OSI 的七层体系结构
- 格式:doc
- 大小:44.50 KB
- 文档页数:5
第一层:物理层这一层负责在计算机之间传递数据位,它为在物理媒体上传输的位流建立规则,这一层定义电缆如何连接到网卡上,以及需要用何种传送技术在电缆上发送数据;同时还定义了位同步及检查。
这一层表示了用户的软件与硬件之间的实际连接。
它实际上与任何协议都不相干,但它定义了数据链路层所使用的访问方法。
物理层是OSI参考模型的最低层,向下直接与物理传输介质相连接。
物理层协议是各种网络设备进行互连时必须遵守的低层协议。
设立物理层的目的是实现两个网络物理设备之间的二进制比特流的透明传输,对数据链路层屏蔽物理传输介质的特性,以便对高层协议有最大的透明性。
ISO对OSI参考模型中的物理层做了如下定义:物理层为建立、维护和释放数据链路实体之间的二进制比特传输的物理连接提供机械的、电气的、功能的和规程的特性。
物理连接可以通过中继系统,允许进行全双工或半双工的二进制比特流的传输。
物理层的数据服务单元是比特,它可以通过同步或异步的方式进行传输。
从以上定义中可以看出,物理层主要特点是:1.物理层主要负责在物理连接上传输二进制比特流;2.物理层提供为建立、维护和释放物理连接所需要的机械、电气、功能与规程的特性。
" 第二层:数据链路层这是OSI模型中极其重要的一层,它把从物理层来的原始数据打包成帧。
一个帧是放置数据的、逻辑的、结构化的包。
数据链路层负责帧在计算机之间的无差错传递。
数据链路层还支持工作站的网络接口卡所用的软件驱动程序。
桥接器的功能在这一层。
数据链路层是OSI参考模型的第二层,它介于物理层与网络层之间。
设立数据链路层的主要目的是将一条原始的、有差错的物理线路变为对网络层无差错的数据链路。
为了实现这个目的,数据链路层必须执行链路管理、帧传输、流量控制、差错控制等功能。
在OSI参考模型中,数据链路层向网络层提供以下基本的服务:1.数据链路建立、维护与释放的链路管理工作;2.数据链路层服务数据单元帧的传输;3.差错检测与控制;4.数据流量控制;5.在多点连接或多条数据链路连接的情况下,提供数据链路端口标识的识别,支持网络层实体建立网络连接;6.帧接收顺序控制" 第三层:网络层这一层定义网络操作系统通信用的协议,为信息确定地址,把逻辑地址和名字翻译成物理的地址。
OSI七层模型和TCPIP模型及对应协议(详解)1.OSI七层模型OSI(Open Systems Interconnection)七层模型是国际标准化组织(ISO)制定的一种网络体系结构模型,将计算机网络的功能划分为七个层次,每个层次负责不同的任务。
这些层次从底层到顶层分别为:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
-物理层:负责传输比特流,即原始的0和1的比特流。
-数据链路层:将物理层传输的数据流划分为数据帧,并在物理传输媒介上发送和接收数据帧。
-网络层:负责通过不同网络节点进行数据的路由和转发,实现数据包的传输。
-传输层:负责端到端的通信连接,在传输过程中确保数据的可靠传输和错误控制。
-会话层:负责建立、管理和终止应用程序之间的通信会话。
-表示层:负责数据的格式化和解码、加密和解密,确保接收方能够正确理解发送方的数据。
-应用层:提供用户与网络的接口,支持各种应用程序的网络访问和通信。
2.TCP/IP模型TCP/IP模型是一种通信协议体系结构,目前是互联网的基础协议。
TCP/IP模型由四个层次构成,分别为网络接口层、互联网层、传输层和应用层。
-网络接口层:负责将数据帧从物理层传输到网络层,并对数据进行分割和重组。
-互联网层:负责将数据包从源主机传输到目的主机,包括IP协议、ARP协议和ICMP协议等。
