黑龙江省大庆市2018届高三第二次教学质量检测试题(理)数学试题及答案解析
- 格式:doc
- 大小:644.92 KB
- 文档页数:18
2018年黑龙江省大庆市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={﹣1,0,1,2,3},B={x||x|≤2},则A∩B=的值为()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1,2}C.{0,1,2}D.{1,2}2.(5分)若复数,则z在复平面内所对应的点位于的()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)若x,y满足,则2x+y的最大值为()A.2B.5C.6D.74.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几伺体的三视图,则此几何体的体积为()A.2B.4C.8D.125.(5分)执行如图所示的程序语句,则输出的s的值为()A. B.1 C. D.6.(5分)已知命题p:直线l1:ax+y+1=0与l2:x+ay+1=0平行;命题q:直线l:x+y+a=0与圆x2+y2=1相交所得的弦长为,则命题p是q()A.充分不必要条件 B.必要不充分条件C.充要条件D.既充分也不必要条件7.(5分)数列{a n}为正项递增等比数列,满足a2+a4=10,a32=16,则等于()A.﹣45B.45C.﹣90D.908.(5分)若是夹角为60°的两个单位向量,则向量=的夹角为()A.30°B.60°C.90°D.120°9.(5分)已知双曲线的一条渐近线过点,且双曲线的一个焦点在抛物线y2=16x的准线上,则双曲线的方程为()A. B. C . D .10.(5分)已知f(x )是定义在R 上的奇函数,当x ∈[0,+∞)时,f′(x )<0.若,,则a,b,c 的大小关系为( )A.b <a <cB.b <c <aC.c <a <bD.a <c <b 11.(5分)函数f(x )=2sin(ωx +ϕ)的图象过点,相邻两个对称中心的距离是,则下列说法不正确的是( )A.f(x )的最小正周期为B.f(x )的一条对称轴为C.f(x )的图象向左平移个单位所得图象关于y 轴对称D.f(x )在上是减函数12.(5分)已知函数,若关于x 的方程f(x )﹣ax =0有两个解,则实数a 的取值范围是( )A. B.C. D.二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.(5分). 14.(5分)一个圆柱的轴截面是正方形,在圆柱内有一个球O,该球与圆柱的上、下底面及母线均相切.记球O 的体积为V 1,圆柱内除了球之外的几何体体积记为V 2,则的值为 .15.(5分)若f(x )=e x lna +e ﹣x lnb 为奇函数,则的最小值为 .16.(5分)已知抛物线C :y 2=4x,过其焦点F 作一条斜率大于0的直线l,l 与抛物线交于M,N两点,且|MF|=3|NF|,则直线l的斜率为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)设函数y=f(x)的图象由y=2sin2x+1的图象向左平移个单位得到. (1)求f(x)的最小正周期及单调递增区间:(2)在△ABC中,a,b,c,6分别是角A,B,C的对边,且f(A)=2,b=1,,求a 的值.18.(12分)已知数列{a n}的前n项和为s n,点(n,s n)在曲线,上数列{b n}满足b n+b n+2=2b n+1,b4=11,{b n}的前5项和为45.(1)求{a n},{b n}的通项公式;(2)设,数列{c n}的前n项和为T n,求使不等式恒成立的最大正整数k的值.19.(12分)已知四棱锥P﹣ABCD的底面ABCD为正方形,PA⊥上面ABCD且PA=AB=2.E为PA的中点.(1)求证:PC∥面BDE;(2)求直线DE与平面PBC所成角的余弦值.20.(12分)已知椭圆(a>b>0),其焦距为2,离心率为(1)求椭圆C的方程;(2)设椭圆的右焦点为F,K为x轴上一点,满足,过点K作斜率不为0的直线l交椭圆于P,Q两点,求△FPQ面积s的最大值.21.(12分)已知函数f(x)=1﹣ax+lnx(1)若不等式f(x)≤0恒成立,则实数a的取值范围;(2)在(1)中,a取最小值时,设函数g(x)=x(1﹣f(x))﹣k(x+2)+2.若函数g(x)在区间上恰有两个零点,求实数k的取值范围;(3)证明不等式:(n∈N*且n≥2).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xoy中,以原点O为极点,x轴正半轴为极轴,取相同的单位长度建立极坐标系,已知曲线,直线l:ρ(cosθ﹣sinθ)=4.(1)将曲线C1上所有点的横坐标、纵坐标分别伸长为原来的2倍、倍后得到曲线C2,请写出直线l,和曲线C2的直角坐标方程;(2)若直线l1经过点P(1,2)且l1∥l,l1与曲线C2交于点M,N,求|PM|•|PN|的值.[选修4-5:不等式选讲]23.已知a,b是任意非零实数.(1)求的最小值(2)若不等式|3a+2b|+|3a﹣2b|≥|a|(|2+x|+|2﹣x|)恒成立,求实数x取值范圈.2018年黑龙江省大庆市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={﹣1,0,1,2,3},B={x||x|≤2},则A∩B=的值为()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1,2}C.{0,1,2}D.{1,2}【试题解答】解:∵集合A={﹣1,0,1,2,3},B={x||x|≤2}={x|﹣2≤x≤2},∴A∩B={﹣1,0,1,2}.故选:A.2.(5分)若复数,则z在复平面内所对应的点位于的()A.第一象限B.第二象限C.第三象限D.第四象限【试题解答】解:∵=,∴复数z在复平面内所对应的点的坐标为(,﹣),位于第四象限.故选:D.3.(5分)若x,y满足,则2x+y的最大值为()A.2B.5C.6D.7【试题解答】解:作出x,y满足对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得A(2,1),代入目标函数z=2x+y得z=2×2+1=5.即目标函数z=2x+y的最大值为5.故选:B.4.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几伺体的三视图,则此几何体的体积为()A.2B.4C.8D.12【试题解答】解:由几何体的三视图得到该几何体是四棱锥S﹣ABCD,其中,四边形ABCD是边长为2的正方形,PD⊥平面ABCD,PD=3,∴几何体的体积:V===4.故选:B.5.(5分)执行如图所示的程序语句,则输出的s的值为()A. B.1 C. D.【试题解答】解:模拟程序框图的运行过程,得出该程序运行后输出的是S=sin+sin+sin+…+sin的值,S=sin+sin+sin+…+sin=(sin+sin+sin+…+sin)+…sin+sin=sin+sin=sin+sin=1+.故选:C.6.(5分)已知命题p:直线l1:ax+y+1=0与l2:x+ay+1=0平行;命题q:直线l:x+y+a=0与圆x2+y2=1相交所得的弦长为,则命题p是q()A.充分不必要条件 B.必要不充分条件C.充要条件D.既充分也不必要条件【试题解答】解:当a=0时,两直线方程分别为y+1=0,x+1=0,两直线不平行,当a≠0时,若两直线平行,则满足=≠,由=得a2=1,得a=±1,由≠,得a≠1,即a=﹣1,即p:a=﹣1,圆心到直线的距离d=,半径r=1,∵直线l:x+y+a=0与圆x2+y2=1相交所得的弦长为,∴r2=d2+()2,即1=+,得a2=1,得a=±1,则命题p是q充分不必要条件,故选:A.7.(5分)数列{a n}为正项递增等比数列,满足a2+a4=10,a32=16,则等于()A.﹣45B.45C.﹣90D.90>0,公比q>1.【试题解答】解:因为{a n}为正项递增等比数列,所以a n>a n﹣1因为a2+a4=10 ①,且=16=a3•a3=a2•a4②由①②解得a2=2,a4=8.又因为a4=a2•q2,得q=2或q=﹣2(舍).则得a5=16,a6=32,因为++…+==5=5=5×9=45×2=90,故选:D8.(5分)若是夹角为60°的两个单位向量,则向量=的夹角为()A.30°B.60°C.90°D.120°【试题解答】解:根据题意,设、的夹角为θ,又由是夹角为60°的两个单位向量,且=,则•=(+)(﹣+2)=﹣2+22+•=,又由=(+),则||==,=(﹣+2),则||==,则有cosθ==,则θ=60°;故选:B.9.(5分)已知双曲线的一条渐近线过点,且双曲线的一个焦点在抛物线y2=16x的准线上,则双曲线的方程为()A. B.C.D.【试题解答】解:双曲线的渐近线方程为y=±x,由一条渐近线过点,可得=,双曲线的一个焦点(﹣c,0)在抛物线y2=16x的准线x=﹣4上,可得c=4,即有a2+b2=16,解得a=2,b=2,则双曲线的方程为﹣=1.故选:A.10.(5分)已知f(x)是定义在R上的奇函数,当x∈[0,+∞)时,f′(x)<0.若,,则a,b,c的大小关系为()A.b<a<cB.b<c<aC.c<a<bD.a<c<b【试题解答】解:∵当x∈[0,+∞)时,f′(x)<0,∴当x∈[0,+∞)时,函数f(x)单调递减,∵f(x)是定义在R上的奇函数,∴函数在(﹣∞,+∞)上单调递减,a=﹣f(ln)=﹣f(﹣ln2)=f(ln2),ln(﹣)>ln=﹣1,又ln(﹣)<0,则﹣1<ln(﹣)<0,e0.1>1,0<ln2<1,则﹣1<ln(﹣)<ln2<e0.1,则f(ln(﹣))>f(ln2)>f(e0.1),即c<a<b,故选:C.11.