八年级上学期数学知识整理
- 格式:docx
- 大小:145.06 KB
- 文档页数:1
八年级数学上册知识点归纳八年级数学上册必备知识梯形(一) 1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。
梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。
梯形中不平行的两边叫做梯形的腰。
梯形的两底的距离叫做梯形的高。
2、梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。
(2)一组对边平行且不相等的四边形是梯形。
(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。
一般地,梯形的分类如下:一般梯形、梯形直角梯形、特殊梯形等腰梯形(三)等腰梯形1、等腰梯形的定义两腰相等的梯形叫做等腰梯形。
2、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。
(2)等腰梯形同一底上的'两个角相等,同一腰上的两个角互补。
(3)等腰梯形的对角线相等。
(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。
3、等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形。
八年级数学知识总结一、整式的乘法1.同底数幂的乘法:am²an=a m+n(m,n都是正整数)即同底数幂相乘,底数不变,指数相加。
2.幂的乘方法则:(am)n=amn(m,n都是正整数)幂的乘方,底数不变,指数相乘。
3.积的乘方法则:(ab)n = an²bn(n为正整数) 积的乘方=乘方的积4.单项式与单项式相乘法则:(1)系数与系数相乘(2)同底数幂与同底数幂相乘(3)其余字母及其指数不变作为积的因式5.单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。
6.多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
二、乘法公式1.平方差公式:(a+b)(a-b)=a2-b2。
2.完全平方公式:(a±b)2=a2±2ab+b2口诀:前平方,后平方,积的两倍中间放,中间符号看情况。
八年级上册全部知识点总结1. 整数与有理数:
正整数、负整数、零及其运算规则;
分数、小数和百分数的概念和相互转化;
有理数的大小比较和绝对值。
2. 平方根与立方根:
平方数和完全平方根的概念;
立方数和立方根的概念;
计算平方根和立方根的方法。
3. 代数基础:
代数式的定义和基本性质;
同类项、合并同类项的方法;
公式的运用和推导。
4. 一元一次方程:
方程的概念和解的含义;
解一元一次方程的方法;
应用一元一次方程解决实际问题。
5. 几何基础:
点、线、面的基本概念;
角的概念及角的分类;
相关角的性质和计算。
6. 图形的认识与运动:
二维图形的命名和性质;
图形的旋转、平移和翻折等基本变换;
利用坐标进行图形的描述和判断。
7. 数据的收集与整理:
数据的收集和分类;
统计图表的绘制和解读;
数据的分析和判断。
以上是八年级上册的主要知识点总结,希望能对你有所帮助!如有其他问题,请随时提问。
以下是八年级数学上册的必背知识点:一、整式的概念与运算1.简单的代数式的概念与运算:常数、变量、系数、次数等。
2.同类项的概念与合并:同底数幂相乘的原理、定点方向向量。
3.整式之和与差、积的概念与规律。
二、分式的概念与运算1.简单的分式的概念与约分:通分、求最简分式。
2.分式之和与差、积及商的概念与运算。
三、一元一次方程与不等式1.等式的定义与性质:等式的基本性质、等式的移项与合并、等式的逆运算等。
2.一元一次方程与不等式的定义与解法:有理数的加减乘除、方程、方程与不等式的基本关系。
四、图形的初步认识1.点、线、面的概念。
2.线段、射线、角的概念与性质:直角、余角、补角、平分线。
3.直线与点的位置关系:共线、相交、平行、垂直。
4.三角形、四边形的定义与性质:等腰、等边、直角、等角、对顶角、对边、外角和等角、四边形的分类及性质。
五、比例与图形的相似1.比与比例的概念与运算:比例的基本性质、反比例等。
2.图形的相似与比例:全等、相似的定义与性质、相似三角形的判定与性质、相似多边形的性质等。
六、平面直角坐标系与函数1.平面直角坐标系:横坐标与纵坐标、坐标的性质与应用等。
2.函数及表示方法:函数的概念、自变量与因变量、函数的表示方法等。
3.一次函数的概念:函数的定义域、值域、图象等。
七、数据的收集、整理与处理1.数据的收集与整理:调查方法、表格、直方图、折线图等。
2.概率的初步认识:实验、样本空间、随机事件、概率等。
以上是八年级数学上册的必背知识点,希望能对你的学习有所帮助!。
八年级数学上册知识点总结数学》(八年级上册)知识点总结第一章勾股定理1、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a²+b²=c²。
2、勾股定理的逆定理:如果三角形的三边长a,b,c有关系a²+b²=c²,那么这个三角形是直角三角形。
3、勾股数:满足a²+b²=c²的三个正整数,称为勾股数。
第二章实数一、实数的概念及分类1、实数的分类:正有理数、有理数零有限小数和无限循环小数、实数负有理数、正无理数、无理数无限不循环小数、负无理数。
