2018的值是()A.1B.2018C.﹣1D.﹣20189.(3分)点A(1,m)为直线y=2x﹣1上一点,则OA的长度为()A.1B.C.D.10.(3分)已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共4小题,满分16分,每小题4分)11.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.12.(4分)已知一次函数的图象与直线y=x+3平行,并且经过点(﹣2,﹣4),则这个一次函数的解析式为.13.(4分)如图,△ABO的边OB在数轴上,AB⊥OB,且OB=2,AB=1,OA=OC,那么数轴上点C所表示的数是.14.(4分)如图,轮船甲从港口O出发沿北偏西25°的方向航行8海里,同时轮船乙从港口O出发沿南偏西65°的方向航行15海里,这时两轮船相距海里.三.填空题(共5小题,满分20分,每小题4分)15.(4分)若x的平方根是±4,则的值是.16.(4分)如图,已知一次函数y1=k1x+b1和y2=k2x+b2的图象交于点P(2,4),则关于x的方程k1x+b1=k2x+b2的解是.17.(4分)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系.18.(4分)如图,AD是△ABC的角平分线,AB:AC=3:2,△ABD的面积为15,则△ACD 的面积为.19.(4分)在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依此规律,得到Rt△B2017A2018B2018,则点B2018的纵坐标为.四.解答题(共2小题,满分18分)20.(12分)计算:.21.(6分)计算:|﹣5|+(﹣1)2﹣()﹣1﹣.五.解答题(共4小题,满分36分)22.(8分)对有序数对(m,n)定义“f运算”:,其中a、b为常数.f运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′.(1)当a=0,b=0时,f(﹣2,4)=;(2)若点P(4,﹣4)在F变换下的对应点是它本身,则a=,b=.23.(8分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原件为x(x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.24.(10分)如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处.(1)求线段B E的长;(2)连接BF、GF,求证:BF=GF;(3)求四边形BCFE的面积.25.(10分)已知一次函数y=kx+b的图象过P(1,4),Q(4,1)两点,且与x轴交于A点.(1)求此一次函数的解析式;(2)求△POQ的面积;(3)已知点M在x轴上,若使MP+MQ的值最小,求点M的坐标及MP+MQ的最小值.六.解答题(共1小题,满分8分,每小题8分)26.(8分)(1)已知x2﹣1=35,求x的值.(2)在数轴上画出表示的点.七.解答题(共2小题,满分10分)27.(10分)如图,矩形ABCD中,AC、BD相交于O,AE平分∠BAD交BC于E,若∠CAE=15°,求∠BOE的度数.28.问题:如图①,点E,F分别在正方形ABCD的边BC、CD 上,且∠EAF=45°,试探究BE、EF、FD 三条线段之间存在的等量关系.【发现】小聪把△A BE绕点A逆时针旋转90°至△ADG,探究发现:EF=BE+FD.试利用图②证明小聪的结论.【应用】如图②,点E、F分别在正方形ABCD的边BC、CD 上,且∠EAF=45°,BE=2,EC=4,则EF长为(直接写出结果)【拓展】如图③,在△ABC中,∠BAC=90°,AB=AC,点D在边BC 上,点E在边BC的延长线上,且∠DAE=45°,试探究BD、DE、CE三条线段之间存在的等量关系,并说明理由.参考答案一.选择题1.A;2.B;3.A;4.D;5.A;6.B;7.B;8.C;9.C;10.C;二.填空题11.﹣1;12.y=﹣3;13.﹣;14.17;三.填空题15.4;16.x=2;17.y=;18.10;19.32019;解答题略。
四川省资阳市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、一.选择题 (共8题;共16分)1. (2分)(2018·枣阳模拟) (﹣2)2的算术平方根是()A . 2B . ±2C . ﹣2D .2. (2分) (2016八下·大石桥期中) 如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC 的中点,则点C所表示的数为()A . -1B . 1﹣C . -2D . 2﹣3. (2分) (2017七下·椒江期末) 实数-2,0.101001…(相邻的两个1之间依次增加一个0),,,-π中,无理数的个数是()A . 2个B . 3个C . 4个D . 5个4. (2分) (2020八上·南岗期末) 下列变形中是因式分解的是()A .B .C .D .5. (2分)下列命题,正确的是()A . 如果|a|=|b|,那么a=bB . 等腰梯形的对角线互相垂直C . 顺次连结四边形各边中点所得到的四边形是平行四边形D . 相等的圆周角所对的弧相等6. (2分)(2017·天门) 下列运算正确的是()A . (π﹣3)0=1B . =±3C . 2﹣1=﹣2D . (﹣a2)3=a67. (2分) (2019八上·衢州期中) 同学们都玩过跷跷板的游戏,如图是一个跷跷板的示意图,立柱OC与地面垂直,OA=OB.当跷跷板的一头A着地时,∠AOA′=50°,则当跷跷板的另一头B着地时,∠COB′等于()A . 25°B . 50°C . 65°D . 130°8. (2分) (2020七下·新昌期中) 如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形中阴影部分面积的关系,可以直观地得到一个关于a,b的恒等式为()A . a2-b2=(a+b)(a-b)B . (a+b)2=a2+2ab+b2C . (a-b)2=(a+b)2-4abD . a2+ab=a(a+b)二、填空题 (共6题;共8分)9. (1分) (2019七下·河池期中) 如图,直径为个单位的圆,沿数轴向右滚动一周,圆上的一点从原点到达点,则点对应的实数是________.10. (2分)每个命题都是由________和________两部分组成。
2018—2019年度上学期部分学校八年级期中考试数学试卷一、选择题(共10小题,每小题3分,共30分)1、下列长度的三条线段,其中能组成三角形的是()A、1、2、3B、3、4、5C、1、3、5D、2、4、62、五边形的内角和为()A、180°B、360°C、540°D、900°3.点M(3,﹣4)关于y轴的对称点的坐标是()A.(3,4)B.(﹣3,﹣4)C.(﹣3,4)D.(﹣4,3)4.下列图形中具有稳定性的是()A.六边形B.五边形C.平行四边形D.三角形5.已知图中的两个三角形全等,则∠1等于()A.70°B.68° C.58° D.52°6、如图,OP为∠AOB的角平分线,PC⊥OA于C,PD⊥OB于D,则下列结论中错误的是()A、∠COP=∠DOPB、PC=PDC、OC=ODD、∠CPD=2∠COD7.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处8.如图3,在△ABC中,若BC=6 cm,AC=4 cm,AB边的垂直平分线交AB于点E,交BC于点D,则△ADC的周长是()A.14 B.12 C. 10 D. 89.如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的格点C 的个数是( )A .7B .6C .5D .410如图所示,AB =AC =AD ,∠BAC=70° 则∠BDC 度数是( ) A 、18° B 、30° C 、35° D 、25°二、填空题(本大题共6个小题,每小题3分,共18分)11、直角三角形中,有一个锐角是40°,它的另一个锐角的度数为___________ 12、等腰三角形的两边长分别为2和5,则周长为___________13、如图,点O 在△ABC 内,且到三个顶点距离相等.若∠A =50°,则∠BOC =___________度14.如图,已知AB =CD ,请添加一个角的条件,使△ABC ≌△CDA ,这个条件是 .15.△ABC 的高BD 、CE 所在的直线交于点H ,若∠BHC =75°,则∠BAC的度数为E BNDM A CBDCA___________16.已知:如图AB =24,AC =12,且CA ⊥AB 于A ,射线BM ⊥AB 于B .一个动点E 从A 点出发沿射线AN 运动,点D 为射线BM 上的一个动点,且始终保持ED =CB .当AE= 时,△DBE 与△BCA 全等.17、(本题8分)等腰三角形周长为15,设腰长为x ,底边长为y (1) 用含x 的式子表示y(2) 若腰长是底边长的2倍,求此三角形三边长18、(本题8分)如图,已知AB =DE ,AC =DF ,BE =CF ,判断AC 与DF 的关系并证明。