(5分)函数f(x)=2sin(ωx+ϕ)的图象过点,相邻两个对称中心的距离是,则下列说法不正确的是()A.f(x)的最小正周期为B.f(x)的一条对称轴为C.f(x)的图象向左平移个单位所得图象关于y轴对称D.f(x)在上是减函数【试题解答】解:函数f(x)=2sin(ωx+φ)图象相邻两个对称中心的距离是,∴=,∴T==,解得ω=3;又f(x)的图象过点,∴2sin(ω+φ)=2,∴ω+φ=+2kπ,k∈Z;解得φ=+2kπ,k∈Z;令k=0,得φ=,∴f(x)=2sin(3x+);∴f(x)的最小正周期为T=,A正确;f()=2sin(3×+)=﹣2为最小值,∴f(x)的一条对称轴为x=,B正确;f(x)的图象向左平移个单位,得函数y=2sin[3(x+)+]=2sin(3x+)=2cos3x,其图象关于y轴对称,C正确;x∈[﹣,]时,3x∈[﹣,],∴3x+∈[﹣,]时,∴f(x)=2sin(3x+)在上是增函数,D错误.故选:D.12.(5分)已知函数,若关于x的方程f(x)﹣ax=0有两个解,则实数a的取值范围是()A. B.C. D.【试题解答】解:设函数y=f(x)和y=ax,作出函数f(x)的图象如图:要使方程f(x)﹣ax=0有2两个解,即函数y=f(x)和y=ax有2个不同的交点,∵f(﹣2)=5,f(5)=|5+﹣4|=,当y=ax经过点(5,)时,此时a=,当过点(﹣2,5)时,此时a=﹣,当直线y=ax与y=x2+1相切时,∵y′=2x,设切点为(x0,y0),﹣2≤x0≤0,∴=2x0,解得x0=﹣1,当x0=﹣1,此时a=﹣2,结合图象,综上所述a的取值范围为[﹣,﹣2)∪(0,],故选:A二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)6.【试题解答】解:(2x﹣1)dx=(x2﹣x)=9﹣3=6,∴(2x﹣1)dx=6,故答案为:614.(5分)一个圆柱的轴截面是正方形,在圆柱内有一个球O,该球与圆柱的上、下底面及母线均相切.记球O的体积为V1,圆柱内除了球之外的几何体体积记为V2,则的值为2.【试题解答】解:设圆柱的底面半径为r,则圆柱的高为2r,球O的半径为r,∴球O的体积V1=,圆柱内除了球之外的几何体体积:V2==,∴==2.故答案为:2.15.(5分)若f(x)=e x lna+e﹣x lnb为奇函数,则的最小值为2.【试题解答】解:f(x)=e x lna+e﹣x lnb为奇函数,可得f(0)=0,即有e0lna+e0lnb=0,即有ln(ab)=0,可得ab=1,(a>0,b>0),则≥2=2,当且仅当b=2a=时,等号成立,则的最小值为2.故答案为:2.16.(5分)已知抛物线C:y2=4x,过其焦点F作一条斜率大于0的直线l,l与抛物线交于M,N两点,且|MF|=3|NF|,则直线l的斜率为.【试题解答】解:抛物线C:y2=4x,焦点F(1,0),准线为x=﹣1,分别过M和N作准线的垂线,垂足分别为C和D,过NH⊥CM,垂足为H,设|NF|=x,则|MF|=3x,由抛物线的定义可知:|NF|=|DH|=x,|MF|=|CM|=3x,∴|HM|=2x,由|MN|=4x,∴∠HMF=60°,则直线MN的倾斜角为60°,则直线l的斜率k=tan60°=,故答案为:.方法二:抛物线C:y2=4x,焦点F(1,0),准线为x=﹣1,设直线MN的斜率为k,则直线MN的方程y=k(x﹣1),设M(x1,y1),N(x2,y2),,整理得:k2x2﹣2(k2+2)x+k2=0,则x1+x2=,x1x2=1,由|MF|=3|NF|,=3,即(1﹣x1,﹣y1)=3(x2﹣1,y2),x1+3x2=4,整理得:3x2﹣4x2+1=0,解得:x2=,或x2=1(舍去),则x1=3,解得:k=±,由k>0,则k=故答案为:.方法三:抛物线C:y2=4x,焦点F(1,0),准线为x=﹣1,设直线MN的方程x=mx+1,设M(x1,y1),N(x2,y2),,整理得:y2﹣4my﹣4=0,则y1+y2=4m,y1y2=﹣4,由|MF|=3|NF|,=3,即(1﹣x1,﹣y1)=3(x2﹣1,y2),﹣y1=3y2,即y1=﹣3y2,解得:y2=﹣,y1=2,∴4m=,则m=,∴直线l的斜率为,故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)设函数y=f(x)的图象由y=2sin2x+1的图象向左平移个单位得到. (1)求f(x)的最小正周期及单调递增区间:(2)在△ABC中,a,b,c,6分别是角A,B,C的对边,且f(A)=2,b=1,,求a 的值.【试题解答】解:(1)y=2sin2x+1的图象向左平移个单位得到的图象,即.函数最小正周期T=π.令,则,解得,所以y=f(x)的单调增区间是.(2)由题意得:,则有.因为0<A<π,所以,.由及b=1得,c=4.根据余弦定理,,所以.18.(12分)已知数列{a n}的前n项和为s n,点(n,s n)在曲线,上数列{b n}满足b n+b n+2=2b n+1,b4=11,{b n}的前5项和为45.(1)求{a n},{b n}的通项公式;(2)设,数列{c n}的前n项和为T n,求使不等式恒成立的最大正整数k的值.【试题解答】解:(1)由已知得:,当n=1时,,当n≥2时,=n+2,当n=1时,符合上式.所以a n=n+2.因为数列{b n}满足b n+b n+2=2b n+1,所以{b n}为等差数列.设其公差为d.则,解得,所以b n=2n+3.(2)由(1)得,=,=,因为,所以{T n}是递增数列.所以,故恒成立只要恒成立.所以k<9,最大正整数k的值为8.19.(12分)已知四棱锥P﹣ABCD的底面ABCD为正方形,PA⊥上面ABCD且PA=AB=2.E为PA的中点.(1)求证:PC∥面BDE;(2)求直线DE与平面PBC所成角的余弦值.【试题解答】(1)解:连接CA交BD于O,连接OE,因为ABCD为正方形且AC,BD为对角线,所以O为CA的中点,又E为PA的中点,故OE为△PAC的中位线,所以OE∥PC,而OE⊂面BDE,PC⊄面BDE,故PC∥面BDE.(2)以A为原点,AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系A﹣xyz.则B(2,0,0),D(0,2,0),C(2,2,0),E(0,0,1),P(0,0,2),所以,,,设平面PBC的法向量,则即,令z=1,则法向量,设直线DE与平面PBC所成角为θ,则,故直线DE与平面PBC所成角的余弦值.20.(12分)已知椭圆(a>b>0),其焦距为2,离心率为(1)求椭圆C的方程;(2)设椭圆的右焦点为F,K为x轴上一点,满足,过点K作斜率不为0的直线l交椭圆于P,Q两点,求△FPQ面积s的最大值.【试题解答】解:(1)因为椭圆焦距为2,即2c=2,所以c=1,,所以a=,从而b2=a2﹣c2=1,所以,椭圆的方程为+y2=1.(2)椭圆右焦点F(1,0),由可知K(2,0),直线l过点K(2,0),设直线l的方程为y=k(x﹣2),k≠0,将直线方程与椭圆方程联立得(1+2k2)x2﹣8k2x+8k2﹣2=0.设P(x1,y1),Q(x2,y2),则,,由判别式△=(﹣8k2)2﹣4(2k2+1)(8k2﹣2)>0解得k2<.点F(1,0)到直线l的距离为h,则,,=••,=|k|•,=,令t=1+2k2,则1<t<2,则S=•=,当时,S取得最大值.此时,,S取得最大值.21.(12分)已知函数f(x)=1﹣ax+lnx(1)若不等式f(x)≤0恒成立,则实数a的取值范围;(2)在(1)中,a取最小值时,设函数g(x)=x(1﹣f(x))﹣k(x+2)+2.若函数g(x)在区间上恰有两个零点,求实数k的取值范围;(3)证明不等式:(n∈N*且n≥2).【试题解答】解:(1)由题意知,1﹣ax+lnx≤0恒成立.变形得:.设,则a≥h(x)max.由可知,h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,h(x)在x=1处取得最大值,且h(x)max=h(1)=1.所以a≥h(x)max=1,实数a的取值范围是[1,+∞).(2)由(1)可知,a≥1,当a=1时,f(x)=1﹣x+lnx,g(x)=x(x﹣lnx)﹣k(x+2)+2=x2﹣xlnx﹣k(x+2)+2,g(x)在区间上恰有两个零点,即关于x的方程x2﹣xlnx﹣k(x+2)+2=0在区间上恰有两个实数根.整理方程得,,令,.令φ(x)=x2+3x﹣2lnx﹣4,,则,,于是φ'(x)≥0,φ(x)在上单调递增.因为φ(1)=0,当时,φ(x)<0,从而s'(x)<0,s(x)单调递减,当x∈(1,8]时,φ(x)>0,从而s'(x)>0,s(x)单调递增,,s(1)=1,,因为,所以实数k的取值范围是.证明(3)由(1)可知,当a=1时,有x﹣1≥lnx,当且仅当x=1时取等号.令,则有,其中k∈N*,k≥2.整理得:,当k=2,3,…,n时,,,…,,上面n﹣1个式子累加得:.n∈N*且n≥2,即.命题得证.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xoy中,以原点O为极点,x轴正半轴为极轴,取相同的单位长度建立极坐标系,已知曲线,直线l:ρ(cosθ﹣sinθ)=4.(1)将曲线C1上所有点的横坐标、纵坐标分别伸长为原来的2倍、倍后得到曲线C2,请写出直线l,和曲线C2的直角坐标方程;(2)若直线l1经过点P(1,2)且l1∥l,l1与曲线C2交于点M,N,求|PM|•|PN|的值.【试题解答】解:(1)因为l:ρ(cosθ﹣sinθ)=4,转化为直角坐标方程为:x﹣y =4;设曲线C2上任一点坐标为(x',y'),则,所以,代入C1方程得:,所以C2的方程为.(2)直线l:x﹣y=4倾斜角为,由题意可知,直线l1的参数方程为(t为参数),联立直线l1和曲线C2的方程得,.设方程的两根为t1,t2,则t1t2=2.由直线参数t的几何意义可知,|PM|•|PN|=|t1t2|=2.[选修4-5:不等式选讲]23.已知a,b是任意非零实数.(1)求的最小值(2)若不等式|3a+2b|+|3a﹣2b|≥|a|(|2+x|+|2﹣x|)恒成立,求实数x取值范圈.【试题解答】解:(1)因为|3a+2b|+|3a﹣2b|≥|3a+2b+3a﹣2b|=6|a|,当且仅当(3a+2b)(3a﹣2b)≥0时取等号,所以的最小值为6.(2)由题意得:恒成立,结合(Ⅰ)得:|2+x|+|2﹣x|≤6.当x≤﹣2时,﹣x﹣2+2﹣x≤6,解得﹣3≤x≤﹣2;当﹣2<x≤2时,x+2+2﹣x≤6成立,所以﹣2<x≤2;当x>2时,x+2+x﹣2≤6,解得2<x≤3.综上,实数x的取值范围是[﹣3,3].。