-传输层:负责数据的可靠传输和错误控制,包括TCP(传输控制协议)和UDP(用户数据报协议)等。
-应用层:提供用户与网络的接口,支持各种应用程序的网络访问和通信,包括HTTP、FTP、SMTP等协议。
3.OSI七层模型和TCP/IP模型的对应关系及协议:-OSI的物理层对应TCP/IP的网络接口层,协议包括以太网、Wi-Fi 等。
-OSI的数据链路层对应TCP/IP的网络接口层,协议包括以太网、Wi-Fi等。
-OSI的网络层对应TCP/IP的互联网层,协议包括IP、ARP、ICMP等。
osi模型的七个层次
osi模型的七个层次:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
开放式系统互联通信参考模型(简称OSI模型)是一种概念模型,由国际标准化组织提出,一个试图使各种计算机在世界范围内互连为网络的标准框架,定义于ISO/IEC 7498-1。
OSI模型简介
一、模型定义开放式系统互联通信参考模型(英语:Open System Interconnection Reference Model,缩写为OSI),简称为OSI模型(OSI model),一种概念模型,由国际标准化组织提出,一个试图使各种计算机在世界范围内互连为网络的标准框架。
定义于ISO/IEC 7498-1。
二、层次划分根据建议X.200,OSI将计算机网络体系结构划
分为以下七层,标有1~7,第1层在底部。
这七层分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
1、物理层: 将数据转换为可通过物理介质传送的电子信号相当于邮局中的搬运工人。
2、数据链路层: 决定访问网络介质的方式。
3、网络层: 使用权数据路由经过大型网络相当于邮局中的排序工人。
4、传输层: 提供终端到终端的可靠连接相当于公司中跑邮局的送信职员。
5、会话层: 允许用户使用简单易记的名称建立连接相当于公司中收寄信、写信封与拆信封的秘书。
6、表示层: 协商数据交换格式相当公司中简报老板、替老板写信的助理。
7、应用层: 用户的应用程序和网络之间的接口。
OSI参考模型体系结构
OSI参考模型体系结构,其中可以分为以下七层:
1. 应⽤层(为应⽤软件提供接⼝,是应⽤程序能够使⽤⽹络服务,常见的协议有http(80), ftp(20/21),
smtp(25),pop3(110),telnet(23),dns(53)等)
2. 表⽰层(数据的解码和编码,数据的加密和解密,数据的压缩和解压缩)
3. 会话层(建⽴,维护,管理应⽤程序之间的会话,对话控制,同步)
4. 传输层(负责建⽴端到端的连接,保证报⽂在端到端之间的传输;服务点编址、分段与重组,连接控制,流量控制,差错控制)
5. ⽹络层(负责将分组数据从源端传输到⽬的端;为⽹络设备提供逻辑地址,进⾏路由选择,分组转发; IP协议,⼯作在这层的设备:路由器)
6. 数据链路层(在不可靠的物理链路上,提供可靠的数据传输服务,把帧从⼀跳(节点)移到另⼀跳(节点);组帧,物理编址,流量控制,差错控制,接⼊控制(mac地址)交换机)
7. 物理层(负责把逐个的⽐特从⼀跳(节点)移动到另⼀跳(节点);定义接⼝和媒体的物理特性,定⽐⽐特的表⽰,数据传输速率,信号的传输模式(单⼯,半双⼯,全双⼯),定义⽹络物理拓扑(⽹状,星型,环型,总线型等拓扑))
路由器的作⽤:
1. 寻址
2. 路径选择(路由表)
3. 数据转发
4. ⼴播控制
5. 流量过滤
6. 连接⼴域⽹。
OSI七层⽹络模型⼀、OSI七层⽹络模型简介1、OSI的前世今⽣OSI(Open System Interconnect),即开放式系统互联。
是OSI组织为了互联⽹各层之间协作⽽制定的标准模型。