2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学(满分:100分考试时间:100分钟)注意事项:1.选择题请用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.2.非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列“表情”中属于轴对称图案的是A. B. C. D.2.下列说法正确的是A .两个等边三角形一定全等B .形状相同的两个三角形全等C .面积相等的两个三角形全等D .全等三角形的面积一定相等3.下列长度的三条线段,能组成直角三角形的是 A .1,2,3B .2,3,4C .3,4,5D .4,5,64.在△ABC 中,AB =AC ,BD 为△ABC 的高,若∠BAC =40°,则∠CBD 的度数是 A .70°B .40°C .20°D .30°5.如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面积分别为9和25,则正方形A 的面积是 A .16 B .32 C .34 D .64925A(第5题)(第4题)ABCD6.到三角形三条边距离相等的点是A .三条边的垂直平分线的交点B .三条边上高的交点C .三条边上中线的交点D .三个内角平分线的交点7.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′C ′B ′=∠ACB 的依据是A .SASB .SSSC .ASAD .AAS8.如图,长方形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′,点B 落在点B ′处.若∠2=40°,则∠1的度数为 A .115°B .120°C .130°D .140°二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题..卷.相应位置....上) 9.等边三角形有▲条对称轴.10.在Rt △ABC 中,∠C =90°,AB =13,BC =12,则AC =▲.11.已知△ABC ≌△DEF ,且△DEF 的周长为12.若AB =5,BC =4,则AC =▲. 12.若等腰三角形的两边长分别为4和8,则这个三角形的周长为▲. 13.在等腰△ABC 中,AC =AB ,∠A =70°,则∠B =▲°.14.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB ,垂足为D ,CD =▲.15.如图,在等腰△ABC 中,AB =AC ,AD 为△ABC 的中线,∠B =72°,则∠DAC =▲°. 16.在Rt △ABC 中,∠C =90°,∠A =30°,D 是斜边AB 的中点,DE ⊥AC ,垂足为E ,DE =2,则AB =▲.(第7题) AC DBB ′A ′C ′D ′(第8题)1 2BB ′ CA ′ DEAF(第15题)DACBDACB(第14题)(第16题)ACBDE17.如图,△DEF 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形.若在图中再画1个格点△ABC (不包括△DEF ),使△ABC ≌△DEF ,这样的格点三角形能画▲个.18.如图,在Rt △ABC 中,∠ABC =90°,AB =BC =4,M 在BC 上,且BM =1,N 是AC上一动点,则BN +MN 的最小值为▲.三、解答题(本大题共9小题,共64分.请在答题..卷.指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤)19.(6分)已知:如图,在△ABC 中,DE ∥BC ,AD =AE .求证:AB =AC .20.(5分)如图,三个直角三角形(Ⅰ,Ⅱ,Ⅲ)拼成一个梯形(两底分别为a 、b ,高为a +b ),利用这个图形,小明验证了勾股定理.请将计算过程补充完整. 解:S 梯形=12(上底+下底)×高=12(a +b )•(a +b ),即S 梯形=12(▲).①S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =▲+▲+▲.即S 梯形=12(▲).②由①、②,得a 2+b 2=c 2.DE C(第19题)A(第20题)cⅢcⅡⅠb ba a(第17题)EDFMNABC(第18题)21.(6分)如图,育苗棚的顶部是长方形,求育苗棚顶部薄膜ABDE 的面积.22.(6分)已知:如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .求证:BC ∥EF .23.(6分)如图,△ABC 是等边三角形,D 是BC 上任意一点(与点B 、C 不重合),以AD 为一边向右侧作等边△ADE ,连接CE .求证:△CAE ≌△BAD .FECBA(第22题)DCEA(第23题)B(第21题)E24.(7分)如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,CD =12,AD =13.求四边形ABCD 的面积.25.(8分)如图,在△ABC 中,∠C =90°.E 是AB 中点,DE ⊥AB ,垂足为E .若CD =ED ,求∠BAC ,∠B 的度数.26.(8分)如图,在四边形ABCD 中,∠ABC =∠ADC =90°,M 为AC 的中点.(1)求证:MB =MD .(2)若∠BAD =100°,求∠BMD 的度数.M(第26题)CABD (第24题)CBDA(第25题)BE DC27.(12分)在Rt △ABC 中,∠C =90°,将△ABC 沿着某条直线折叠.(1)若该直线经过点A ,且折叠后点C 落在AB 边上,请用直尺和圆规在图①中作出该直线(不写作法,保留作图痕迹); (2)若折叠后点A 与点B 重合.①请用直尺和圆规在图②中作出该直线(不写作法,保留作图痕迹); ②若图②中所画直线与AC 交于点P ,且AB =8,AP =5,求CP 的长.(第27题)AC图①AC图②2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计16分)二、填空题(每小题2分,共计20分)9.3 10.5 11.3 12.20 13.55 14.4.8 15.18 16.8 17.3 18.5三、解答题(本大题共9小题,共计64分) 19.(本题6分) 证明:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C .……………………………………………2分 ∵AD =AE ,∴∠ADE =∠AED . …………………………………………………………4分 ∴∠B =∠C . ………………………………………………………………5分 ∴AB =AC .……………………………………………………………………6分20.(本题5分)解:S 梯形=12(上底+下底)•高=12(a +b )•(a +b ),即S 梯形=12(a 2+2ab +b 2).