2018届黑龙江省大庆市高三第二次教学质量检测理科数学试题(解析版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则( )A. B. C. D.【答案】B【解析】∵集合∴∵集合∴故选B.2. 复数的实数为( )A. B. C. 1 D. -1【答案】D【解析】∵复数∴复数的实数为故选D.3. 若满足,则的最大值为( )A. 1B. 3C. 9D. 12【答案】C【解析】根据不等式组画出可行域如图所示:联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最大,此时,有最大值为.故选C.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4. 执行下面的程序框图,则输出的=( )A. B.C. D.【答案】C【解析】模拟程序的运行过程,分析循环中各变量值的变化情况,可得程序的作用是求和.故选C.5. 某几何体的三视图如图所示,则该几何体的表面积为( )A. B. 6 C. D.【答案】A【解析】由三视图可知该几何体为三棱锥,如图所示:其中,平面,,.∴,,∴该几何体的表面积为故选A.6. 在中,,为的中点,则=( )A. 2B. -2C.D.【答案】B【解析】∵为的中点∴,∵∴故选B.7. 在古代,直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.三国时期吴国数学家赵爽用“弦图”( 如图) 证明了勾股定理,证明方法叙述为:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实.”这里的“实”可以理解为面积.这个证明过程体现的是这样一个等量关系:“两条直角边的乘积是两个全等直角三角形的面积的和(朱实二 ),4个全等的直角三角形的面积的和(朱实四) 加上中间小正方形的面积(黄实) 等于大正方形的面积(弦实)”. 若弦图中“弦实”为16,“朱实一”为,现随机向弦图内投入一粒黄豆(大小忽略不计),则其落入小正方形内的概率为( )A. B. C. D.【答案】D【解析】∵弦图中“弦实”为16,“朱实一”为∴大正方形的面积为16,一个直角三角形的面积为设“勾”为,“股”为,则,解得或.∵∴,即.∴∴小正方形的边长为∴随机向弦图内投入一粒黄豆(大小忽略不计),则其落入小正方形内的概率为. 故选D.8. 函数在下列某个区间上单调递增,这个区间是( )A. B. C. D.【答案】A【解析】∵函数∴令,则.∴当时,,即函数的一个单调增区间为.故选A.9. 已知分别是双曲线的左、右焦点,为双曲线右支上一点,若,,则双曲线的离心率为( )A. B. C. D. 2【答案】A【解析】∵分别是双曲线的左、右焦点,为双曲线右支上一点∴∵∴∵∴,则.∴,即.∵∴故选A.点睛:本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).10. 下面是追踪调查200个某种电子元件寿命(单位:)频率分布直方图,如图:其中300-400、400-500两组数据丢失,下面四个说法中有且只有一个与原数据相符,这个说法是( )①寿命在300-400的频数是90;②寿命在400-500的矩形的面积是0.2;③用频率分布直方图估计电子元件的平均寿命为:④寿命超过的频率为0.3A. ①B. ②C. ③D. ④【答案】B【解析】若①正确,则对应的频率为,则对应的频率为,则②错误;电子元件的平均寿命为,则③正确;寿命超过的频率为,则④正确,故不符合题意;若②正确,则对应的频率为,则①错误;电子元件的平均寿命为,则③错误;寿命超过的频率为,则④错误,故符合题意.故选B.11. 已知函数,下列关于的四个命题;①函数在上是增函数②函数的最小值为0③如果时,则的最小值为2④函数有2个零点其中真命题的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】∵函数∴∴令,得,即函数在上为增函数;令,得或,即函数在,上为减函数.∵函数在上恒成立∴当时,,且函数的零点个数只有一个.当时,,则要使时,则的最小值为2,故正确.综上,故①②③正确.故选C.12. 已知函数,若方程有解,则的最小值为( )A. 1B. 2C.D.【答案】D【解析】∵函数∴∵。
黑龙江省哈尔滨市2018届高三教学质量检测(二)
理科数学
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合{}12A x x =-<≤,{}0B x x =<,则下列结论正确的是( )
A.()
{}12R C A B x x =-<≤ B.{}10A B x x =-<< C.(){}0R A C B x x =≥ D.{}0A B x x =< 2.已知复数z 满足()zi i m m R =+∈,若z 的虚部为1,则复数z 在复平面内对应的点在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.在等比数列{}n a 中,2a =2,516a =,则6a =( )
A.28
B.32
C.64
D.14
4.设0a >且1a ≠,则“log 1a b >”是“b a >”的( )
A.必要不充分条件
B.充要条件
C.既不充分也不必要条件
D.充分不必要条件
5.我国魏晋期间的伟大的数学家刘徽,是最早提出用逻辑推理的方式来论证数学命题的人,他创立了“割圆术”,得到了著名的“徽率”,即圆周率精确到小数点后两位的近似值3.14,如图就是利用“割圆术”的思想设计的一个程序框图,则输出的n 值为( )(参考数据:sin150.2588=°,sin 7.50.1305=°,sin 3.750.0654=°)。
大庆市高三年级第二次教学质量检测试题数 学(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}2320A x x x =-+=,集合{}log 42x B x ==,则A B ⋃= (A ){}2,1,2- (B ){}1,2 (C ){}2,2- (D ){}2(2)11i-的共轭复数为 (A )1i +(B )1i -(C )1122i +(D )1122i -(3)已知tan 2α=,则2sin 2cos αα的值为(A )2 (B )3 (C )4 (D 6(4)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的表面积为 (A )324π+ (B )244π+ (C )4123π+ (D )4243π+(5)执行如图所示的程序框图,输出的T =(A )29 (B )44 (C )52 (D )62(6)下列说法不正确的是(A )命题”若00x y >>且,则0x y +>” 的否命题是假命题(B )命题“0x R ∃∈,20010x x --<”的否定是“x R ∀∈,210x x --≥” (C )“2πϕ=”是“sin(2)y x ϕ=+为偶函数”的充要条件(D )0α<时,幂函数y x α=在(0,)+∞上单调递减(7)已知某线性规划问题的约束条件是34y xy x x y ≤⎧⎪≥⎨⎪+≤⎩,则下列目标函数中,在点(3,1)处取得最小值是(A )2z x y =- (B )2z x y =+ (C )12z x y =-- (D )2z x y =-+(8)等比数列{}n a 的前n 项和为n S ,已知2312a a a =,且4a 与72a 的等差中项为54,则5S =(A )29 (B )31 (C )33 (D )36 (9)函数cos 622x xxy -=-的图像大致为(10)已知函数()x f x a =,若11162a <<,则()f x 零点所在区间为(A )1(0,)4(B )11(,)164(C )11(,)42(D )1(,1)2(11)如图,已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||||4OP OF PF ==且,则椭圆的方程为(A )221255x y += (B )2213616x y +=(C )2213010x y += (D )2214525x y +=(12)设函数223()cos 4sin 3(),| t |1,2x f x x t t t x R =++-∈≤其中将()f x 的最小值记为()g t ,则函数()g t 的单调递增区间为(A )1(,]3-∞-和[1,)+∞ (B )1[1,]3-- (C )1[,)3+∞ (D )1[,1]3-第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二.填空题(本大题共4小题,每小题5分) (13)10(2)x e x dx +=⎰_______. (14设两个非零向量a 与b ,满足||||2||a b a b a +=-=,,则向量a b+ 与a b -的夹角等于_______.(15)函数log (2)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线20mx ny ++=上,则22m n +的最小值为_______. (16)若实数,x y 满足方程112x y x y x e e +--+=+(e 是自然对数的底),则xy e =_______.三. 解答题:解答应写出文字说明,证明过程或演算步骤. (17)已知公差不为0的等差数列{}n a 满足777S =,且1a ,3a ,11a 成等比数列.(1)求数列{}n a 的通项公式;(2)若2na nb =,求数列{}n b 的前n 项和n T .(18)在ABC ∆中,内角A 、B 、C 所对的边分别为a ,b ,c ,226cos a b ab C +=,且2sin 2sin sin C A B =.