再具体点来说是为了使互联⽹各个基础组件⼚商统⼀标准⽽制定的标准,这样就能实现互联了。
2、OSI七层模型的划分OSI划分为:物理层、数据链路层、⽹络层、传输层、会话层、表⽰层、应⽤层3、OSI的分层设计思想OSI严格遵守了“⾼内聚、低耦合”的互联⽹设计思想,在OSI七层模型中每层只关注本层的实现,向上只提供标准接⼝,它不需要其它层的实现,各司其职。
⼆、各司其职⼀张图先了解各层间的基本功能物理层OSI模型的第⼀层,最终数据的传输通道。
物理层顾名思义就是最靠近物理传输设备的⼀层。
物理媒介包括光纤,⽹线,等。
改成的主要作⽤是实现相邻计算机间的⽐特流传输,尽可能屏蔽掉具体传输介质和物理设备的差异。
尽量对上层也就是数据链路层屏蔽掉其不需要考虑的物理介质差异,对其提供统⼀的⽐特流传输调⽤⽅式。
物理层的主要功能:屏蔽物理媒介差异,为数据链路层提供统⼀的物理⽐特流传输能⼒。
数据单元:⽐特实例:光纤、⽹线、集线器、中继器、调制解调器等。
举个例⼦,早前的电话机,你在北京,你⼥朋友在上海,你俩打个电话就能通话了。
为什么?因为中间有根电话线。
物理层你就可以这么简单的理解和记忆。
数据链路该层主要负责建⽴和管理不同计算机节点间的数据链路,并提供差错检测、封装成帧、透明传输的能⼒。
数据链路层⼜分为两个层:媒体访问控制⼦层(MAC)和逻辑链路控制⼦层(LLC)媒体访问控制⼦层(MAC)MAC地址你⼀定不会陌⽣。
每台计算机都有⾃⼰的全⽹唯⼀的MAC地址,如下图你也可以看看⾃⼰的MAC地址。
MAC⼦层的主要任务是解决共享型⽹络中多⽤户对信道竞争的问题,完成⽹络介质的访问控制。
实现这个功能的是集线器。
⽤集线器组⽹,检查计算机与计算机之间有没有冲突,避免冲突的协议叫CSMA/CD协议。
七层模型,亦称OSI(Open System Interconnection)。
参考模型是国际标准化组织(ISO)制定的一个用于计算机或通信系统间互联的标准体系,一般称为OSI参考模型或七层模型。
我们可以概括理解为上三层是对用户进行服务的,下四层是对实际数据传递提供服务。
➢物理层:是参考模型的最低层。
该层是网络通信的数据传输介质,由连接不同结点的电缆与设备共同构成。
主要功能是:利用传输介质为数据链路层提供物理连接,负责处理数据传输并监控数据出错率,以便数据流的透明传输。
在这一层,数据的单位称为比特(bit)。
主要设备:电缆,网线接口、中继器、集线器等网络基础通信设备。
➢数据链路层:是参考模型的第二层。
主要功能是:在物理层提供的服务基础上,在通信的实体间建立数据链路连接,传输以“帧”为单位的数据包,并采用差错控制与流量控制方法,使有差错的物理线路变成无差错的数据链路。
在这一层,数据的单位称为帧(frame)。
主要设备:交换机、网卡、网桥。
➢网络层:是参考模型的第三层。
主要功能是:为数据在节点之间传输创建逻辑链路,通过路由选择算法为分组通过通信子网选择最适当的路径,将数据传输到目标地址,主要负责寻找地址和路由选择,以及实现拥塞控制、网络互连等功能。
在这一层,数据的单位称为数据包(packet)。
典型设备:路由器。
传输层:是参考模型的第四层。
主要功能是:向用户提供可靠地端到端服务,处理数据包错误、数据包次序,以及其他一些关键传输问题。
传输层向高层屏蔽了下层数据通信的细节。
因此,它是计算机通信体系结构中关键的一层。
在这一层,数据的单位称为数据段(segment)。
主要协议:TCP:传输控制协议,传输效率低,可靠性强;UDP:用户数据报协议,适用于传输可靠性要求不高,数据量小的数据(比如QQ);DCCP、SCTP、RTP、RSVP、PPTP等协议➢会话层:是参考模型的第五层。
主要功能是:负责维扩两个结点之间的传输连接,以便确保点到点传输不中断,以及管理数据交换等功能。