①…………………………1分S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =12ab +12c 2+12ab .…………………………4分即S 梯形=12(c 2+2 ab ).②……………………………5分由①、②,得a 2+b 2=c 2.21.(本题6分)解:在Rt △ABC 中,∠ACB =90°,由勾股定理得:AB 2=AC 2+BC 2=22+1.52=6.25,∴AB =2.5(m ).…………3分∴S 四边形ABDE =2.5×20=50(m 2).……………………………………………5分 答:四边形ABDE 的面积是50m 2.……………………………………………6分 22.(本题6分)证明:∵AF =DC ,∴AF +FC =DC +FC .即AC =DF .………………………1分在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠A =∠D ,AC =DF .∴△ABC ≌△DEF (SAS ).…………………4分∴∠BCA =∠EFD .……………………………………………5分 ∴BC ∥EF .……………………………………………6分 23.(本题6分)证明:∵△ABC 和△ADE 是等边三角形,∴AC =AB ,AE =AD ,∠DAE =∠BAC =60°.………………………………3分 ∴∠DAE -∠CAD =∠BAC -∠CAD ,即∠CAE =∠BAD .………………4分 在△CAE 和△BAD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD .∴△CAE ≌△BAD (SAS ).………6分24.(本题7分)解:∵在△ABC 中,∠B =90°,AB =4,BC =3,∴AC =5.………………………2分在△ADC 中,AD =13,CD =12,AC =5. ∵122+52=132,即CD 2+AC 2=AD 2,∴△ADC 是直角三角形,且∠DCA =90°.……………………………………4分∴S 四边形ABCD =S △ABC +S △ADC =12AB •BC +12AC •CD =12×3×4+12×5×12=36.……7分25.(本题8分) 解:连接AD .∵∠C =90°,DE ⊥AB ,CD =ED , ∴点D 在∠BAC 的角平分线上.∴∠CAD =∠EAD .……………………………………………………………………2分 ∵E 是AB 中点,DE ⊥AB ,∴DB =DA .……………………………………………………………………4分 ∴∠DBA =∠DAB .……………………………………………………………………6分 ∵∠DBA +∠CAB =90°, ∴3∠DBA =90°. ∴∠DBA =30°.∴∠B =30°,∠BAC =60°.…………………………………………………………8分 26.(本题8分)(1)证明:∵∠ABC =∠ADC =90°,又∵M 为AC 的中点,∴MB =12AC ,MD =12AC .………………………………4分∴MB =MD .…………………………………………………………………………5分 (2)解:∵∠BAD =100°,∴∠BCD =360°-(∠ABC +∠ACB )-∠BAD =80°,……………………………6分 ∵MB =MC =MD ,∴∠MBC =∠MCB ,∠MCD =∠MDC .……………………………………………7分 ∴∠BMD =∠BMA +∠DMA =2∠BCA +2∠DCA =2∠ACB =2×80°=160°.……8分27.(本题12分)解:(1)如图,直线AD 即为所求.…………………………………………………3分(2)①如图,直线MN 即为所求.……………………………………………………6分②由①中的作图得:AP =PB .…………………………………………………7分 ∵∠C =90º,∴ △BCP 和△ACB 是直角三角形. 在Rt △ABC 中,∵AC 2+CB 2=AB 2,∴BC 2=AB 2-AC 2.………………………………………8分 在Rt △PCB 中,∵PC 2+CB 2=PB 2,∴ BC 2=PB 2-CP 2.………………………………………9分 ∴ AB 2-AC 2=PB 2-CP 2. 设CP =x ,则AC =5+x ,52-x 2=82-(5+x )2.……………………………………………………………11分 ∴ x =1.4.即CP 的长为1.4.…………………………12分.ACDBBCAPMN。
2018—2019学年度上期期中教学质量检测八年级数学题号一二三总分16 17 18 19 20 21 22 23得分一、单项选择题(每小题3分,共30分)1.下列图形是轴对称图形的有()(A)2个(B)3个(C)4个(D)5个2.以下列各组线段为边,能组成三角形的是()(A)4 cm,5 cm,6 cm (B)3 cm,3 cm,6 cm (C)2 cm,3 cm,5 cm (D)5 cm,8 cm,2 cm 3.如图,将一副三角板按如图所示摆放,图中∠α的度数是()(A)75°(B)90°(C)105°(D)120°4.一个多边形的边数每增加一条,这个多边形的()(A)内角和增加360°(B)外角和增加360°(C)对角线增加一条(D)内角和增加180°5.若一个三角形的两边长分别为3和7,则第三边的长可能是()(A)6 (B)3 (C)2 (D)116.若从多边形的一个顶点出发,最多可以引10条对角线,则它是()(A)十三边形(B)十二边形(C)十一边形(D)十边形7.如图AB=CD,AD=BC,过O点的直线交AD于E,交BC于F,图中全等三角形有()(A)4对(B)5对(C)6对(D)7对第3题图第7题图8.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第______块去,这利用了三角形全等中的______判定方法()(A)2;SAS (B)4;ASA (C)2;AAS (D)4;SAS 9.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为()(A)30°(B)60°(C)90°(D)120°或60°10.如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD 交BC于F,交AB于G,下列结论:①GA=GP;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④FP=FC;其中正确的判断有()(A)只有①②(B)只有③④(C)只有①③④(D)①②③④第8题图第10题图二、填空题(每小题3分,共15分)11.将直角三角形(∠ACB为直角)沿线段CD折叠使B落在B′处,若∠ACB′=50°,则∠ACD度数为__________。
2018-2019(含答案)八年级(上)期中数学试卷 (10).................................................................................................................................................................2018.10.22一、选择题:本大题共12题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下面各组线段中,能组成三角形的是()A.5,11,6B.8,8,16C.10,5,4D.6,9,143.若一个多边形的内角和为1080∘,则这个多边形的边数为()A.6B.7C.8D.94.等腰三角形的一个内角是50∘,则这个三角形的底角的大小是()A.65∘或50∘B.80∘或40∘C.65∘或80∘D.50∘或80∘5.如图,在△ABC中,BC边上的高为()A.BEB.AEC.BFD.CF6.在△ABC中,∠B的平分线与∠C的平分线相交于O,且∠BOC=130∘,则∠A=()A.50∘B.60∘C.80∘D.100∘7.已知:如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,则图中共有全等三角形()A.5对B.4对C.3对D.2对8.