(1)求角C 的值;(2)设函数()sin()cos (0)6f x x x πωωω=-->,且()f x 图象上相邻两最高点间的距离为π,求()f A 的取值范围. (19)如图,平面ABEF ABC ⊥平面,四边形ABEF 底面为矩形,AC BC= ,O 为AB的中点,OF EC ⊥.(1)求证:OE FC ⊥; (2)若2,AB AC ==F CE B --的余弦值(20)抛物线2:2(0)M y px p =>准线过椭圆:N 22415x y +=的左焦点,以原点为圆心,以(0)t t >为半径的圆分别与抛物线M 在第一象限的图像以及y 轴的正半轴相交于点A B 和,直线AB 与x 轴相交于点C(1)求抛物线M 的方程(2)设点A 的横坐标为a ,点C 的横坐标为c ,抛物线M 上点D 的横坐标为2a +,求直线CD 的斜率 (21)已知函数2()ln(1),f x x ax x a R =++-∈. (1)当14a = 时,求函数()y f x =的极值(2)若对任意实数(1,2)b ∈,当(1,]x b ∈-时,函数()f x 的最大值为()f b ,求a 的取值范围请考生在第(22)~(24)三题中任选一题做答,如果多做,则按所做的第一题计分.做答时,用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (22)(本小题满分10分)选修4-1:几何证明选讲如图,ABC ∆为圆的内接三角形,AB AC =,BD 为圆的弦,且//BD AC ,过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F.(1)求证:四边形ACBE 为平行四边形; (2)若6AE =,5BD =,求线段CF 的长.(23)(本小题满分10分)选修4-4:坐标系与参数方程已知圆锥曲线2cos :x C y αα=⎧⎪⎨=⎪⎩(α为参数)和定点A ,1F 、2F 是此圆锥曲线的左、右焦点,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系.(1)求直线2AF 的直角坐标方程;(2)经过点1F 且与直线2AF 垂直的直线l 交此圆锥曲线于M 、N 两点,求11||||MF NF -的值.(24)(本小题满分10分)选修4-5:不等式选讲 已知函数()|2|f x x =-,()|3|g x x m =-++.(1)若关于x 的不等式()0g x ≥的解集为[5,1]--,求实数m 的值; (2)若()f x 的图象恒在()g x 图象的上方,求实数m 的取值范围.大庆市高三年级第二次教学质量检测理科数学参考答案 一.选择题(本大题共12小题,每小题5分,共60分)13.e 14.120︒ 15.2 16.1三.解答题(本题共6大题,共70分) 17(本小题满分12分)解:(Ⅰ)由等差数列{}n a 满足777S =知,4777a =,所以1311a d +=. ①因为1311,,a a a 成等比数列,所以23111a a a =,整理得2123d a d =,又因为数列{}n a 公差不为0,所以123d a =. ② ……………………2分联立①②解得12,3a d ==. ……………………4分所以31n a n =-. ……………………6分 (Ⅱ)因为2na nb =,所以311282n n n b -==⋅, ……………………8分所以数列{}n b 是以4为首项,8为公比的等比数列, ……………………10分由等比数列前n 项和公式得,324(18)24187n n n T +--==-. (12)分18.(本小题满分12分) 解:(I )因为C ab b a cos 622=+,由余弦定理知C ab c b a cos 2222+=+,所以abc C 4cos 2=, (1)分又因为B A C sin sin 2sin 2=,则由正弦定理得ab c 22=, ……………………2分所以21424cos 2===ab ab ab c C ,……………………4分 因为(0,)C π∈,……………………5分 所以3π=C . ……………………6分 (Ⅱ)3()sin()cos cos )623f x x x x x x ππωωωωω=--=-=-, ……………………8分由已知2,2==ωπωπ,……………………9分 则()),3f A A π=-因为2sin 2sin sin C A B =,3π=C ,所以232sin sin()34A A π⋅-=,整理得1sin(2)64A π-=. 因为203A π<<,所以72666A πππ-<-<,所以cos(2)6A π-= (10)分()))366f A A A πππ=-=--1)cos(2)]662A A ππ=--⋅① 113()3()42428f A -=⋅-⋅=② 113()3()42428f A +=⋅+=, 故()f A 的取值范围是33{}88-+. ……………………12分19(本小题满分12分)(I )证明:连接OC ,因为AC BC =,O 是AB 的中点,故OC AB ⊥. 又因为平面ABEF ⊥平面ABC ,面ABEF ⋂面ABC AB =,OC ⊂面ABC ,故OC ⊥平面ABEF .因为OF ⊂面ABEF ,于是OC OF ⊥. ……………………2分又OF EC ⊥,OC EC C ⋂=,所以OF ⊥平面OEC ,所以OF OE ⊥. ……………………4分又因为OC OE ⊥,OF OC O ⋂=,故OE ⊥平面OFC , ……………………5分 所以OE FC ⊥. ……………………6分(Ⅱ)由(I )得,2AB AF =,不妨设1,2AF AB ==,取EF 的中点D ,以O 为原点,,,OC OB OD 所在的直线分别为,,x y z 轴,建立空间直角坐标系。
黑龙江省大庆市2018届高三第一次教学质量检测数学试题(理)第Ⅰ卷一、选择题1. 设集合,,则的值为()A. B. C. D.2. 若复数,则在复平面内所对应的点位于的()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 若满足,则的最大值为()A. 2B. 5C. 6D. 74. 如图,网格纸上小正方形的边长为1,粗线画出的是某几伺体的三视图,则此几何体的体积为()A. 2B. 4C. 8D. 125. 执行如图所示的程序语句,则输出的的值为()A. B. 1 C. D.6. 已知命题直线与平行;命题直线与圆相交所得的弦长为,则命题是()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既充分也不必要条件7. 数列为正项递增等比数列,满足,,则等于()A. -45B. 45C. -90D. 908. 若是夹角为的两个单位向量,则向量的夹角为()A. B. C. D.9. 已知双曲线的一条渐近线过点,且双曲线的一个焦点在抛物线的准线上,则双曲线的方程为()A. B. C. D.10. 已知是定义在上的奇函数,当时,.若,则的大小关系为()A. B. C. D.11. 函数的图象过点,相邻两个对称中心的距离是,则下列说法不正确的是()A. 的最小正周期为B. 的一条对称轴为C. 的图像向左平移个单位所得图像关于轴对称D. 在上是减函数12. 已知函数,若关于的方程有两个解,则实数的取值范围是()A. B.C. D.第Ⅱ卷二、填空题13. ________.14. 一个圆柱的轴截面是正方形,在圆柱内有一个球,该球与圆柱的上、下底面及母线均相切.记球的体积为,圆柱内除了球之外的几何体体积记为,则的值为______ .15. 若为奇函数,则的最小值为___.16. 已知抛物线,过其焦点作一条斜率大于0的直线,与抛物线交于两点,且,则直线的斜率为________.三、解答题17. 设函数的图象由的图象向左平移个单位得到.(1)求的最小正周期及单调递增区间:(2)在中,,6分别是角的对边,且,,,求的值.18. 已知数列的前项和为,点在曲线,上数列满足,,的前5项和为45.(1)求,的通项公式;(2)设,数列的前项和为,求使不等式恒成立的最大正整数的值.19. 已知四棱锥的底面为正方形,上面且.为的中点.(1)求证:面;(2)求直线与平面所成角的余弦值.20. 已知椭圆,其焦距为2,离心率为(1)求椭圆的方程;(2)设椭圆的右焦点为,为轴上一点,满足,过点作斜率不为0的直线交椭圆于两点,求面积的最大值.21. 已知函数(1)若不等式恒成立,则实数的取值范围;(2)在(1)中,取最小值时,设函数.若函数在区间上恰有两个零点,求实数的取值范围;(3)证明不等式:(且).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 在平面直角坐标系中,以原点为极点,轴正半轴为极轴,取相同的单位长度建立极坐标系,已知曲线,直线.(1)将曲线上所有点的横坐标、纵坐标分别伸长为原来的2倍、倍后得到曲线,请写出直线,和曲线的直角坐标方程;(2)若直线经过点且,与曲线交于点,求的值.23. 已知是任意非零实数.(1)求的最小值(2)若不等式恒成立,求实数取值范圈.【参考答案】第Ⅰ卷一、选择题1. 【答案】A【解析】由得,结合可得,故选A.2. 【答案】D【解析】,故在复平面内对应的点位于第四象限.3. 【答案】B【解析】画出,满足约束条件,的平面区域,如图示:由,解得,由可知直线过时,最大,得,故选B.4. 【答案】B【解析】由三视图可得,该几何体为如图所示的四棱锥,其中底面是边长为2的正方形,面,故其体积,故选B.5. 【答案】C【解析】模拟程序框图的运行过程,如下:,,;,,否,;,,否,;,,否,;,,否,;,,否,;,,否,;,,否,;,,否,;…;的值是随的变化而改变的,且周期为8,又,此时终止循环,∴输出的值与时相同,为,故选C.6. 【答案】A【解析】命题两条直线与互相平行,∴,解得或,当时,两直线重合,故舍去,故;命题由于直线被圆截得的弦长为可得:圆心到直线的距离,即,解得,综上可得命题是充分不必要条件,故选A.7. 【答案】D【解析】设正项递增等比数列的公比为,∵,∴,∵,∴,解得,故,∴,故选D.8. 【答案】B【解析】∵,∴,得,又∵,∴,得,又,∴两向量的夹角的余弦值为,即向量的夹角为,故选B.9. 