OSI七层模型基础知识及各层常见应用OSI Open Source Initiative(简称OSI,有译作开放源代码促进会、开放原始码组织)是一个旨在推动开源软件发展的非盈利组织。
OSI参考模型(OSI/RM)的全称是开放系统互连参考模型(Open System Interconnection Reference Model,OSI/RM),它是由国际标准化组织ISO提出的一个网络系统互连模型。
它是网络技术的基础,也是分析、评判各种网络技术的依据,它揭开了网络的神秘面纱,让其有理可依,有据可循。
一、OSI参考模型知识要点图表1:OSI模型基础知识速览模型把网络通信的工作分为7层。
1至4层被认为是低层,这些层与数据移动密切相关。
5至7层是高层,包含应用程序级的数据。
每一层负责一项具体的工作,然后把数据传送到下一层。
由低到高具体分为:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
第7层应用层—直接对应用程序提供服务,应用程序可以变化,但要包括电子消息传输第6层表示层—格式化数据,以便为应用程序提供通用接口。
这可以包括加密服务第5层会话层—在两个节点之间建立端连接。
此服务包括建立连接是以全双工还是以半双工的方式进行设置,尽管可以在层4中处理双工方式第4层传输层—常规数据递送-面向连接或无连接。
包括全双工或半双工、流控制和错误恢复服务第3层网络层—本层通过寻址来建立两个节点之间的连接,它包括通过互连网络来路由和中继数据第2层数据链路层—在此层将数据分帧,并处理流控制。
本层指定拓扑结构并提供硬件寻址第1层物理层—原始比特流的传输电子信号传输和硬件接口数据发送时,从第七层传到第一层,接受方则相反。
各层对应的典型设备如下:应用层………………。
计算机:应用程序,如FTP,SMTP,HTTP表示层………………。
计算机:编码方式,图像编解码、URL字段传输编码会话层………………。
计算机:建立会话,SESSION认证、断点续传传输层………………。
OSI七层网络模型由下至上为1至7层,分别为物理层(Physical layer),数据链路层(Data link layer),网络层(Network layer),传输层(Transport layer),会话层(Session layer),表示层(Presentation layer),应用层(Application layer)。
应用层,很简单,就是应用程序。
这一层负责确定通信对象,并确保由足够的资源用于通信,这些当然都是想要通信的应用程序干的事情。
表示层,负责数据的编码、转化,确保应用层的正常工作。
这一层,是将我们看到的界面与二进制间互相转化的地方,就是我们的语言与机器语言间的转化。
数据的压缩、解压,加密、解密都发生在这一层。
这一层根据不同的应用目的将数据处理为不同的格式,表现出来就是我们看到的各种各样的文件扩展名。
会话层,负责建立、维护、控制会话,区分不同的会话,以及提供单工(Simplex)、半双工(Half duplex)、全双工(Full duplex)三种通信模式的服务。
我们平时所知的NFS,RPC,X Windows等都工作在这一层。
传输层,负责分割、组合数据,实现端到端的逻辑连接。
数据在上三层是整体的,到了这一层开始被分割,这一层分割后的数据被称为段(Segment)。
三次握手(Three-way handshake),面向连接(Connection-Oriented)或非面向连接(Connectionless-Oriented)的服务,流控(Flow control)等都发生在这一层。
网络层,负责管理网络地址,定位设备,决定路由。
我们所熟知的IP地址和路由器就是工作在这一层。