和点P(2, −5)关于x轴对称的点是()A.(−2, −5)B.(2, −5)C.(2, 5)D.(−2, 5)9.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙10.如图,∠A =15∘,AB =BC =CD =DE =EF ,则∠DEF 等于( )A.90∘B.75∘C.70∘D.60∘11.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180∘形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为( )A.80∘B.100∘C.60∘D.45∘12.已知AB =AC =BD ,则∠1与∠2的关系是( )A.∠1=2∠2B.2∠1+∠2=180∘C.∠1+3∠2=180∘D.3∠1−∠2=180∘二、填空题:本大题共5个小题,共20分,只要求填写最后结果,每小题填对得4分.13.等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长为________.14.点P 到△ABC 三边的距离相等,则点P 是________的交点.15.一辆汽车车牌在水中的倒影为如图,该车牌的牌照号码是________.16.如图在中,AB =AC ,∠A =40∘,AB 的垂直平分线MN 交AC 于D ,则∠DBC =________度.17.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为________.三、解答题18.如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点.(保留作图痕迹)19.如图,在平面直角坐标系中,A(1, 2),B(3, 1),C(−2, −1).(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)写出A1,B1,C1的坐标(直接写出答案),A1________;B1________;C1________.(3)△A1B1C1的面积为________.20.如图,△ABC≅△ADE,且∠CAD=10∘,∠B=∠D=25∘,∠EAB=120∘,求∠DFB和∠DGB的度数.21.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.22.已知:如图所示,在△ABC中,AB=AC,E在CA延长线上,AE=AF,AD是高,试判断EF与BC的位置关系,并说明理由.23.如图,在△ABC中,∠ACB=90∘,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≅△CEB.(2)AD=5cm,DE=3cm,求BE的长度.24.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF 的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.答案1. 【答案】C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.2. 【答案】D【解析】根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.【解答】解:A、∵5+6<11,∴不能组成三角形,故A选项错误;B、∵8+8=16,∴不能组成三角形,故B选项错误;C、∵5+4<10,∴不能组成三角形,故C选项错误;D、∵6+9>14,∴能组成三角形,故D选项正确.故选:D.3. 【答案】C【解析】首先设这个多边形的边数为n,由n边形的内角和等于180∘(n−2),即可得方程180(n−2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n−2)=1080,解得:n=8.故选C.4. 【答案】A【解析】等腰三角形的两个底角相等,已知一个内角是50∘,则这个角可能是底角也可能是顶角.要分两种情况讨论.【解答】解:当50∘的角是底角时,三角形的底角就是50∘;当50∘的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65度.故选:A.5. 【答案】B【解析】根据三角形的高线的定义解答.【解答】解:根据高的定义,AE为△ABC中BC边上的高.故选B.6. 【答案】C【解析】在△BOC中由三角形的内角和可求得∠OBC+∠OCB=50∘,再由角平分线的定义可得∠ABC+∠ACB=2(∠OBC+∠OCB)=100∘,在△ABC中再利用三角形内角和定理可求得∠A.【解答】解:∵∠BOC=130∘,∴∠OBC+∠OCB=180∘−∠BOC=180∘−130∘=50∘,∵BO和CO分别平分∠ABC和∠ACB,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=100∘,∴∠A=180∘−(∠ABC+∠ACB)=180∘−100∘=80∘,故选C.7. 【答案】A【解析】三角形全等条件中必须是三个元素,并且一定有一组对应边相等.此类题可以先把单独的两个全等三角形的对数找完,再找由两个三角形组合的全等的大三角形的对数,最后找由三个小三角形组合的全等的大三角形的对数.【解答】解:单独的两个全等三角形的对数是3,分别是:△BDE≅△CDF、△DGE≅△DGF、△AGE≅△AGF;由两个三角形组合的全等的大三角形的对数是1,是:△AED≅△AFD;由三个小三角形组合的全等的大三角形的对数是1,是:△ADB≅△ADC;所以共5对,故选A.8. 【答案】C【解析】点P(m, n)关于x轴对称点的坐标P′(m, −n),然后将题目已经点的坐标代入即可求得解.【解答】解:根据轴对称的性质,得点P(2, −5)关于x轴对称的点的坐标为(2, 5).故选:C.9. 【答案】B【解析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选B.10. 【答案】D【解析】根据已知条件,利用等腰三角形的性质及三角形的内角和外角之间的关系进行计算.【解答】解:∵AB=BC=CD=DE=EF,∠A=15∘,∴∠BCA=∠A=15∘,∴∠CBD=∠BDC=∠BCA+∠A=15∘+15∘=30∘,∴∠BCD=180∘−(∠CBD+∠BDC)=180∘−60∘=120∘,∴∠ECD=∠CED=180∘−∠BCD−∠BCA=180∘−120∘−15∘=45∘,∴∠CDE=180∘−(∠ECD+∠CED)=180∘−90∘=90∘,∴∠EDF=∠EFD=180∘−∠CDE−∠BDC=180∘−90∘−30∘=60∘,∴∠DEF=180∘−(∠EDF+∠EFC)=180∘−120∘=60∘.故选D.11. 【答案】A【解析】先根据三角形的内角和定理易计算出∠1=140∘,∠2=25∘,∠3=15∘,根据折叠的性质得到∠1=∠BAE=140∘,∠E=∠3=15∘,∠ACD=∠E=15∘,可计算出∠EAC,然后根据∠α+∠E=∠EAC+∠ACD,即可得到∠α=∠EAC.【解答】解:设∠3=3x,则∠1=28x,∠2=5x,∵∠1+∠2+∠3=180∘,∴28x+5x+3x=180∘,解得x=5∘,∴∠1=140∘,∠2=25∘,∠3=15∘,∵△ABE是△ABC沿着AB边翻折180∘形成的,∴∠1=∠BAE=140∘,∠E=∠3=15∘,∴∠EAC=360∘−∠BAE−∠BAC=360∘−140∘−140∘=80∘,又∵△ADC是△ABC沿着AC边翻折180∘形成的,∴∠ACD=∠E=15∘,而∠α+∠E=∠EAC+∠ACD,∴∠α=∠EAC=80∘.故选A.12. 【答案】D【解析】根据等腰三角形的性质和三角形内角和定理可得∠1和∠C之间的关系,再根据三角形外角的性质可得∠1和∠2之间的关系.【解答】解:∵AB=AC=BD,∴∠B=∠C=180−2∠1,∴∠1−∠2=180−2∠1,∴3∠1−∠2=180.故选D.13. 【答案】8cm【解析】设腰长为2x,得出方程(2x+x)−(5+x)=3或(5+x)−(2x+x)=3,求出x后根据三角形三边关系进行验证即可.