2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一特点,归纳起来有四类:1)开方开不尽的数,如7、32等;2)有特定意义的数,如圆周率π,或化简后含有π的数,如222π+8等;3)有特定结构的数,如0.xxxxxxxx01…等;4)某些三角函数值,如sin60等。
二、实数的倒数、相反数和绝对值1、相反数:实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=−b,反之亦成立。
2、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值(|a|≥)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥;若|a|=−a,则a≤。
3、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和−1.零没有倒数。
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算。
三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x就叫做a的算术平方根。
八年级上册数学知识点汇总第一章三角形1. 三角形的定义由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2. 三角形的三边关系三角形任意两边之和大于第三边,任意两边之差小于第三边。
3. 三角形的内角和三角形的内角和为180°。
4. 三角形的外角三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
三角形的外角等于与它不相邻的两个内角的和。
5. 三角形的中线、角平分线、高线(1)中线:连接三角形的一个顶点和它所对边的中点的线段叫做三角形的中线。
(2)角平分线:三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
(3)高线:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。
第二章全等三角形1. 全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
2. 全等三角形的性质(1)全等三角形的对应边相等,对应角相等。
(2)全等三角形的周长相等,面积相等。
3. 全等三角形的判定(1)“边边边”(SSS):三边对应相等的两个三角形全等。
(2)“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
(3)“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
(4)“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。
(5)“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
第三章轴对称1. 轴对称图形如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2. 轴对称把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
3. 线段的垂直平分线经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
线段垂直平分线上的点与这条线段两个端点的距离相等。
八上数学重要知识点(全册)
本文档旨在总结八年级上学期数学课程的重要知识点,以帮助同学们更好地回顾和复。
1. 整数与计算
- 正数与负数的概念及表示方法
- 整数的加法、减法、乘法、除法运算规则
- 绝对值的计算方法和性质
- 倒数的概念及计算方法
2. 分数的运算
- 分数的基本概念和表示方法
- 分数的加法、减法、乘法、除法运算规则
- 分数与整数之间的转化
- 带分数的概念及计算方法
3. 代数式与方程
- 代数式的基本概念和表示方法
- 代数式的加法、减法、乘法运算规则
- 方程的概念和解方程的方法
- 一元一次方程的解法和应用
4. 几何形状与变换
- 平面图形的基本概念、性质和分类标准
- 直角三角形、等腰三角形和等边三角形的特点- 多边形的性质和分类标准
- 空间几何体的基本概念和计算方法
- 平移、旋转、翻折和对称变换的概念和方法5. 数据与统计
- 统计调查和统计图的制作和解读
- 数据的整理、展示和分析
- 众数、中位数和平均数的计算以及应用
以上是八年级上学期数学课程的重要知识点概述。
同学们可以根据这些内容进行系统的复习,以提高数学学习的效果。
祝愿大家取得优异的成绩!。
初二数学上学期知识点总结(10篇)在平平淡淡的学习中,大家较不陌生的就是知识点吧!知识点有时候特指教科书上或考试的知识。
掌握知识点有助于大家更好的学习。
问学必有师,讲习必有友,以下是可爱的小编为家人们收集整理的初二数学上学期知识点总结(较新10篇),欢迎参考阅读,希望可以帮助到有需要的朋友。
初二数学上学期知识点总结篇一分式的加减法1、分式与分数类似,也可以通分。
根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