上层的数据段在这一层被分割,封装后叫做包 (Packet),包有两种,一种叫做用户数据包(Data packets),是上层传下来的用户数据;另一种叫路由更新包(Route update packets),是直接由路由器发出来的,用来和其他路由器进行路由信息的交换。
开放系统互连参考模型(Open System Interconnect 简称OSI)是国际标准化组织(ISO)和国际电报电话咨询委员会(CCITT)联合制定的开放系统互连参考模型,为开放式互连信息系统提供了一种功能结构的框架。
它从低到高分别是:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
特点开放系统互连参考模型的特点:①每层的对应实体之间都通过各自的协议进行通信。
②各个计算机系统都有相同的层次结构。
③不同系统的相应层次具有相同的功能。
④同一系统的各层次之间通过接口联系。
⑤相邻的两层之间,下层为上层提供服务,上层使用下层提供的服务。
参考模型层次划分原则OSI将整个通信功能划分为7个层次,划分的原则如下:(1)网络中所有节点都划分为相同的层次结构,每个相同的层次都有相同的功能。
(2)同一节点内各相邻层次间可通过接口协议进行通信。
(3)每一层使用下一层提供的服务,并向它的上层提供服务。
(4)不同节点的同等层按照协议实现同等层之间的通信。
各层次功能物理层物理层并不是物理媒体本身,它只是开放系统中利用物理媒体实现物理连接的功能描述和执行连接的规程。
物理层提供用于建立、保持和断开物理连接的机械的、电气的、功能的和过程的条件。
简而言之,物理层提供有关同步和比特流在物理媒体上的传输手段,其典型的协议有EIA-232-D等。
数据链路层数据链路层用于建立、维持和拆除链路连接,实现无差错传输的功能。
在点到点或点到多点的链路上,保证信息的可靠传递。
该层对连接相邻的通路进行差错控制、数据成帧、同步等控制。
检测差错一般采用循环冗余校验(CRC),纠正差错采用计时器恢复和自动请求重发(ARQ)等技术。
其典型的协议有OSI标准协议集中的高级数据链路控制协议HDLC。
网络层网络层规定了网络连接的建立、维持和拆除的协议。
它的主要功能是利用数据链路层所提供的相邻节点间的无差错数据传输功能,通过路由选择和中继功能,实现两个系统之间的连接。
OSI七层模型由低到高谈到网络不能不谈OSI参考模型,OSI参考模型(OSI/RM)的全称是开放系统互连参考模型(Open System Interconnection Reference Model,OSI/RM),它是由国际标准化组织ISO提出的一个网络系统互连模型。
虽然OSI参考模型的实际应用意义不是很大,但其的确对于理解网络协议内部的运作很有帮助,也为我们学习网络协议提供了一个很好的参考......物理层规定了激活、维持、关闭通信端点之间的机械特性、电气特性、功能特性以及过程特性。
该层为上层协议提供了一个传输数据的物理媒体。
只是说明标准在这一层,数据的单位称为比特(bit)。
属于物理层定义的典型规范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45、fddi令牌环网等。
第一层:物理层数据链路层在不可靠的物理介质上提供可靠的传输。
该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。
在这一层,数据的单位称为帧(frame)。
数据链路层协议的代表包括:ARP、RARP、SDLC、HDLC、PPP、STP、帧中继等。
第二层:数据链路层 802.2、802.3ATM、HDLC、FRAME RELAY网络层负责对子网间的数据包进行路由选择。
网络层还可以实现拥塞控制、网际互连等功能。
在这一层,数据的单位称为数据包(packet)。