【解答】解:设腰长为2x,一腰的中线为y,则(2x+x)−(5+x)=3或(5+x)−(2x+x)=3,解得:x=4,x=1,∴2x=8或2,①三角形ABC三边长为8、8、5,符合三角形三边关系定理;②三角形ABC三边是2、2、5,2+2<5,不符合三角形三边关系定理;故答案为:8cm.14. 【答案】角平分线的交点【解析】根据角平分线上的点到角的两边距离相等解答.【解答】解:∵点P到△ABC三边的距离相等,∴点P是角平分线的交点.故答案为:角平分线的交点.15. 【答案】M17936【解析】在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面成轴对称图形.【解答】解:根据镜面对称的性质,题中所显示的图片所显示的数字与M17936成轴对称,该车牌的牌照号码是M17936.故答案为M17936.16. 【答案】30【解析】由AB=AC,∠A=40∘,即可推出∠C=∠ABC=70∘,由垂直平分线的性质可推出AD=BD,即可推出∠A=∠ABD=40∘,根据图形即可求出结果.【解答】解:∵AB=AC,∠A=40∘,∴∠C=∠ABC=70∘,∵AB的垂直平分线MN交AC于D,∴AD=BD,∴∠A=∠ABD=40∘,∴∠DBC=30∘.故答案为30∘.17. 【答案】15【解析】P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN=P2N.【解答】解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N.∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.故答案为:1518. 【答案】解:作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置.【解析】根据两点间线段最短可知作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置.【解答】解:作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置.19. 【答案】; (−1, 2),(−3, 1),(2, −1); 4.5【解析】(1)根据网格结构找出点A、B、C的对应点A1、B1、C1的位置,然后顺次连接即可;; (2)根据平面直角坐标系写出各点的坐标;; (3)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.【解答】解:(1)△A1B1C1如图所示;; (2)△A1(−1, 2),B1(−3, 1),C1(2, −1);; (3)△A1B1C1的面积=5×3−12×1×2−12×2×5−12×3×3,=15−1−5−4.5,=15−10.5,=4.5.20. 【答案】解:∵△ABC≅△ADE,∴∠DAE=∠BAC=12(∠EAB−∠CAD)=12(120∘−10∘)=55∘.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10∘+55∘+25∘=90∘∠DGB=∠DFB−∠D=90∘−25∘=65∘.综上所述:∠DFB=90∘,∠DGB=65∘.【解析】由△ABC≅△ADE,可得∠DAE=∠BAC=12(∠EAB−∠CAD),根据三角形外角性质可得∠DFB=∠FAB+∠B,因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形内角和定理可得∠DGB=∠DFB−∠D,即可得∠DGB的度数.【解答】解:∵△ABC≅△ADE,∴∠DAE=∠BAC=12(∠EAB−∠CAD)=12(120∘−10∘)=55∘.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10∘+55∘+25∘=90∘∠DGB=∠DFB−∠D=90∘−25∘=65∘.综上所述:∠DFB=90∘,∠DGB=65∘.21. 【答案】解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90∘.∠BAE=∠DAC=90∘+∠CAE,在△BAE和△DAC中AB=AC∠BAE=∠DACAE=AD∴△BAE≅△CAD(SAS).; (2)由(1)得△BAE≅△CAD.∴∠DCA=∠B=45∘.∵∠BCA=45∘,∴∠BCD=∠BCA+∠DCA=90∘,∴DC⊥BE.【解析】①可以找出△BAE≅△CAD,条件是AB=AC,DA=EA,∠BAE=∠DAC= 90∘+∠CAE.②由①可得出∠DCA=∠ABC=45∘,则∠BCD=90∘,所以DC⊥BE.; ①可以找出△BAE≅△CAD,条件是AB=AC,DA=EA,∠BAE=∠DAC=90∘+∠CAE.②由①可得出∠DCA=∠ABC=45∘,则∠BCD=90∘,所以DC⊥BE.【解答】解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90∘.∠BAE=∠DAC=90∘+∠CAE,在△BAE和△DAC中AB=AC∠BAE=∠DACAE=AD∴△BAE≅△CAD(SAS).; (2)由(1)得△BAE≅△CAD.∴∠DCA=∠B=45∘.∵∠BCA=45∘,∴∠BCD=∠BCA+∠DCA=90∘,∴DC⊥BE.22. 【答案】解:垂直.理由:∵在△ABC中,AB=AC,AD是高,∴∠BAD=∠CAD,∵AE=AF,∴∠E=∠EFA,∵∠BAC=∠E+∠EFA=2∠EFA,∴∠EFA=∠BAD,∴EF // AD,∵AD⊥BC,∴EF⊥BC.故EF与BC的位置关系为:垂直.【解析】根据等腰三角形三线合一的性质可得到∠BAD=∠CAD,再根据三角形外角的性质可推出∠EFA=∠BAD,再根据内错角相等两直线平行得到EF // AD,已知AD⊥BC,则EF与BC的关系为垂直.【解答】解:垂直.理由:∵在△ABC中,AB=AC,AD是高,∴∠BAD=∠CAD,∵AE=AF,∴∠E=∠EFA,∵∠BAC=∠E+∠EFA=2∠EFA,∴∠EFA=∠BAD,∴EF // AD,∵AD⊥BC,∴EF⊥BC.故EF与BC的位置关系为:垂直.23. 【答案】(1)证明:如图,∵AD⊥CE,∠ACB=90∘,∴∠ADC=∠ACB=90∘,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,∠ADC=∠CEB∠CAD=∠BCE,AC=BC∴△ADC≅△CEB(AAS);; (2)由(1)知,△ADC≅△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE−DE,∴BE=AD−DE=5−3=2(cm),即BE的长度是2cm.【解析】(1)根据全等三角形的判定定理AAS推知:△ADC≅△CEB;; (2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD−DE.【解答】(1)证明:如图,∵AD⊥CE,∠ACB=90∘,∴∠ADC=∠ACB=90∘,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,∠ADC=∠CEB∠CAD=∠BCE,AC=BC∴△ADC≅△CEB(AAS);; (2)由(1)知,△ADC≅△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE−DE,∴BE=AD−DE=5−3=2(cm),即BE的长度是2cm.24. 【答案】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90∘,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中AB=CG∠ABD=∠ACG,BD=CA∴△ABD≅△GCA(SAS),∴AD=GA(全等三角形的对应边相等);; (2)位置关系是AD⊥GA,理由为:∵△ABD≅△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90∘,∴AD⊥GA.【解析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得到一对角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形BHF与三角形CHE相似,由相似三角形的对应角相等得到一对角相等,再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,; (2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90∘,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90∘,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中AB=CG∠ABD=∠ACG,BD=CA∴△ABD≅△GCA(SAS),∴AD=GA(全等三角形的对应边相等);; (2)位置关系是AD⊥GA,理由为:∵△ABD≅△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90∘,∴AD⊥GA.。