【答案】A【解析】由题意,∵抛物线的准线方程为,双曲线的一个焦点在抛物线的准线上,∴,∴,∴,,∴双曲线的方程为,故选A.10.【答案】C【解析】∵时,,∴在上单调递减,又∵是定义在上的奇函数,∴在上单调递减,由于,,,,∴的大小关系为,故选C.11. 【答案】D【解析】∵函数的图象相邻两个对称中心的距离是,∴,故,又∵函数的图象过点,∴,,则,最小正周期为,故A正确;,即的一条对称轴为,故B正确;向左平移个单位得为偶函数,即关于轴对称,故C 正确;当时,,由三角函数的性质可得在该区间内有增有减,故D错误,故选D.12. 【答案】A【解析】关于的方程有两个解,等价于和有两个交点,如图所示:作出函数的图象,,,,,由图可得时,直线与曲线有两个交点,由图可得过原点的直线与有两个交点的临界位置为两者相切时,联立两者方程得:,由解得,切点坐标为和且,要使直线与抛物线有两个交点,直线的斜率应满足,综上可得,故选A.第Ⅱ卷二、填空题13.【答案】6【解析】,故答案为6.14.【答案】2【解析】如图所示:设球的半径为,则球的体积为:,圆柱的体积为:,则,则,故答案为2.15.【答案】【解析】∵,∴,,,故,,当且仅当时等号成立,即的最小值为,故答案为.16. 【答案】【解析】如图所示:分别过点向准线作垂线,垂足为,过点向作垂线,垂足为,设,则,又抛物线的定义可得,,故可得,,,即,故直线的倾斜角为,直线的斜率为,故答案为.三、解答题17.解:(1)的图像向左平移个单位得到的图像,即,函数最小正周期.令,则,解得,所以的单调增区间是.(2)由题意得:,则有.因为,所以,,由及得,.根据余弦定理,,所以.18.解:(1)由已知得:,当时,,当时,,当时,符合上式,所以.因为数列满足,所以为等差数列. 设其公差为.则,解得,所以.(2)由(1)得,,,因为,所以是递增数列. 所以,故恒成立只要恒成立.所以,最大正整数的值为.19.(1)证明:连接交于,连接,因为为正方形且为对角线,所以为的中点,又为的中点,故为的中位线,所以,而面,面,故面.(2)解:以为原点,所在直线分别为轴建立空间直角坐标系.则, , , , ,所以, , ,设平面的法向量,则即,令,则法向量,设直线与平面所成角为,则,故直线与平面所成角的余弦值.20. 解:(1)因为椭圆焦距为2,即,所以,,所以,从而,所以椭圆的方程为.(2)椭圆右焦点,由可知,直线过点,设直线的方程为,,将直线方程与椭圆方程联立得,设,则,,由判别式解得,点到直线的距离为,则,,令,,则,当时,取得最大值,此时,,取得最大值.21.(1)解:由题意知,恒成立.变形得:.设,则,由可知,在上单调递增,在上单调递减,在处取得最大值,且.所以,实数的取值范围是.(2)解:由(1)可知,,当时,,,在区间上恰有两个零点,即关于的方程在区间上恰有两个实数根. 整理方程得,,令,,令,,则,,于是,在上单调递增.因为,当时,,从而,单调递减,当时,,从而,单调递增,,,,因为,所以实数的取值范围是.(3)证明:由(1)可知,当时,有,当且仅当时取等号.令,则有,其中.整理得:,当时,,,,,上面个式子累加得:.且,即.命题得证.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.解:(1)因为,所以的直角坐标方程为;设曲线上任一点坐标为,则,所以,代入方程得:,所以的方程为.(2)直线:倾斜角为,由题意可知,直线的参数方程为(为参数),联立直线和曲线的方程得,.设方程的两根为,则,由直线参数的几何意义可知,.23.解:(1)因为,当且仅当时取等号,所以最小值为.(2)由题意得:恒成立,结合(1)得:.当时,,解得;当时,成立,所以;当时,,解得.综上,实数的取值范围是.。
大庆市高三年级第二次教学质量检测试题数学(理科)参考答案1-12题:123456789101112B DCCABDAABCD13.6014.215.323π16.17.(本小题满分12分)解:(Ⅰ)设等差数列{}n a 的公差为d ,由已知981S =,根据等差数列性质可知:95199(4)81S a a d ==+=,所以149a d +=.…………1分因为11a =,所以2d =,…………2分所以21n a n =-.…………3分所以15[log 1]0b ==,…………4分145[log 27]2b ==,…………5分615[log 121]2b ==.…………6分(Ⅱ)当12n ≤≤时,13n a ≤≤(*n a N ∈),5[log ]0n n b a ==,共2项;…………7分当312n ≤≤时,523n a ≤≤,5[log ]1n n b a ==,共10项;…………8分当1362n ≤≤时,15123n a ≤≤,5[log ]2n n b a ==,共50项;…………9分当63200n ≤≤时,125399n a ≤≤,5[log ]3n n b a ==,共138项.………10分所以数列{}n b 的前200项和为201015021383524⨯+⨯+⨯+⨯=.…………12分18.(本小题满分12分)解:(Ⅰ)由列联表得:2235(157103)175 2.571817251068K ⨯⨯-⨯==≈⨯⨯⨯.…………2分由于2.57 2.706<,所以没有90%的把握认为学生使用手机的时间长短与性别有关.…………4分(2)X 可取值0,1,2,3.…………5分343101(0)30C P X C ===,…………6分21463103(1)10C C P X C ===,…………7分12463101(2)2C C P X C ===,…………8分363101(3)6C P X C ===,…………9分所以X 的分布列为X0123P1303101216…………10分这3人中使用国产手机的人数X 的数学期望为13119()01233010265E X =⨯+⨯+⨯+⨯=.…………12分19.(本小题满分12分)(Ⅰ)证明:由题意可知,22222222BM AB AM =+=+=,22222222CM CD DM =+=+=,4BC =,…………2分所以,在△BCM 中,222BC BM CM =+,所以C M B M ⊥;…………3分因为平面ABM ⊥平面BCDM 且BM 是交线,CM ⊂平面BCDM …………5分所以CM ⊥平面ABM ,因为AB ⊂平面ABM ,所以AB CM ⊥…………6分解:(Ⅱ)设BM 中点为O ,BC 中点为N ,连接ON 所以//ON MC ,所以ON ABM ⊥平面.所以ON BM ON AO ⊥⊥,.因为AB AM =,所以AO ⊥BM以O 为坐标原点,分别以OB ON OA 、、所在直线为x 轴、y 轴、z轴建立空间直角坐标系,如图…………7分则(0,0,2)A 、(22,0)C 、2,0,0)B 、()2,0,0M -,从而(22,22,0)CB =-,(2,22,2)CA =-,(0,22,0)CM =-.设)1z y x n ,,(=为平面ABC 的法向量,则110200n CA x y z x y n CB ⎧⋅=-+=⎧⎪⇒⎨⎨=⋅=⎩⎪⎩,可以取11,1,1)n =(…………9分设)(2z y x n ,,=为平面ACM 的法向量,则2202000n CA x y z y n CM ⎧⋅=-+=⎧⎪⇒⎨⎨=⋅=⎩⎪⎩可以取2(1,01n =-,)…………11分因此,021=⋅n n ,有21n n ⊥,即平面ABC ⊥平面ACM ,故二面角B AC M --的大小为90︒.…………12分20(本小题满分12分)解:(Ⅰ)由题意得321442c aab ⎧=⎪⎪⎨⎪⋅=⎪⎩,…………1分又222a b c =+,解得21a b ==,.…………2分所以椭圆C 的方程为2214x y +=.…………4分(Ⅱ)设直线l 的方程为()0y kx m m =+≠,点,P Q 的坐标分别为()()1122,,,x y x y ,由2214y kx m x y =+⎧⎪⎨+=⎪⎩,消去y 得()()222148410k x kmx m +++-=,…………5分()()()222222641614116410k m k m k m ∆=-+-=-+>,则()2121222418,1414m kmx x x x k k--+==++,…………6分所以()()()2212121212y y kx m kx m k x x km x x m =++=+++,…………8分因为212k k k =,所以()221212212121212k x x km x x m y y k k k x x x x +++===,即22228014k m m k-+=+,…………10分又0m ≠,所以214k =,…………11分又结合图象可知,12k =-,所以直线l 的斜率k 为定值12-.…………12分21.(本小题满分12分)解:(Ⅰ)因为()()()2ln 1f x x a x a R =+-∈,函数定义域为:{}0x x >()212212(1)ax ax f x a x x x-+'=+-=,…………1分令2()221g x ax ax =-+,由0a <可知,2480a a ->,从而()0g x =有两个不同解.…………2分令()0f x '=,则1102x =<,2102x =>…………3分当()20,x x ∈时,()0f x '>;当()2,x x ∈+∞时,()0f x '<,…………4分所以函数()y f x =的单调递增区间为10,2⎛ ⎝,单调递减区间为1+2⎛⎫+∞⎪ ⎪⎝⎭.…………5分(Ⅱ)由题意得,当1x ≥时,ln 220x x e ax a e +-+-≥恒成立.令()ln 22xh x x e ax a e =+-+-,求导得()12xh x e a x'=+-,…………6分设()12x x e a x ϕ=+-,则()21x x e xϕ'=-,因为1x ≥,所以21,1x e e x≥≤,所以'()0x ϕ>,所以()x ϕ在[)1+∞,上单调递增,即()h x '在[)1+∞,上单调递增,所以()()112h x h e a ''≥=+-…………8分①当12ea +≤时,()0h x '≥,此时,()ln 22x hx x e ax a e =+-+-在[)1,+∞上单调递增,而()10h =,所以()0h x ≥恒成立,满足题意.