网络层协议的代表包括:IP、IPX、RIP、OSPF等。
第三层:网络层 IP、IPX、APPLETALK、ICMP传输层是第一个端到端,即主机到主机的层次。
传输层负责将上层数据分段并提供端到端的、可靠的或不可靠的传输。
此外,传输层还要处理端到端的差错控制和流量控制问题。
在这一层,数据的单位称为数据段(segment)。
传输层协议的代表包括:TCP、UDP、SPX等。
第四层:传输层 TCP、UDP、SPX会话层管理主机之间的会话进程,即负责建立、管理、终止进程之间的会话。
OSI 的七层体系结构:应用层表示层会话层运输层网络层数据链路层物理层物理层物理层是OSI的第一层,它虽然处于最底层,却是整个开放系统的基础。
物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。
∙媒体和互连设备物理层的媒体包括架空明线、平衡电缆、光纤、无线信道等。
通信用的互连设备指DTE和DCE间的互连设备。
DTE既数据终端设备,又称物理设备,如计算机、终端等都包括在内。
而DCE则是数据通信设备或电路连接设备,如调制解调器等。
数据传输通常是经过DTE──DCE,再经过DCE──DTE的路径。
互连设备指将DTE、DCE 连接起来的装置,如各种插头、插座。
LAN中的各种粗、细同轴电缆、T型接、插头,接收器,发送器,中继器等都属物理层的媒体和连接器。
∙物理层的主要功能1.为数据端设备提供传送数据的通路,数据通路可以是一个物理媒体,也可以是多个物理媒体连接而成.一次完整的数据传输,包括激活物理连接,传送数据,终止物理连接.所谓激活,就是不管有多少物理媒体参与,都要在通信的两个数据终端设备间连接起来,形成一条通路.2.传输数据.物理层要形成适合数据传输需要的实体,为数据传送服务.一是要保证数据能在其上正确通过,二是要提供足够的带宽(带宽是指每秒钟内能通过的比特(BIT)数),以减少信道上的拥塞.传输数据的方式能满足点到点,一点到多点,串行或并行,半双工或全双工,同步或异步传输的需要.3.完成物理层的一些管理工作.∙物理层的一些重要标准物理层的一些标准和协议早在OSI/TC97/C16 分技术委员会成立之前就已制定并在应用了,OSI也制定了一些标准并采用了一些已有的成果.下面将一些重要的标准列出,以便读者查阅.ISO2110:称为"数据通信----25芯DTE/DCE接口连接器和插针分配".它与EIA(美国电子工业协会)的"RS-232-C"基本兼容。
ISO2593:称为"数据通信----34芯DTE/DCE----接口连接器和插针分配"。
ISO4092:称为"数据通信----37芯DTE/DEC----接口连接器和插针分配".与EIARS-449兼容。
CCITT V.24:称为"数据终端设备(DTE)和数据电路终接设备之间的接口电路定义表".其功能与EIARS-232-C及RS-449兼容于100序列线上.数据链路层数据链路可以粗略地理解为数据通道。
物理层要为终端设备间的数据通信提供传输媒体及其连接.媒体是长期的,连接是有生存期的.在连接生存期内,收发两端可以进行不等的一次或多次数据通信.每次通信都要经过建立通信联络和拆除通信联络两过程.这种建立起来的数据收发关系就叫作数据链路.而在物理媒体上传输的数据难免受到各种不可靠因素的影响而产生差错,为了弥补物理层上的不足,为上层提供无差错的数据传输,就要能对数据进行检错和纠错.数据链路的建立,拆除,对数据的检错,纠错是数据链路层的基本任务。
∙链路层的主要功能链路层是为网络层提供数据传送服务的,这种服务要依靠本层具备的功能来实现。
链路层应具备如下功能:1.链路连接的建立,拆除,分离。
2.帧定界和帧同步。
链路层的数据传输单元是帧,协议不同,帧的长短和界面也有差别,但无论如何必须对帧进行定界。