题图第3题图第4题图第52018-2019学年八年级数学上学期期中教学质量检测试题注意事项:1.答题前,请先将自己的姓名、考场、考号在卷首的相应位置填写清楚;2.选择题答案涂在答题卡上,非选择题用蓝色、黑色钢笔或圆珠笔直接写在试卷上. 第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分)请将唯一正确答案的代号填涂在答题卡...上 1.在下列四个交通标志图中,是轴对称图形的是A .B .C .D .2.三条线段a =5,b =3,c 的值为奇数,由a ,b ,c 为边可组成三角形A .1个B .3个C .5个D .无数个3.如图,已知在△ABC 中,∠ABC =70°,∠C =50°,BD 是角平分线,则∠BDC 的度数为A .95°B .100°C .110°D .120°4.如图,EA ∥DF ,AE =DF ,要使△AEC ≌△DFB ,只要A .AB =BC B .EC =BFC .∠A =∠DD .AB =CD5.一副三角板如图叠放在一起,则图中∠α的度数为A .35°B .30°C .25°D .15°6.一个多边形的内角和比其外角和的2倍多180°,则该多边形的边数是A .6B .7C .8D .107.下列条件中,不能判定两个直角三角形全等的是A .两直角边分别相等B .斜边和一条直角边分别相等C .两锐角分别相等D .一个锐角和斜边分别相等8.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是A .15B .30C .45D .609.在平面直角坐标系中,点P 1(,)2-关于x 轴对称的点的坐标是A .(1,2)B .(1-,2-)C .(1-,2)D .(2-,1)10.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC .其中正确结论的个数是 A .1个B .2个C .3个D .4个11.如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为A .40°B .36°C .30°D .25°12.如图,在已知的△ABC 中,按以下步骤作图:题图第8题图第10题图第11①分别以B ,C 为圆心,以大于21BC 的长为半径作弧, 两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD=AC ,∠A =50°,则∠ACB 的度数为 A .90° B .95°C .100°D .105°13.已知:在△ABC 中,∠A =60°,如要判定△ABC 是等边三角形,还需添加一个条件.现有下面三种说法:①如果添加条件“AB =AC ”,那么△ABC 是等边三角形; ②如果添加条件“∠B =∠C ”,那么△ABC 是等边三角形;③如果添加条件“边AB ,BC 上的高相等”,那么△ABC 是等边三角形. 其中正确的说法有 A .3个B .2个C .1个D .0个14.如图,已知,BD 为△ABC 的角平分线,且BD =BC ,E 为上的一点,BE =BA .下列结论:①△ABD ≌△EBC ;②AC ③AD =AE =EC ;④∠BCE +∠BCD =180°.其中正确的是B .①②④C .①③④D .②③④ 二、填空题(本大题共5小题,每小题3分,共15分) 把答案填在题中横线上.15.如图,要测量池塘两端A ,B 的距离,可先在平地上取一个可以直接到达A ,B 两点的C ,连接AC 并延长AC 到点D ,使CD =CA ,连接BC 并延长BC 到点E ,使CE =CB ,连接DE ,那么量出DE 的长就等于AB 的长,这是因为△ABC ≌△DEC ,而这个判定全等的依据是 .16.如图△ABC 中,∠A :∠B =1:2,DE ⊥AB 于E ,且∠FCD =75°,则∠D = . 17.等腰三角形的一个内角为80°,则顶角的度数是 . 18.如图,在△ABC 中,点D 在BC 上且AB =AD ,AC =AE ,题图第19题图第15题图第16题图第18∠BAD=∠CAE,DE=12,CD=4,则BD= .19. 如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,则∠AEC的度数是.7小题,共63分)20.(本题满分7分)如图,在△ABC中,CD是AB边上高,BE为角平分线,若∠BFC=113°,求∠BCF的度数.21.(本题满分7分)如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.题图第21题图第2022.(本题满分8分)如图:△ABC和△ADE是等边三角形,AD是BC边上的中线.求证:BE=BD.23.(本题满分8分)将一副直角三角板如图摆放,等腰直角三角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形.题图第22题图第2324.(本题满分10分)如图,在直角坐标平面内,已知点A (8,0),点B (3,0),点C 是点A 关于直线m (直线m 上各点的横坐标都为3)的对称点.(1)在图中标出点A,B ,C的位置,并求出点C 的坐标;(2)如果点P 在y 轴上,过点P 作直线l ∥x轴,点A 关于直线l 的对称点是点D ,那么当△BCD 的面积等于15时,求点P 的坐标.25.(本题满分10分)如图,四边形ABCD 中,DC ∥AB ,BD ⊥AD ,∠A =45°,E 、F 分别是AB 、CD 上的点,且BE=DF ,连接EF 交BD 于O .(1)求证:BO=DO ;(2)若EF ⊥AB ,延长EF 交AD 的延长线于G ,当FG =2时,求AE 的长.题图第2426.(本题满分13分)【问题提出】学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B 是直角时,△ABC ≌△DEF .如图①,在△ABC 和△DEF ,AC =DF ,BC =EF ,∠B =∠E =90°,根据 ,题图第26可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角.请你证明:△ABC≌△DEF(提示:过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE 交DE的延长线于H).第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你在图③中画出△DEF,使△DEF和△ABC不全等.2017-2018学年度上学期期中教学质量监测八年级数学参考答案与评分标准一、选择题(本题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1—5 CBADD 6—10 BCBAC 11—14BDAC二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.SAS 16.40°17.80°或20°18.8 19.75°.三、解答题(本大题共7小题,共63分)20.