2、分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减。
(1)同分母的分式相加减,分母不变,把分子相加减;上述法则用式子表示是:(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:3、概念内涵:通分的关键是确定较简分母,其方法如下:较简公分母的系数,取各分母系数的较小公倍数;较简公分母的字母,取各分母所有字母的次幂的积,如果分母是多项式,则首先对多项式进行因式分解。
初二数学上册知识点篇二多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的`一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。
对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到初二数学上册知识点篇三平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算。
八年级上册数学知识点总结归纳八年级上册数学主要包括整数的加减乘除、分式、一元一次方程与一次方程组等内容。
以下是对这些知识点的详细总结和归纳。
一、整数的加减乘除1. 整数的概念:整数包括正整数、负整数和0。
整数是数轴上的点,可以进行加减乘除计算。
2. 整数的加减法:同号两个数相加、异号两个数相减。
同号两个数相加,取相同的符号,然后将它们的绝对值相加;异号两个数相减,取绝对值大的符号,然后用绝对值大的数减去绝对值小的数,差的符号与绝对值大的数的符号相同。
3. 整数的乘法:同号两个数相乘得正,异号两个数相乘得负。
两个数相乘时,先将它们的绝对值相乘,再确定符号。
4. 整数的除法:同号两个数相除得正,异号两个数相除得负。
两个数相除时,先将被除数和除数的绝对值相除,再确定符号。
5. 整数运算的性质:加法交换律、结合律;乘法交换律、结合律;加法与乘法的相互分配律;零的性质:任何整数与0相加等于自身;乘法的零性质:任何整数与0相乘等于0;除法的性质:0不能作为除数。
二、分式1. 分式的概念:分式是一个整数分母和分子组成的表达式,包括真分式和假分式。
其中,分母不为0。
2. 分式的加减乘除:加减法:先通分,再进行加减法;乘法:先化简为最简分式,再进行乘法;除法:倒数再乘。
3. 分式的性质:分式也遵循加法交换律、结合律和乘法交换律、结合律;负数分式化成最简分式时,分母为正。
三、一元一次方程1. 一元一次方程的概念:一元一次方程是指只含有一个未知数的一次方程,且未知数的最高次数为1。
2. 解一元一次方程的基本方法:通过移项变元、整理方程式,最终得到未知数的值。
3. 一元一次方程的应用:一元一次方程在解决实际问题中的应用非常广泛,如人头问题、水池问题、速度问题等。
四、一元一次方程组1. 一元一次方程组的概念:一元一次方程组是指由两个或两个以上的一元一次方程组成的方程组。
2. 一元一次方程组的解法:通过分别解方程组中的各个方程,最终得到未知数的值。
八年级上册数学笔记知识点一、有理数1. 有理数:在现实生活中存在着大量的具有相反意义的量,如向东走与向西走,盈利与亏损等。
用一种符号表示具有相反意义的量就得到有理数。
2. 有理数的分类:整数和分数统称为有理数。
注意:0既不是正数也不是负数。
二、数轴1. 数轴:规定了原点、正方向和单位长度的直线叫做数轴。
2. 建立数轴:先确定原点、再确定正方向、最后确定单位长度。
3. 理解数轴上的点与实数是一一对应的关系。
三、绝对值1. 定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
2. 规律总结:一个正数的绝对值是大于它本身;一个负数的绝对值是小于它的实际绝对值;0的绝对值是它本身。
四、相反数1. 定义:只有符号不同的两个数叫做互为相反数。
2. 注意:互为相反数的两个数不一定是异号,但一定是非零的数;符号不同的两个数也互为相反数。
如-a和a互为相反数,并且有绝对值较大的一个符号决定相反数的符号。
五、公式定理部分1. 代数式求值:把已知条件整体代入代数式中求出未知量的值。
2. 代数式的变形:根据代数式中数字与字母的特点,灵活运用乘法对加法的分配律,提取公因式以及公式法等使代数式得到简化。
3. 特殊三角形:等边三角形、等腰三角形、直角三角形等,分别根据其性质得出有关边、角的关系式,并注意综合运用。
六、三角形部分1. 等腰三角形:根据等腰三角形的特点综合运用勾股定理、三角形内角和定理、三角形稳定性等知识求出角度的大小。
2. 直角三角形:根据直角三角形的特点综合运用勾股定理、三角函数等知识求出线段的长或角的度数。
七、四边形部分平行四边形和梯形是两种最基本的四边形,其它四边形都是由这两种基本四边形通过转化而得到的或是它们的特例。
因此,在研究四边形的有关性质时,应从基本四边形的性质入手,结合具体四边形的特点进行转化(通过添加辅助线)来解决。
八、函数部分函数思想是初中数学中的一个重要思想,应通过具体问题来培养这种思想,应弄清一个函数包括定义域和对应法则两部分,注意函数的定义域优先的原则。
八年级上学期数学知识整理
二次根式
1、代数式√a(a≥0)叫做二次根式,仍然读作“根号a”,其中a是被开方数;
2、把二次根式里被开方数所含的完全平方因式移到根号外,或者化去被开方数的分母的过程,称为“化简二次根式”;
3、最简二次根式被开方数中各因式的指数都为1且被开方数不含分母;