…………9分②当12ea +>时,()1120h e a '=+-<,而()1ln 2220ln 2h a a a a'=+->,根据零点存在性定理可知,存在()01,ln 2x a ∈,使得()00h x '=.当()01,x x ∈时,()0h x '<,()hx 单调递减;当()0,x x ∈+∞时,()0h x '>,()h x 单调递增.所以有()()010h x h <=,这与()0hx ≥恒成立矛盾,…………11分所以实数a 的取值范围为1,2e +⎛⎤-∞ ⎥⎝⎦.…………12分22.(本小题满分10分)解:(Ⅰ)直角坐标与极坐标互化公式为cos sin x y ρθρθ=⎧⎨=⎩,tan y x ρθ⎧=⎪⎨=⎪⎩,…………1分圆1C 的普通方程为22480x y x y +--=,把cos ,sin x y ρθρθ==代入方程得,24cos 8sin 0ρρθρθ--=,所以1C 的极坐标方程为4cos 8sin ρθθ=+;…………3分2C 的平面直角坐标系方程为33y x =;…………5分(Ⅱ)分别将,36ππθθ==代入1C 的极坐标方程4cos 8sin ρθθ=+得:12ρ=+, (6)分24ρ=+…………7分则OMN ∆的面积为((11sin 24sin 82236OMN S OM ON MON ππ∆⎛⎫=⋅∠=⨯+⨯+⨯-=+ ⎪⎝⎭,所以OMN ∆的面积为8+.…………10分23.(本小题满分10分)解:(Ⅰ)由题意知,需解不等式125x x ++-≥.当1x <-时,上式化为215x -+≥,解得2x ≤-;…………1分当12x -≤≤时,上式化为35≥,无解;…………2分当2x >时,①式化为215x -≥,解得3x ≥.…………3分所以()5f x ≥的解集为{}23x x x ≤-≥或.…………5分(Ⅱ)当[0,2]x ∈时,()3f x =,…………6分则当[0,2]x ∈,23x x a --≤恒成立.设2()g x x x a =--,则()g x 在[]0,2上的最大值为(2)2g a =-.…………8分所以(2)3g ≤,即23a -≤,得1a ≥-.…………9分所以实数a 的取值范围为[1,)-+∞.…………10分。
黑龙江省大庆市数学高三理数第二次诊断性测试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018高三上·北京期中) 若集合,,则()A .B .C .D .2. (2分)已知复数z=是纯虚数,则实数a=()A . 3B . -3C .D .3. (2分)设变量满足,若直线经过该可行域,则k的最大值为()A . 1B . 3C . 4D . 54. (2分) (2018高二上·宾阳月考) 下列程序运行后输出的结果为()A . 17B . 19C . 21D . 235. (2分) m,n是两条不同的直线,是三个不同的平面,则下列命题中真命题的是()A . 若,则B . 若,则C . 若,则D . 若,则6. (2分)在等差数列中,,表示数列的前n项和,则()A . 18B . 99C . 198D . 2977. (2分) (2016高一上·叶县期中) 已知a= ,b= ,c= ,则()A . b<a<cB . a<b<cC . b<c<aD . c<a<b8. (2分)(2012·全国卷理) 椭圆的中心在原点,焦距为4,一条准线为x=﹣4,则该椭圆的方程为()A .B .C .D .9. (2分)函数f(x)的图像如图所示,若函数y=f(x)-c与x轴有两个不同交点,则c的取值范围是()A . (-2,-0.5)B . [-2,-0.5)C . (1.1,1.8)D .10. (2分) (2016高一下·揭阳期中) 已知函数f(x)=sinωx+cosωx(ω>0),如果存在实数x1 ,使得对任意的实数x,都有f(x1)≤f(x)≤f(x1+2015)成立,则ω的最小值为()A .B .C .D .11. (2分) (2016高一下·辽源期中) 已知{an}为等差数列,a3=7,a1+a7=10,Sn为其前n项和,则使得Sn达到最大值的n等于()A . 4B . 5C . 6D . 712. (2分)下述棱柱中为长方体的是()A . 各个面都是平行四边形的直棱柱B . 对角面是全等矩形的四棱柱C . 侧面都是矩形的直四棱柱D . 底面是矩形的直棱柱二、填空题 (共4题;共4分)13. (1分)(2017·河北模拟) 已知一个公园的形状如图所示,现有3种不同的植物要种在此公园的A,B,C,D,E这五个区域内,要求有公共边界的两块相邻区域种不同的植物,则不同的种法共有________种.14. (1分) (2018高二上·西城期末) 若双曲线的一个焦点在直线上,一条渐近线与平行,且双曲线的焦点在x轴上,则双曲线的标准方程为________;离心率为________.15. (1分)若sin(θ+24°)=cos(24°﹣θ),则tan(θ+60°)=________.16. (1分) (2019高一上·嘉兴期中) 已知函数,当时,,则的取值范围是________.三、解答题 (共6题;共50分)17. (10分) (2016高二上·九江期中) 在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin2C= cosC,其中C为锐角.(1)求角C的大小;(2) a=1,b=4,求边c的长.18. (5分) (2018高二上·宜昌期末) 如图,在三棱锥中,两两垂直且相等,过的中点作平面∥ ,且分别交PB,PC于M、N,交的延长线于.(Ⅰ)求证:平面;(Ⅱ)若,求二面角的余弦值.19. (5分)(2017·新课标Ⅰ卷文) 为了监控某种零件的一条生产线的生产过程,检验员每隔30min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:(12分)抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得 = xi=9.97,s= = =0.212,≈18.439,(xi﹣)(i﹣8.5)=﹣2.78,其中xi为抽取的第i个零件的尺寸,i=1,2, (16)(1)求(xi,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(﹣3s, +3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(﹣3s, +3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(xi,yi)(i=1,2,…,n)的相关系数r= ,≈0.09.20. (10分) (2019高三上·承德月考) 已知函数,其中(Ⅰ)求的单调区间;(Ⅱ)若在上存在,使得成立,求的取值范围.21. (10分)(2020·洛阳模拟) 在极坐标系中,已知圆的圆心,半径,点在圆上运动.以极点为直角坐标系原点,极轴为轴正半轴建立直角坐标系.(1)求圆的参数方程;(2)若点在线段上,且,求动点轨迹的极坐标方程.22. (10分)(2013·新课标Ⅰ卷理) (选修4﹣5:不等式选讲)已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(1)当a=﹣2时,求不等式f(x)<g(x)的解集;(2)设a>﹣1,且当时,f(x)≤g(x),求a的取值范围.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共50分) 17-1、17-2、18-1、19-1、19-2、20-1、21-1、21-2、22-1、22-2、第11 页共11 页。
黑龙江省大庆市2015届高三数学第二次教学质量检测(二模)试题理(扫描版)大庆市高三年级第二次教学质量检测理科数学参考答案13.e 14.120︒ 15.2 16.1三.解答题(本题共6大题,共70分)17(本小题满分12分)解:(Ⅰ)由等差数列{}n a 满足777S =知,4777a =,所以1311a d +=. ①因为1311,,a a a 成等比数列,所以23111a a a =,整理得2123d a d =,又因为数列{}n a 公差不为0,所以123d a =.② ……………………2分 联立①②解得12,3a d ==. ……………………4分所以31n a n =-. ……………………6分 (Ⅱ)因为2n an b =,所以……………………8分 所以数列{}n b 是以4为首项,8为公比的等比数列, ……………………10分由等比数列前n 项和公式得,……………………12分18.(本小题满分12分)为C ab b a cos 622=+,由余弦定理知C ab c b a cos 2222+=+,所以1分 又因为B A C sin sin 2sin 2=,则由正弦定理得ab c 22=, ……………………2分以……………………4因为(0,C π∈, ……………………5分以 (6)()……………已知 (9),所以……………………10分①② 故()f A 的取值范围是……………………12分 19(本小题满分12分)(I )证明:连接OC ,因为AC BC =,O 是AB 的中点,故OC AB ⊥.又因为平面ABEF ⊥平面ABC ,面ABEF ⋂面ABC AB =,OC ⊂面ABC ,故OC ⊥平面ABEF .