(本题满分7分)解:∵CD是AB边上高,∴∠BDF=90°,………………………………….1分∠ABE=∠BFC-∠BDF=113°-90°=23°,………………………………………3分∵BE为角平分线,∴∠CBF=∠ABE=23°,…………………………………………………………..5分∴∠BCF=180°-∠BFC-∠CBF=44°.………………………………………..7分21.(本题满分7分)解:CD∥AB,CD=AB,……………………………………………………………….2分理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,…………………………………………………………………………3分在△AEB和△CFD中,,∴△AEB≌△CFD(SAS)……5分∴CD=AB,∠C=∠B,…………………………………6分∴CD∥AB.………………………………………………………………………7分22.(本题满分8分)证明:∵△ABC和△ADE是等边三角形,AD为BC边上的中线,∴AE=AD,AD为∠BAC的角平分线,即∠CAD=∠BAD=30°,……………………………………………………..3分∴∠BAE=∠BAD=30°,………………………………………………………5分在△ABE和△ABD中,,∴△ABE≌△ABD(SAS),…..7分∴BE=BD.…………………………………………………………………….8分23.(本题满分8分) 证明:∵在△BDC 中,BC =DB ,∴∠BDC =∠BCD .………………………………………………………….2分 ∵∠DBE =30° ∴∠BDC =∠BCD =75°,……………………….4分 ∵∠ACB =45°, ∴∠DOC =30°+45°=75°. ……………….…6分 ∴∠DOC =∠BDC , ∴△CDO 是等腰三角形. ……………………8分24.(本题满分10分)解:(1)三个点位置标注正确……………………………………………………3分点C 的坐标为(﹣2,0);…………………………………………….4分 (2)如图,由题意知S △BCD =21BC •AD =15,BC =5,∴AD =6,则OP =3,………..8分∴点P 的坐标为(0,3)或(0,﹣3).…………………………....10分25.(本题满分10分)解:(1)证明:∵ DC ∥AB , ∴∠OBE =∠ODF . ………………1分 在△OBE 与△ODF 中, ∵∴△OBE ≌△ODF (AAS ). ………3分∴BO =DO . ………………………………4分 (2)解:∵EF ⊥AB ,DC ∥AB , ∴∠GEA=∠GFD =90°.∵∠A =45°,∴∠G =∠A =45°. ……………………6分∴AE =GE …………………………………7分 ∵BD ⊥AD , ∴∠ADB =∠GDO =90°.∴∠GOD =∠G =45°. ……………………………………8分 ∴DG =DO∴OF =FG = 2 ……………………………………9分 由(1)可知,OE = OF =2, ∴GE =OE +OF +FG =6∴AE = GE =6 ………………………10分26.(本题满分13分)(1)解:HL ;……………………………………………………………………..1分(2)证明:如图,过点C 作CG ⊥AB 交AB 的延长线于G ,过点F 作FH ⊥DE 交DE 的延长线于H ,…………………………………………………………..2分∵∠ABC =∠DEF ,且∠ABC 、∠DEF 都是钝角,∴180°﹣∠ABC =180°﹣∠DEF ,即∠CBG =∠FEH ,…………………………………………………4分在△CBG 和△FEH 中,,∴△CBG ≌△FEH (AAS ),∴CG =FH ,……………………………………………………….…6分在Rt △ACG 和Rt △DFH 中,⎩⎨⎧==FHCG DF AC , ∴Rt △ACG ≌Rt △DFH (HL ),∴∠A =∠D ,…………………………………………………………8分在△ABC 和△DEF 中,, ∴△ABC ≌△DEF (AAS );………………………………………..10分(3)解:如图,△DEF 和△ABC 不全等;………………………13分。
四川省资阳市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·兰州) 剪纸是中国特有的民间艺术.在如涂所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2016八上·杭州月考) 下列各组数可能是一个三角形的边长的是()A . 1,2,4B . 4,5,9C . 4,6,8D . 5,5,113. (2分) (2017七下·射阳期末) 四边形的内角和为()A . 180°B . 360°C . 540°D . 720°4. (2分)等腰三角形的两边分别为5和10,则它的周长是()A . 20B . 15C . 25D . 20或255. (2分)如图的△ABC中,正确画出AC边上的高的图形是()A .B .C .D .6. (2分)如图,在△ABC 中,∠C=90°.若BD∥AE,∠D BC=20°,则∠CAE的度数是()A . 40°B . 60°C . 70°D . 80°7. (2分) (2017八上·鞍山期末) 如图,用尺规作∠MON的平分线OP.由作图知△OAC≌△OBC,从而得OP 平分∠MON,则此两个三角形全等的依据是()A . SASB . ASAC . AASD . SSS8. (2分) (2019八下·海口期中) 点P(3,-4)关于x轴的对称点的坐标是()A . (4,-3)B . (4,3)C . (-3,4)D . (3,4)9. (2分) (2016八上·抚顺期中) 如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A . 1个B . 2个C . 3个D . 4个10. (2分) (2016九上·景德镇期中) 一张等腰三角形纸片,底边长15cm,底边上的高长22.5cm,现沿底边从下到上依次裁剪宽度均为3cm的矩形纸条(如图所示),则裁得的纸条中恰为张正方形的纸条是()A . 第4张B . 第5张C . 第6张D . 第7张11. (2分)如图,把一个长方形纸片对折两次,然后剪下一个角.为了得到一个正方形,剪刀与折痕所成的角的度数应为()A . 60°B . 30°C . 45°D . 90°12. (2分)已知等腰三角形的两边长分别为2和3,则其周长为A . 7B . 8C . 7或8D . 2或3二、填空题 (共5题;共5分)13. (1分) (2019八下·赵县期末) 在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠EPF=147°,则∠PFE的度数是________ 。
四川省简阳市简城学区2018-2019学年度上期期中考试八年级数学试题一、单选题1 . 25的平方根是()A.5B.±5C.D.±2 . 下列各数中,属于无理数的是()A.B.C.D.3.63 . 下列计算结果正确的是()A.B.C.D.4 . 下列四组数据不能作为直角三角形的三边长的是()A.6、8、10B.5、12、13C.7、10、12D.3、4、55 . 若点的坐标为,且<0,则点位于()A.x轴正半轴B.x轴负半轴C.y轴正半轴D.y轴负半轴6 . 平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为()A.(3,-2)B.(2,-3)C.(-3,2)D.(-2,-3)7 . 下列根式中属于最简二次根式的是()A.B.C.D.8 . 下列各点中,在第二象限的点是()A.(2,3)B.(2,-3)C.(-2,-3)D.(-2,3)9 . 估计21的算术平方根的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间10 . 在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到斜边AB 的距离是( )A .B .C .9D .6 二、填空题11 . 36的平方根是______. 