4、几个二次根式化成最简二次根式后,如果被开方数相同,那么着几个二次根式叫做同类二次根式;
5、两个二次根式相乘,被开方数相乘,根指数不变。
两个二次根式相除,被开方数相除,根指数不变;
6、当a大于0,b小雨0,p、q为有理数,那么(1)a的p次方乘以a的q次方等于a的p+q次方,a的p次方除以a的q次方等于a的p-q次方;a的p次方的q次方等于a的pq次方;ab的p次方等于a的p次方乘以b的p次方;b分之a的p次方等于b的p次方分之a的p次方。
一元二次方程
1、只含有一个未知数,且未知数最高次数为2的整式方程叫做一元二次方程;
2、一元二次方程的解法有4种:开平方法(x^2=4,x=± 2,x1=2,x2=-2)因式分解法(x^2; +2x+1=4, (x+1)^2=4, x+1=±2, x1=2,x2=-2)配方法(x²-4x-12=0,x²-4x+4=16,(x-2)²=16,x-2=±2,x1=4,x2=0)以及公式法(x= -b±√4ac-b^2/2a))
3、我们把b^2-4ac叫做一元二次方程ax²+bx+c=0(a≠0)的根的判别式,通常用符号“△”来表示,记作△=b^2-4ac;
4、①当△=b^2-4ac>0时,方程有两个不相等的实数根②当△=b^2-4ac=0时,方程有两个相等的实数根③当△=b^2-4ac<0时,方程没有实数根;
正比例函数和反比例函数
1、在某种变化过程中有两个变量,设为x和y,如果在变量x的允许取值范围内,变量y随着x的变化而变化,他们之间存在确定的依赖关系,那么变量y叫做变量x 的函数,x叫做自变量,表达着两个变量之间依赖关系的依赖关系的数学式子称为函数解析式;
2、函数的自变量允许取值的范围,叫做这个函数的定义域;
3、如果变量y时自变量x的函数,那么对于x在定义域内取定的一个值a,变量y的对应值叫做当x=a时的函数值;
4、解析式形如y=kx(k是不等于零的常数)的函数叫做正比例函数,其中常数k叫做比例系数;
5、一般地正比例函数y=kx(k是常数,k≠0)的图像是经过原点O(0,0)和点M(1,k)的一条直线。
我们把正比例函数y=kx的图像叫做直线y=kx;
6、①k>0时,正比例函数的图像经过第一、三象限;自变量x的值逐渐增加时,y的值也随着逐渐增大②当k<0时,正比例函数的图像经过第二、四象限;自变量x 的值逐渐增大时,y的值则随着逐渐减小;
7、如果两个变量的每一组对应值的乘积时一个不等于零的常数,那么就说这两个变量成反比例;
8、解析式形如y=k/x(k是常数,k≠0)的函数叫做反比例函数,其中k也叫做比例系数,反比例函数y=k/x的定义域时不等于零的一切实数;
9、反比例函数y=k/x中①当k>0时,函数图像的两支分别在第一、三象限;在每个象限内,当自变量x的值逐渐增大时,y的值随着逐渐减小②当k<0时,时,函数图像的两支分别在第二、四象限;在每个象限内,当自变量x的值逐渐增大时,y的值随着逐渐增大③图像的两支都无限接近于x轴和y轴,但不会与x轴和y轴相交;
10、①把两个变量之间的依赖关系用数学式子来表达,这种表示函数的方法叫做解析法②把两个变量之间的依赖关系用表格来表达,这种表示函数的方法叫做列表法③;把两个变量之间的依赖关系用图像来表达,这种表示函数的方法叫做图像法
几何证明
1、演绎证明试着从医治的概念、条件出发,一句已被确认的事实和公认的逻辑规则,推导出某结论为正确的过程;
2、①能界定某个对象含义的句子叫做定义②判断一件事情的句子叫做命题,判断为正确的命题叫做真命题,判断为错误的命题叫做假命题③数学命题通常由题设、结论两部分组成;④人们从长期的实践中总结出来的真命题叫做公理⑤有些命题是从公理或其他真命题出发,用推理方法证明为正确的,并进一步作为判断其他命题真假的依据,这样的真命题叫做定理;
3、在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题;
4、线段垂直平分线上的任意一点到这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的带你,在这条线段的垂直平分线上;
5、在角的平分线上的点到这个角的两边的距离相等。
逆定理:在一个角的内部(包括顶角)且到角的两边距离相等的点,在这个角的平分线上;
6、我们有时也把符合某些条件的所有点的集合叫做点的轨迹①和线段两个端点距离相等的点的轨迹是这条线段的垂直平分线②在一个角的内部(包括顶点)且到角两边距离相等的点的轨迹是这个角的平分线③到定点的距离等于定长的点的轨迹是以这个定点为圆心,定长为半径的圆
7、如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记为H.L);
8、定理①:直角三角形的两个锐角互余;定理②:直角三角形斜边上的中线等于斜边的一半
9、推论①:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;推论②:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°;
10、在直角三角形中,斜边大于直角边;
11、勾股定理:直角三角形两条直角边的平方和,等于斜边的平方。
勾股定理的逆定理:如果三角形的一条边的平方等于其
他两条边的平方和,那么这个三角形是直角三角形;
12、如果直角坐标平面内有两点A(x1、y1)、B(x2、y2),那么A、B两点的距离AB=√(x1-x2)^2+(y1-y2)^2。