3.顺序控制,指对帧的收发顺序的控制。
4.差错检测和恢复。
还有链路标识,流量控制等等.差错检测多用方阵码校验和循环码校验来检测信道上数据的误码,而帧丢失等用序号检测.各种错误的恢复则常靠反馈重发技术来完成。
∙数据链路层的主要协议数据链路层协议是为发对等实体间保持一致而制定的,也为了顺利完成对网络层的服务。
主要协议如下:1.ISO1745--1975:"数据通信系统的基本型控制规程".这是一种面向字符的标准,利用10个控制字符完成链路的建立,拆除及数据交换.对帧的收发情况及差错恢复也是靠这些字符来完成.ISO1155, ISO1177, ISO2626, ISO2629等标准的配合使用可形成多种链路控制和数据传输方式.2.ISO3309--1984:称为"HDLC 帧结构".ISO4335--1984:称为"HDLC 规程要素".ISO7809--1984:称为"HDLC 规程类型汇编".这3个标准都是为面向比特的数据传输控制而制定的.有人习惯上把这3个标准组合称为高级链路控制规程.3.ISO7776:称为"DTE数据链路层规程".与CCITT X.25LAB"平衡型链路访问规程"相兼容.∙链路层产品独立的链路产品中最常见的当属网卡,网桥也是链路产品。
MODEM的某些功能有人认为属于链路层,对些还有争议.数据链路层将本质上不可靠的传输媒体变成可靠的传输通路提供给网络层。
在IEEE802.3情况下,数据链路层分成了两个子层,一个是逻辑链路控制,另一个是媒体访问控制。
下图所示为IEEE802.3LAN体系结构。
AUI=连接单元接口 PMA=物理媒体连接MAU=媒体连接单元 PLS=物理信令MDI=媒体相关接口网络层网络层的产生也是网络发展的结果.在联机系统和线路交换的环境中,网络层的功能没有太大意义.当数据终端增多时.它们之间有中继设备相连.此时会出现一台终端要求不只是与唯一的一台而是能和多台终端通信的情况,这就是产生了把任意两台数据终端设备的数据链接起来的问题,也就是路由或者叫寻径.另外,当一条物理信道建立之后,被一对用户使用,往往有许多空闲时间被浪费掉.人们自然会希望让多对用户共用一条链路,为解决这一问题就出现了逻辑信道技术和虚拟电路技术.∙网络层主要功能网络层为建立网络连接和为上层提供服务,应具备以下主要功能:1.路由选择和中继2.激活,终止网络连接3.在一条数据链路上复用多条网络连接,多采取分时复用技术4.差错检测与恢复5.排序,流量控制6.服务选择7.网络管理∙网络层标准简介网络层的一些主要标准如下:1.ISO.DIS8208:称为"DTE用的X.25分组级协议"2.ISO.DIS8348:称为"CO 网络服务定义"(面向连接)3.ISO.DIS8349:称为"CL 网络服务定义"(面向无连接)4.ISO.DIS8473:称为"CL 网络协议"5.ISO.DIS8348:称为"网络层寻址"6.除上述标准外,还有许多标准。
这些标准都只是解决网络层的部分功能,所以往往需要在网络层中同时使用几个标准才能完成整个网络层的功能.由于面对的网络不同,网络层将会采用不同的标准组合.在具有开放特性的网络中的数据终端设备,都要配置网络层的功能.现在市场上销售的网络硬设备主要有网关和路由器.传输层传输层是两台计算机经过网络进行数据通信时,第一个端到端的层次,具有缓冲作用。
当网络层服务质量不能满足要求时,它将服务加以提高,以满足高层的要求;当网络层服务质量较好时,它只用很少的工作。
传输层还可进行复用,即在一个网络连接上创建多个逻辑连接。