的算术平方根是___;27的立方根是_______.12 . ﹣ 的相反数是_____,倒数是_____,绝对值是_____.13 . 在RT △ABC 中,已知AB=5㎝,BC=4㎝,则AC=______________ .14 . 若 ,则a+b=__________.15 . 点A 和点B 关于 轴对称,则ab =_____.16 . 有一块边长为24米的正方形绿地,如上右图所示,在绿地旁边C 处有健身器材,由于居住在A 处的居民践踏了绿地,小明想在A 处树立一个标牌“少走▇米,踏之何忍?”请你计算后帮小明在标牌的▇填上适当的数字为:____.17 . 一直角三角形的斜边长比直角边长大2,另一直角边长为6,则斜边长为_____18 . 已知点 ,点 ,且直线 轴,则 =_____.19 . 已知 ,则 的平方根是______.20 . 如图,四边形 是正方形,AE=4㎝,BE=2㎝,对角线AC 上一点P ,使PE+PB的值最小,则PE+PB的最小值= _______㎝.21 . 设,,,则a、b 、c的大小关系是___________.22 . 一只电子青蛙在如图的平面直角坐标系做如下运动:从坐标原点开始起跳记为A 1,然后沿着边长为1的等边三角形跳跃即……已知A 3的坐标为(1,0),则A 2018的坐标是_______.三、解答题23 . 求下列各式的值:(1)(2)(3)(4)(5)+ (6)24 . 已知在四边形ABCD中,∠A=90°,AB=3,AD=4,BC=12,CD=13,求四边形ABCD的面积.25 . △ ABC在直角坐标系内的位置如图.(1)分别写出 A、 B、 C的坐标;(2)请在这个坐标系内画出△ A 1 B 1 C 1,使△ A 1 B 1 C 1与△ ABC关于 y轴对称,并写出 B 1的坐标.26 . 已知. ,求的值.27 . 已知,如图在平面直角坐标系中,S△ABC =24, OA="OB,BC" =12,求△ABC三个顶点的坐标.28 . 如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,求FC和EF的长.29 . 已知点A(5,a)与点B(5,-3)关于x 轴对称,b为的小数部分,求(1)的值.(2)化简.30 . 如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及平行四边形ABDC的面积.(2)在y轴上是否存在一点P,连接PA,PB,使=2 ,若存在这样一点,求出点P的坐标,若不存在,试说明理由.(3)点P是四边形ABCD边上的点,若△OPC为等腰三角形时,直接写出点P的坐标.。
2018-2019学年四川省资阳市简阳市镇金学区
八年级(上)期中数学模拟试卷
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=()
A.B.4 C.4或D.以上都不对2.(3分)3的算术平方根是()
A.±B.C.﹣D.9
3.(3分)在直角三角形中,若勾为3,股为4,则弦为()
A.5 B.6 C.7 D.8
4.(3分)点P(x﹣1,x+1)不可能在()
A.第一象限B.第二象限C.第三象限D.第四象限
5.(3分)﹣3的相反数是()
A.3 B.﹣3 C.D.﹣
6.(3分)如图,盒内长、宽、高分别是6cm、3cm、2cm,盒内可放木棒最长的长度是()
A.6cm B.7cm C.8cm D.9cm
7.(3分)将△ABC的三个顶点坐标的横坐标都乘以﹣1,纵坐标不变,则所得图形与原图的关系是()
A.关于x轴对称B.关于y轴对称
C.关于原点对称D.将图形向下平移一个单位
8.(3分)若a,b为实数,且|a+1|+=0,则﹣(﹣ab)2018的值是()A.1 B.2018 C.﹣1 D.﹣2018
9.(3分)点A(1,m)为直线y=2x﹣1上一点,则OA的长度为()
A.1 B.C.D.
10.(3分)已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过()
A.第一象限B.第二象限C.第三象限D.第四象限
二.填空题(共4小题,满分16分,每小题4分)
11.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.
12.(4分)已知一次函数的图象与直线y=x+3平行,并且经过点(﹣2,﹣4),则这个一次函数的解析式为.
13.(4分)如图,△ABO的边OB在数轴上,AB⊥OB,且OB=2,AB=1,OA=OC,那么数轴上点C所表示的数是.
14.(4分)如图,轮船甲从港口O出发沿北偏西25°的方向航行8海里,同时轮船乙从港口O出发沿南偏西65°的方向航行15海里,这时两轮船相距海里.
三.填空题(共5小题,满分20分,每小题4分)
15.(4分)若x的平方根是±4,则的值是.
16.(4分)如图,已知一次函数y1=k1x+b1和y2=k2x+b2的图象交于点P(2,4),则关于x 的方程k1x+b1=k2x+b2的解是.
17.(4分)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系.
18.(4分)如图,AD是△ABC的角平分线,AB:AC=3:2,△ABD的面积为15,则△ACD 的面积为.
19.(4分)在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依此规律,得到Rt△B2017A2018B2018,则点B2018的纵坐标为.
四.解答题(共2小题,满分18分)
20.(12分)计算:.
21.(6分)计算:|﹣5|+(﹣1)2﹣()﹣1﹣.
五.解答题(共4小题,满分36分)
22.(8分)对有序数对(m,n)定义“f运算”:,其中a、b 为常数.f运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′.
(1)当a=0,b=0时,f(﹣2,4)=;
(2)若点P(4,﹣4)在F变换下的对应点是它本身,则a=,b=.
23.(8分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原件为x(x>0)元,让利后的购物金额为y元.
(1)分别就甲、乙两家商场写出y关于x的函数解析式;
(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.
24.(10分)如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处.
(1)求线段BE的长;
(2)连接BF、GF,求证:BF=GF;
(3)求四边形BCFE的面积.
25.(10分)已知一次函数y=kx+b的图象过P(1,4),Q(4,1)两点,且与x轴交于A 点.
(1)求此一次函数的解析式;
(2)求△POQ的面积;
(3)已知点M在x轴上,若使MP+MQ的值最小,求点M的坐标及MP+MQ的最小值.
六.解答题(共1小题,满分8分,每小题8分)
26.(8分)(1)已知x2﹣1=35,求x的值.
(2)在数轴上画出表示的点.
七.解答题(共2小题,满分10分)
27.(10分)如图,矩形ABCD中,AC、BD相交于O,AE平分∠BAD交BC于E,若∠CAE=15°,求∠BOE的度数.
28.问题:如图①,点E,F分别在正方形ABCD的边BC、CD上,且∠EAF=45°,试探究BE、EF、FD三条线段之间存在的等量关系.
【发现】
小聪把△ABE绕点A逆时针旋转90°至△ADG,探究发现:EF=BE+F D.试利用图②证明小聪的结论.
【应用】
如图②,点E、F分别在正方形ABCD的边BC、CD上,且∠EAF=45°,BE=2,EC=4,则EF长为(直接写出结果)
【拓展】
如图③,在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,点E在边BC的延长线上,且∠DAE=45°,试探究BD、DE、CE三条线段之间存在的等量关系,并说明理由.
参考答案
一.选择题
1.A;2.B;3.A;4.D;5.A;6.B;7.B;8.C;9.C;10.C;二.填空题
11.﹣1;12.y=﹣3;13.﹣;14.17;
三.填空题
15.4;16.x=2;17.y=;18.10;19.32019;
解答题
略。