因为OF ⊂面ABEF,于是OC OF ⊥. ……………………2分又OF EC ⊥,OC EC C ⋂=,所以OF ⊥平面OEC ,所以OF OE ⊥. ……………………4分又因为OC OE ⊥,OF OC O ⋂=,故OE ⊥平面OFC , ……………………5分 所以O E F ⊥. ……………………6分 2AB 2,0,0),从而(CE =-(0,EF =-的法向量(,,)n x y z =00nCE n EF ⎧⋅=⎪⎨⋅=⎪⎩ (1,0,2)n=的一个法向量(1,2,0)m =,设,m n 的夹角为13m n m n ⋅=,…………………………11分 由于二面角F CE B --为钝二面角,所以所求余弦值为 …………………………12分20(本小题满分12分)解:(I ,可得1p =, 故抛物线方程为22y x =. …………………………4分(II ) ,所以222a a t +=,由于0t >,故有① …………………………6分由点(0,),(,0)B t C c 的坐标知,直线BC 的方程为又因为点A 在直线上,故有 …………………………8分解得2)+ …………………………10分所以直线CD 的斜率或………………12分21(I 整理得1) …………………………1分 令'()0f x =得0x =,1x =, 当x 变化时,'(),()f x f x 变化如下表:x(1,0)- 0 (0,1) 1 (1,)+∞ '()f x+ 0 - 0 + ()f x极大值 极小值…………………………3分 计算得(0)0f =, 所以函数()y f x =在0x =处取到极大值0,在1x =处取到极小值………………………4分(II (1)当0a ≤时,函数()f x 在(1,0)-上单调递增,在(0,)+∞上单调递减,此时,不存在实数(1,2)b ∈,使得当(1,]x b ∈-时,函数()f x 的最大值为()f b . ………………………6分(2)当0a >时,令'()0f x =,有10x =,(i )当时,函数()f x 在(1,)-+∞上单调递增,显然符合题意. ………………………7分 ,只需(1)0f ≥,解值范围是 函数()f x 的 围是(22)(本小题满分10分)解:(Ⅰ)因为AE 与圆相切于点A ,所以BAE ACB =行. 因为AB AC =,所以ABC ACB =行,所以ABC BAE =行, 所以A E B ∥. ……………………… 3分因为BD AC ∥,所以四边形ACBE 为平行四边形. ……………………… 5分(Ⅱ)因为AE 与圆相切于点A ,所以2()AE EB EBBD =?, 即26(5)EB EB =?,解得4BE =, ………………………7分根据(Ⅰ)有4,6AC BE BC AE ====, 设CF x =,由BD AC ∥,解即…10分 (23)(本小题满分10分)解:(Ⅰ)曲线可化为 ………………………2分 其轨迹为椭圆,焦点为12(1,0),(1,0)F F -. ………………………3分经过和2(1,0)F 的直线方程为,即………………5分 (Ⅱ)由(Ⅰ)知,直线2AF 的斜率为,因为2l AF ⊥,所以l 的斜率为角为30︒, 所以l 的参数方程为 (t 为参数), ………………………7分 代入椭圆C 的方程中,得………………………8分因为,M N 在点1F 的两侧,所以………………………10分 (24)(本小题满分10分)(Ⅰ)因为,所,所以33m x m --≤≤-,……………3分由题意知3531m m --=-⎧⎨-=-⎩ ,所以2m =. ………………………5分(Ⅱ)因为()f x 图象总在()g x 图象上方,所以()()f x g x >恒成立,即恒成立, ………………………7分当且仅当(2)(3)0x x -+≤时等式成立,…9分所以m 的取值范围是(,5)-∞. ………………………10分。
大庆市高三年级第二次教学质量检测试题理科数学2020.01注意事项 :1. 答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2. 回答选择题时,选出每道小题答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
第 I 卷(选择题 共 60 分)一、选择题:本大题共12 小题,每小题 5 分,满分 60 分 .在每小题给出的四个选项中,只有一项是符合题目要求的 .1. 已知集合 Ax | x 1 , B x | x 2 x 0 , 则下列结论正确的是A. A Bx | x 0B.A B R C. A B x | x 1D.A B2. 若复数 z 满足 (1i )z2i ,则 z z1 B.1 D. 4A.C. 2423. 给出如下四个命题:① 若 “p 且 q ”为假命题 ,则p, q均为假命题 .② 命题 “若 ab ,则 2a2b1”的否命题为 “若 ab ,则 2a2b1 ”.③ 命题 “x R, x 21”“x R, x 21 1”.1 的否定是④ 在ABC ABsin A sin B”的充要条件.中, “”是 “其中正确的命题的个数是A. 1B. 2C. 3D. 44. 已知 a2 ,向量 a 在向量 b 上的投影为 - √3,则 a 与 b 的夹角为A.B.C.2D.56336ln x 5. 函数 f (x)的图象可能是xA. B.C. D.6. 已知 m, n 是空间两条不同的直线,, 是空间两个不同的平面,则下列命题正确的是A. 若 , m ,则 m // .B. 若 m // , n m,则 n.C. 若 m, n // , m n,则.D. 若 m // , m, n,则 m // n .7. 已知各项均不为 0 的等差数列 a n22a 11 0 ,数列 b n 为等比数列,,满足 2a 3 a 7 且 b 7 a 7 ,则 b 1b13A. 16B. 8C.4D.28. 某组合体的三视图如图所示, 外轮廓均是边长为 2 的正方形,三视图中的曲线均为1圆周,则该组合体的体积为正视图侧视图4A. 2B.48833C.24 6D.24 2俯视图9. 函数 f (x) sin( x)(0,) 的最小正周期为 π,若其图象向右平移 个单位后得26到的函数为奇函数 ,则函数 f (x) 的图象A. 关于点 ( 7,0) 对称B. 关于点 ( ,0) 对称1212C. 关于直线 x对称 D. 关于直线 x7对称121210.已知数列 a n的通项公式为 a n (3a) n3, n7, n N,且 a n a n 1 ,n N .a n6 , n 7,n N则实数 a 的取值范围是A. (9,3) B. [9,3) C.(1,3) D. (2,3)441 x23 x11. 已知点O, F分别为抛物线C : y的顶点和焦点,直线 y 1 与抛物线交于A, B两点,44连接 AO, BO 并延长,分别交抛物线的准线于点P,Q ,则BP AQ251725D.19A. B. C.344312.设 A, B,C, D 是同一个半径为 4 的球的球面上四点,在ABC 中,BC6, BAC 60 ,则三棱锥 D ABC 体积的最大值为A.123B.183 C. 243 D. 543第Ⅱ卷(非选择题共 90分)本卷包括必考题和选考题两部分.第 13 题~ 21 题为必考题,每个试题考生都必须作答.第 22题、第 23 题为选考题,考生根据要求作答.二、填空题:本大题共 4 小题,每小题 5 分,共 20 分 .13. e 11dx.2x1[ 0, 3] 时, f (x)14.已知定义域为 R 的函数 f ( x),满足 f ( x 3) f (x) ,且当x x ,则2f (2020).15.已知 O 是 ABC 的外心,C450,OC 2mOA nOB, (m, n R) ,则14的最m2n2小值为.16.已知双曲线 C : x2y21(a0,b0) 的右顶点为 A ,且以 A 为圆心,双曲线虚轴长为直a2b2径的圆与双曲线的一条渐近线相交于B, C 两点,若BAC [, 2] ,则双曲线C的离心33率的取值范围是.三、解答题:共70 分 .解答应写出必要的文字说明、证明过程和演算步骤.17.(本小题满分 12 分)已知等差数列a n的公差d0 ,其前n项和为S n,若S3 6 ,且 a1, a2 ,1a3成等比数列.( 1)求数列a n的通项公式;( 2)若b n a n 2 a n,求数列b n的前n项和 T n.18.(本小题满分 12 分)已知函数f(x 3 sin x cos x2(x)1, x R.)sin22( 1)若,(0,), 且 f ()5, f (2) 3 10, 求sin() 的值;22125610( 2)在ABC 中,角A, B, C的对边分别为a,b,c,满足 c3, f (C ) 1,求 a b 的取值范围 .19.(本小题满分 12 分)如图,已知在矩形ABCD 中, E 为边 AB 的中点,将ADE 沿直线 DE 折起到A1DE ( A1平面ABCD )的位置,M为线段A1C的中点 .(1)求证:BM //平面A1DE;( 2)已知AB2AD 2 2 ,当平面 A1DE平面 ABCD 时,求直线 BM 与平面A1DC所成角的正弦值.20.(本小题满分 12 分)平面内有两定点A(0, 1), B( 0,1) ,曲线C上任意一点 M ( x, y) 都满足直线AM与直线BM的斜率之积为1过点 F (1,0) 的直线l与曲线C交于 C, D 两点,并与y轴交于点P,直线AC ,2与BD交于点 Q.(1)求曲线C的轨迹方程;(2)当点P异于A, B两点时,求证 : OP OQ为定值 .21.(本小题满分 12 分)( 1)已知f ( x)xe x , x R ,求函数 f ( x) 的单调区间和极值;( 2)已知a0 ,不等式x a 1e x aln x0(其中e为自然对数的底数)对任意的实数x 1恒成立,求实数 a 的取值范围.请考生在第22、 23 二题中任意选一题作答,如果多做,则按所做的第一题记分.作答时,用 2B 铅笔在答题卡上把所选题目对应的题号涂黑.22. (本小题满分10 分)选修4-4:坐标系与参数方程已知直线 l 过点(1,0),倾斜角为60,在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,曲线 C 的方程为26. 2sin2( 1)写出直线l的参数方程和曲线 C 的直角坐标方程;( 2)若直线l与曲线C相交于A, B两点,设点F (1,0),求11FA 的值 .FB 23.(本小题满分 10 分)选修 4-5:不等式选讲已知函数 f ( x) x a2x1, a R.( 1)当a 1时,求不等式 f (x) 3 的解集;( 2)设关于x的不等式f ( x)2x1的解集为 M ,若[ 1,1]M ,求实数 a 的取值范2围 .。