传输层也称为运输层.传输层只存在于端开放系统中,是介于低3层通信子网系统和高3层之间的一层,但是很重要的一层.因为它是源端到目的端对数据传送进行控制从低到高的最后一层.有一个既存事实,即世界上各种通信子网在性能上存在着很大差异.例如电话交换网,分组交换网,公用数据交换网,局域网等通信子网都可互连,但它们提供的吞吐量,传输速率,数据延迟通信费用各不相同.对于会话层来说,却要求有一性能恒定的界面.传输层就承担了这一功能.它采用分流/合流,复用/介复用技术来调节上述通信子网的差异,使会话层感受不到.此外传输层还要具备差错恢复,流量控制等功能,以此对会话层屏蔽通信子网在这些方面的细节与差异.传输层面对的数据对象已不是网络地址和主机地址,而是和会话层的界面端口.上述功能的最终目的是为会话提供可靠的,无误的数据传输.传输层的服务一般要经历传输连接建立阶段,数据传送阶段,传输连接释放阶段3个阶段才算完成一个完整的服务过程.而在数据传送阶段又分为一般数据传送和加速数据传送两种。
传输层服务分成5种类型.基本可以满足对传送质量,传送速度,传送费用的各种不同需要.传输层的协议标准有以下几种:∙ISO8072:称为"面向连接的传输服务定义"∙ISO8072:称为"面向连接的传输协议规范"会话层会话层提供的服务可使应用建立和维持会话,并能使会话获得同步。
会话层使用校验点可使通信会话在通信失效时从校验点继续恢复通信。
这种能力对于传送大的文件极为重要。
会话层,表示层,应用层构成开放系统的高3层,面对应用进程提供分布处理,对话管理,信息表示,恢复最后的差错等. 会话层同样要担负应用进程服务要求,而运输层不能完成的那部分工作,给运输层功能差距以弥补.主要的功能是对话管理,数据流同步和重新同步。
要完成这些功能,需要由大量的服务单元功能组合,已经制定的功能单元已有几十种.现将会话层主要功能介绍如下.∙为会话实体间建立连接。
为给两个对等会话服务用户建立一个会话连接,应该做如下几项工作:1.将会话地址映射为运输地址2.选择需要的运输服务质量参数(QOS)3.对会话参数进行协商4.识别各个会话连接5.传送有限的透明用户数据∙数据传输阶段这个阶段是在两个会话用户之间实现有组织的,同步的数据传输.用户数据单元为SSDU,而协议数据单元为SPDU.会话用户之间的数据传送过程是将SSDU转变成SPDU进行的.∙连接释放连接释放是通过"有序释放","废弃","有限量透明用户数据传送"等功能单元来释放会话连接的.会话层标准为了使会话连接建立阶段能进行功能协商,也为了便于其它国际标准参考和引用,定义了12种功能单元.各个系统可根据自身情况和需要,以核心功能服务单元为基础,选配其他功能单元组成合理的会话服务子集.会话层的主要标准有"DIS8236:会话服务定义"和"DIS8237:会话协议规范".表示层表示层的作用之一是为异种机通信提供一种公共语言,以便能进行互操作。
这种类型的服务之所以需要,是因为不同的计算机体系结构使用的数据表示法不同。
例如,IBM主机使用EBCDIC编码,而大部分PC机使用的是ASCII码。
在这种情况下,便需要会话层来完成这种转换。
通过前面的介绍,我们可以看出,会话层以下5层完成了端到端的数据传送,并且是可靠,无差错的传送.但是数据传送只是手段而不是目的,最终是要实现对数据的使用.由于各种系统对数据的定义并不完全相同,最易明白的例子是键盘,其上的某些键的含义在许多系统中都有差异.这自然给利用其它系统的数据造成了障碍.表示层和应用层就担负了消除这种障碍的任务.对于用户数据来说,可以从两个侧面来分析,一个是数据含义被称为语义,另一个是数据的表示形式,称做语法.像文字,图形,声音,文种,压缩,加密等都属于语法范畴.表示层设计了3类15种功能单位,其中上下文管理功能单位就是沟通用户间的数据编码规则,以便双方有一致的数据形式,能够互相认识.ISO表示层为服务,协议,文本通信符制定了DP8822,DP8823,DIS6937/2等一系列标准.应用层应用层向应用程序提供服务,这些服务按其向应用程序提供的特性分成组,并称为服务元素。