黑龙江省大庆市2018届高三第二次模拟考试(5月)数学试题(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 与复数的实部相等,虚部互为相反数的复数叫做的共轭复数,并记作,若(其中为复数单位),则( )A.B. C. D. 2. 已知,则( )A. B. C. D. 3. 下列选项中说法正确的是( )A. 命题“为真”是命题“为真”的必要条件B. 若向量满足,则与的夹角为锐角C. 若,则D. “,”的否定是“,”4. 已知随机变量~,其正态分布密度曲线如图所示,若向正方形中随机投掷10000个点,则落入阴影部分的点的个数的估计值为( )附:若随机变量~,则,A. 6038B. 6587C. 7028D. 75395. 已知双曲线过点,其中一条渐近线方程为,则双曲线的标准方程是( ) A. B. C. D.6. 《数书九章》是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九昭的许多创造性成就,其中在卷五“三斜求职”中提出了已知三角形三边求面积的公式,这与古希腊的海伦公式完成等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即,现有周长为的满足,则用以上给出的公式求得的面积为()A. B. C. D. 127. 已知是夹角为的两个单位向量,且,,则的夹角为()A. B. C. D.8. 已知函数()的图象向右平移个单位后关于轴对称,则在区间上的最小值为()A. -1B.C.D. -29. 20世纪70年代,流行一种游戏---角谷猜想,规则如下:任意写出一个自然数,按照以下的规律进行变换:如果是个奇数,则下一步变成;如果是个偶数,则下一步变成,这种游戏的魅力在于无论你写出一个多么庞大的数字,最后必然会落在谷底,更准确的说是落入底部的循环,而永远也跳不出这个圈子,下列程序框图就是根据这个游戏而设计的,如果输出的值为6,则输入的值为()A. 5B. 16C. 5或32D. 4或5或3210. 若,则展开式中,项的系数为()A. B. C. D.11. 一个几何体的三视图如图所示,则它的体积为()。
黑龙江省大庆市2018届高三第二次教学质量检测数学试题(理)第Ⅰ卷一、选择题1. 设集合,则( )A. B. C. D.2. 复数的实数为( )A. B. C. 1 D. -13. 若满足,则的最大值为( )A. 1B. 3C. 9D. 124. 执行下面的程序框图,则输出的=( )A. B.C. D.5. 某几何体的三视图如图所示,则该几何体的表面积为( )A. B. 6 C. D.6. 在中,,为的中点,则=( )A. 2B. -2C.D.7. 在古代,直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.三国时期吴国数学家赵爽用“弦图”( 如图) 证明了勾股定理,证明方法叙述为:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实.”这里的“实”可以理解为面积.这个证明过程体现的是这样一个等量关系:“两条直角边的乘积是两个全等直角三角形的面积的和(朱实二),4个全等的直角三角形的面积的和(朱实四) 加上中间小正方形的面积(黄实) 等于大正方形的面积(弦实)”. 若弦图中“弦实”为16,“朱实一”为,现随机向弦图内投入一粒黄豆(大小忽略不计),则其落入小正方形内的概率为( )A. B. C. D.8. 函数在下列某个区间上单调递增,这个区间是( )A. B. C. D.9. 已知分别是双曲线的左、右焦点,为双曲线右支上一点,若,,则双曲线的离心率为( )A. B. C. D. 210. 下面是追踪调查200个某种电子元件寿命(单位:)频率分布直方图,如图:其中300-400、400-500两组数据丢失,下面四个说法中有且只有一个与原数据相符,这个说法是( )①寿命在300-400的频数是90;②寿命在400-500的矩形的面积是0.2;③用频率分布直方图估计电子元件的平均寿命为:④寿命超过的频率为0.3A. ①B. ②C. ③D. ④11. 已知函数,下列关于的四个命题;①函数在上是增函数②函数的最小值为0③如果时,则的最小值为2④函数有2个零点其中真命题的个数是( )A. 1B. 2C. 3D. 412. 已知函数,若方程有解,则的最小值为( )A. 1B. 2C.D.第Ⅱ卷二、填空题13. 二项式展开式中的系数为__________(用数字作答)14. 已知,若,则__________.15. 已知三棱锥平面,为等边三角形,,则三棱锥外接球的体积为__________.16. 已知点及抛物线的焦点,若抛物线上的点满足,则__________.三、解答题17. 已知为等差数列的前项和,且.记,其中表示不超过的最大整数,如.(I)求(II)求数列的前200项和.18. 为了解高校学生平均每天使用手机的时间长短是否与性别有关,某调查小组随机抽取了25 名男生、10名女生进行为期一周的跟踪调查,调查结果如表所示:平均每天使用手机小时平均每天使用手机小时合计(I)根据列联表判断,是否有90%的把握认为学生使用手机的时间长短与性别有关; (II)在参与调查的平均每天使用手机不超过3小时的10名男生中,有6人使用国产手机,从这10名男生中任意选取3人,求这3人中使用国产手机的人数的分布列和数学期望.0.400 0.708参考公式:19. 如图,在矩形中,,,是的中点,将沿向上折起,使平面平面(Ⅰ)求证:;(Ⅱ)求二面角的大小.20. 已知椭圆离心率为,四个顶点构成的四边形的面积是4. (Ⅰ)求椭圆的方程;(Ⅱ)若直线与椭圆交于均在第一象限,与轴、轴分别交于、两点,设直线的斜率为,直线的斜率分别为,且(其中为坐标原点).证明: 直线的斜率为定值.21. 已知函数.(I)当时,求函数的单调区间;(II)当时,恒成立,求的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,圆的方程为,直线的极坐标方程为.(I)写出的极坐标方程和的平面直角坐标方程;(Ⅱ)若直线的极坐标方程为,设与的交点为与的交点为求的面积.23. 选修4-5:不等式选讲已知函数(Ⅰ)求不等式的解集;(Ⅱ)当时,不等式恒成立,求实数的取值范围.【参考答案】第Ⅰ卷一、选择题1. 【答案】B【解析】∵集合∴∵集合∴故选B.2.【答案】D【解析】∵复数∴复数的实数为故选D.3. 【答案】C【解析】根据不等式组画出可行域如图所示:联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最大,此时,有最大值为.故选C.4. 【答案】C【解析】模拟程序的运行过程,分析循环中各变量值的变化情况,可得程序的作用是求和.故选C.5. 【答案】A【解析】由三视图可知该几何体为三棱锥,如图所示:其中,平面,,.∴,,∴该几何体的表面积为故选A.6. 【答案】B【解析】∵为的中点∴,∵∴故选B.7. 【答案】D【解析】∵弦图中“弦实”为16,“朱实一”为∴大正方形的面积为16,一个直角三角形的面积为设“勾”为,“股”为,则,解得或.∵∴,即.∴∴小正方形的边长为∴随机向弦图内投入一粒黄豆(大小忽略不计),则其落入小正方形内的概率为.故选D.8.【答案】A【解析】∵函数∴令,则.∴当时,,即函数的一个单调增区间为.故选A.9. 【答案】A【解析】∵分别是双曲线的左、右焦点,为双曲线右支上一点∴∵∴∵∴,则.∴,即.∵∴故选A.10. 【答案】B【解析】若①正确,则对应的频率为,则对应的频率为,则②错误;电子元件的平均寿命为,则③正确;寿命超过的频率为,则④正确,故不符合题意;若②正确,则对应的频率为,则①错误;电子元件的平均寿命为,则③错误;寿命超过的频率为,则④错误,故符合题意.故选B.【解析】∵函数∴∴令,得,即函数在上为增函数;令,得或,即函数在,上为减函数.∵函数在上恒成立∴当时,,且函数的零点个数只有一个.当时,,则要使时,则的最小值为2,故正确. 综上,故①②③正确.故选C.12. 【答案】D【解析】∵函数∴∵∴当时,,则函数在上减函数;当时,,则函数在上增函数.∴当时,∵方程有解∴的最小值为故选D.第Ⅱ卷二、填空题【解析】二项式的展开式的通项公式为.令,则.∴展开式中的系数为故答案为.14.【答案】2.【解析】∵∴∴故答案为.15.【答案】.【解析】根据已知中底面是边长为3的正三角形,平面,,可得此三棱锥外接球,即为以为底面以为高的正三棱柱的外接球.∵是边长为3的正三角形∴外接圆的半径为,球心到的外接圆圆心的距离为.∴球的半径为∴三棱锥外接球的体积为故答案为.16.【答案】.【解析】设,则,.∵抛物线的焦点,点,且∴,即.∵∴∴故答案为.三、解答题17. 解:(I)设等差数列的公差为由已知,根据等差数列性质可知:∴.∵,所以∴∴,,.(II)当时,,共2项;当时,,共10项;当时,,共50项;当时,,共138项.∴数列的前200项和为.18. 解:(I)由列联表得:;由于,所以没有90%的把握认为学生使用手机的时间长短与性别有关. (II)可取值0,1,2,3,,,,所以的分布列为这3人中使用国产手机的人数的数学期望为.19. (Ⅰ)证明:由题意可知,,.∴在中,,所以;∵平面⊥平面且是交线,平面∴⊥平面∵平面∴.(Ⅱ) 解:设中点为,中点为,连接.∴∴⊥平面∴,.∵∴以为坐标原点,分别以所在直线为轴、轴建立空间直角坐标系,如图则,从而,, .设为平面的法向量,则,可以取. 设为平面的法向量,则可以取. 因此,,有,即平面⊥平面.故二面角的大小为90°.20. 解:(Ⅰ)由题意得,又,解得.所以椭圆的方程为(Ⅱ)设直线的方程为,点的坐标分别为,由,消去得,,则.∴,∵∴,即.又∴又结合图象可知,.∴直线的斜率为定值.21. 解:(I)∵,函数定义域为:∴令,由可知,从而有两个不同解.令,则当时,;当时,,所以函数的单调递增区间为,单调递减区间为.(II)由题意得,当时,恒成立.令,求导得,设,则,∵∴∴,∴在上单调递增,即在上单调递增,∴①当时,,此时,在上单调递增,而.∴恒成立,满足题意.②当时,,而根据零点存在性定理可知,存在,使得.当时,单调递减;当时,,单调递增.∴有,∴恒成立矛盾∴实数的取值范围为22. 解:(I)直角坐标与极坐标互化公式为,,∵圆的普通方程为,∴把代入方程得,,∴的极坐标方程为,的平面直角坐标方程为;(Ⅱ)分别将代入的极坐标方程得;,. ∴的面积为∴的面积为.23. 解:(Ⅰ)由题意知,需解不等式.当时,上式化为,解得;当时,上式化为,无解;当时,①式化为,解得.∴的解集为或.(Ⅱ)当时,,则当,恒成立. 设,则在上的最大值为.∴,即,得.∴实数的取值范围为.。